Biophysical Journal, Volume 113

Supplemental Information

Effect of a Paramagnetic Spin Label on the Intrinsically Disordered Pep-

tide Ensemble of Amyloid- β

Sukanya Sasmal, James Lincoff, and Teresa Head-Gordon

Supplementary Information: The Effect of a Paramagnetic Spin Label on the Intrinsically Disordered Peptide Ensemble of Amyloid-β

S. Sasmal, J. Lincoff, T. Head-Gordon

FIGURE CAPTIONS

Figure S1. Percentages of MTSL-Cys- $A\beta 42$ sub-ensembles containing turn 32-33 for REMD simulations.

Figure S2. Plot of the probability of a heavy atom contact between the MTSL-Cys residue and other residues in the $A\beta 42$ sequence for REMD simulations.

Figure S3: Calculated SHIFTX2² proton and carbon secondary chemical shifts by residue for $A\beta42$ (blue) and MTSL-Cys-A\beta42 (red) REMD simulations. (a) H_a chemical shifts, (b) H_N chemical shifts, (c) C_a chemical shifts, (d) C_β chemical shifts, and (e) N chemical shifts. Random coil residue specific values taken from are subtracted from both experimental and simulation values.

Figure S4: *J*-coupling constants for backbone amides for $A\beta 42$ (blue) and MTSL-Cys- $A\beta 42$ (red) for REMD simulations. Simulation uncertainty bars represent rms difference between two independent simulations and the average.

Figure S5: Calculated RDCs for (a) A\beta42 and (b) MTSL-Cys-A\beta42 structural ensembles generated using REMD simulations. RDCs based on global alignments calculated from PALES.

Figure S6: Contact map of strong simulated ${}^{1}H{}^{1}HNOE$ intensities for MTSL-Cys-A β 42 from *REMD simulations that are dominated by a single contact.* Strong experimental intensities that define β -strands 4-7 and 10-12 (orange), β -strands 3-6 and 31-41 (pink), β -strands 16-21 and 29-36 (cyan), β -strands 27-31 and 33-38 (grey), β -strands 34-36 and 39-40 (yellow) and hydrophobic contacts (outlined black) indicated in the map. The color-coding for helices and turns are shown in the figure.

Figure S1: Percentages of MTSL-Cys- $A\beta 42$ sub-ensembles containing turn 32-33 for REMD simulations.

Figure S2: Plot of the probability of a heavy atom contact between the MTSL-Cys residue and other residues in the $A\beta 42$ sequence for REMD simulations.

Figure S4: *J*-coupling constants for backbone amides for Aβ42 (blue) and MTSL-Cys-Aβ42 (red) for REMD simulations. Simulation uncertainty bars represent rms difference between two independent simulations and the average.

Figure S5: Calculated RDCs for (a) $A\beta 42$ and (b) MTSL-Cys- $A\beta 42$ structural ensembles generated using REMD simulations. RDCs based on global alignments calculated from PALES³.

Figure S6: Contact map of strong simulated ${}^{1}H{}^{1}HNOE$ intensities for MTSL-Cys-A β 42 from REMD simulations that are dominated by a single contact. Strong experimental intensities that define β -strands 4-7 and 10-12 (orange), β -strands 3-6 and 31-41 (pink), β -strands 16-21 and 29-36 (cyan), β -strands 27-31 and 33-38 (grey), β -strands 34-36 and 39-40 (yellow) and hydrophobic contacts (outlined black) indicated in the map. The color-coding for helices and turns are shown in the figure.

REFERENCES:

1. Peter, C.; Daura, X.; van Gunsteren, W. F., Calculation of NMR-relaxation parameters for flexible molecules from molecular dynamics simulations. **2001** *J. Biomol. NMR* 20, 297–310. 2. Han, B.; Liu, Y.; Ginzinger, S. W.; Wishart, D. S., SHIFTX2: significantly improved protein chemical shift prediction. **2011** *J. Biomol. NMR* 50 (1), 43–57.

3. Zweckstetter, M.,; Bax, A., Prediction of sterically induced alignment in a dilute liquid crystalline phase: Aid to protein structure determination by NMR. **2000** *J. Am. Chem. Soc.* 122 (12), 3791–3792.