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Elastic deformation of the hole

Here, we show that in the elastic regime, the hole radius does not appreciably change from
its initial radius. For times that are shorter than the typical viscoelastic timescale τ = E/η,
the change in the hole radius is governed by linear elasticity. For approximately flat shells,
this is a problem of a two-dimensional annulus with boundary conditions of constant stress
σ̃0 that equals Ẽε0 at infinity, where Ẽ is the three-dimensional Young’s modulus (E is the
two-dimensional Young’s modulus, which is related to Ẽ by E ∼ Ẽ · d where d is the shell
thickness), and a size dependent line tension of the hole on the perimeter of the annulus.
Force balance dictates

∂σ̃rr
∂r

+
1

r
(σ̃rr − σ̃θθ) = 0 (1)

where σ̃ij is the component of the stress tensor. In linear elasticity the stresses and strains
are related by

σ̃ij =
Ẽ

1 + ν

(
εij +

ν

1− 2ν
tr (ε) δij

)
(2)
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where εij are the components of the strain tensor and ν is the Poisson ratio. We work in
a coordinate system in which the ẑ axis is the symmetry axis of the annulus and z = 0

characterizes the midplane of the shell. From symmetry considerations, the θ component of
the displacement vector ~u vanishes while other components are θ independent. This means
that εrr = ∂ur

∂r
, εθθ = ur

r
, εzz = ∂uz

∂z
and εrz = 1

2

(
∂ur
∂z

+ ∂uz
∂r

)
while all other components vanish.

The upper and lower surfaces of the shell are traction free. This means, for a thin
shell, that all the components of σ̃iz can be approximated to be zero, in particular σ̃zz = 0

which gives, using Eq. 2 and the relations between the strain and displacement components,
εzz = − ν

1−ν

(
∂ur
∂r

+ ur
r

)
. Substituting this into Eq. 2 together with the relation between the

strain and displacement components leads to:

σ̃rr =
Ẽ

1 + ν

(
∂ur
∂r

+
ν

1− ν

(
∂ur
∂r

+
ur
r

))
(3)

σ̃θθ =
Ẽ

1 + ν

(
ur
r

+
ν

1− ν

(
∂ur
∂r

+
ur
r

))
(4)

Substituting these relations into Eq. 1 gives the differential equation

∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2

= 0 (5)

whose solution is
ur = Ar +B

1

r
(6)

whereA andB are integration constants determined by the boundary conditions σ̃rr (r →∞) =

σ̃0 and d·σ̃rr (r = Ri) = T
Ri
. Using equations 6 and 3 allow us to express the radial component

of the stress tensor as a function of r and the integration constants:

σ̃rr (r) =
Ẽ

1 + ν

(
1 + ν

1− ν
A−B 1

r2

)
(7)

The expression above, together with the stress boundary conditions determines A =
(1−ν)σ̃0

Ẽ
and B = 1+ν

Ẽ
R2
i σ̃0 − 1+ν

Ẽ
RiT
d
. Substituting the integration constants A and B into 6

with R = Ri results in the displacement of the hole ur (r = Ri) = 2Ri
σ̃0
Ẽ
− (1 + ν) T

d·Ẽ . In
linear elasticity T/d, σ̃0 � Ẽ, so that the change in the hole radius is negligible compared
with the radius itself. We therefore conclude that in the short-time elastic regime, the hole
radius is essentially unchanged for times smaller than the typical viscoelastic timescale τ ,
where the shell is approximated to respond elastically.
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Derivation of the dynamical equations

To formulate the equations for the hole dynamics in case I, we have to account for the flow
of the shell, the high-concentration, polymer solution and their coupling. We consider each
of these in separate subsections.

Shell flow dynamics

For times larger than the typical viscoelastic timescale τ = η/E, the shell flow is controlled by
low Reynolds number hydrodynamics. We approximate the shell to be a three-dimensional
incompressible, viscous thin film with a hole of radius R. The boundary conditions are:
surface tension σ equals Eε at infinity and an equivalent surface tension of T/R (t) that
arises from the line tension and the time dependent hole radius; the upper and lower surfaces
of the film are traction free. We again work in a coordinate system in which the ẑ axis is the
symmetry axis of the annulus and z = 0 characterizes the midplane of the shell. Symmetry
considerations dictate, that the θ component of the velocity field ~v of the shell vanishes and
that vr and vz are θ independent. Using these symmetry arguments, the incompressibility
condition is written as:

∇ · ~v (r, t) =
1

r

∂ (rvr)

∂r
+
∂vz
∂z

= 0 (8)

For a thin shell, the flow of the molecules is quasi two-dimensional in the plane of the shell
while the change in its thickness is governed by its three-dimensional incompressibility. Thus,
changes in the molecular rearrangements in the z direction occur almost instantaneously; vz
and its derivatives are therefore very small compared with their corresponding quantities in
the radial direction.

Eq. 8 is therefore well approximated by 1
r
∂(rvr)
∂r

= 0, therefore vr = G (t, z) /r. Since the
upper and lower surfaces are traction free, the hydrodynamic stress tensor σ̃zr vanishes on
both surfaces. For a thin shell, this means that σ̃zr is approximately zero throughout the
thickness of the shell: σ̃zr = η̃

(
∂vz
∂r

+ ∂vr
∂z

)
= 0, where η̃ is the kinematic viscosity of the shell

and is related to the surface viscosity η by η = d · η̃. Neglecting ∂vz/∂r means that vr is
approximately z independent, thus vr = G (t) /r. The radial component of the hydrodynamic
stress tensor is therefore:

σ̃rr = −p+ 2η̃
∂vr
∂r

= −p− 2η̃G (t)

r2
(9)
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where p is the pressure field in the shell that enters the Navier-Stokes equation. This hy-
drodynamic stress tensor, together with the boundary conditions at the circumference of
the hole σ̃rr (r = R) = T

R·d and at infinity σ̃rr (r →∞) · d = σ, determine p · d = σ and
R2

2η

(
σ − T

R

)
= G (t), so that vr (r = R) = G (t) /R.

However, the velocity at the circumference of the hole vr (r = R) is equal to the rate of
change of the hole radius vr (r = R) = Ṙ, thus:

Ṙ =
R

2η

(
σ − T

R

)
(10)

which describes the hole growth/healing due to a surface tension σ and a line tension T .

Outflow dynamics

On the scale of the entire shell, the curvature of the shell must be taken into account since it
induces a pressure gradient between its two sides, as described by Young-Laplace law. In the
presence of a hole, this pressure gradient drives outflow; the outflow decreases the volume
and combined area A of the shell. Reduction of the shell area increases the packing density
of molecules, which was (before nucleation of the hole) lower than its equilibrium value (due
to the constriction), so that the lateral stresses and strains are relieved.

To account for the evolution equation of the combined area A due to outflow, which is
determined by the hole radius R and pressure gradient ∆p, we again use low Reynolds number
hydrodynamics, where now ~v refers to the velocity of the solvent phase of the inner solution
and the pressure p now refers to the pressure field inside the high-concentration, polymer
solution. This time, the viscosity is not that of the shell but is the kinematic viscosity ηs of
the solvent phase of the polymer solution. In the model of case I, a channel forms due to
solvent phase flow in the dense, polymer phase. The channel is modeled by a tube of radius
R and a contour length of d∗, which is greater than the actual shell thickness d and the hole
radius R. In the limit of low Reynolds number, the flow is laminar, meaning that the fluid
flow in parallel layers that do not mix. We again work in a cylindrical coordinate system, in
which the axis of symmetry of the hole is the ẑ axis and z = 0 characterizes the midplane of
the effective cylinder. The equations governing the flow are the Navier-Stokes equation:

∇p = ηs∇2~v (11)

and the incompressibility condition, which for laminar, cylindrically symmetric flow (vθ =
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vr = 0 and vz, p are θ independent) becomes:

∇ · ~v =
∂vz
∂z

= 0 (12)

∂p

∂r
= 0 (13)

∂p

∂z
= ηs

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

)
(14)

The boundary conditions we use for the velocity field are no-slip boundary conditions on
the inner walls of the channel, which are vz (r = R, z) = vr (r = R, z) = 0. For the pressure,
in the absence of end effects (applicable when d∗ � R) the boundary conditions are set by
the pressure gradient across the membrane (the pressure outside the shell is our reference
and is set to zero): p (r, z = 0) = −∆p and p (r, z = d∗) = 0. The solution of these equations
with the specified boundary conditions is:

p (z) = ∆p
(
z

d∗
− 1

)
(15)

vz =
∆p

4ηsd∗

(
R2 − r2

)
(16)

The total outflow Q is calculated by integration of the velocity vz over the area of the
hole:

Q =

R̂

0

2πrdr
∆p

4ηsd∗

(
R2 − r2

)
=
π∆pR4

8ηsd∗
(17)

The pressure difference ∆p is related to the surface tension by force balance across the
shell (Young-Laplace law). Force balance dictates ∇· σ̃ = 0 (σ̃ is again the three-dimensional
stress tensor); in a spherical coordinate system, in which the origin is the center of the
ruptured hemisphere the force balance equation becomes

∂σ̃rr
∂r

+ 2
σ̃rr
r
− 1

r
(σ̃θθ + σ̃φφ) = 0 (18)

where σ̃θθ = σ̃φφ = σ/d (the surface tension divided by the shell thickness) which is
constant throughout the thin shell. The stress boundary conditions are σ̃rr (r = Rc) = −∆p

and σ̃rr (r = Rc + d) = 0, where Rc is the radius of the hemisphere (and the constriction
cross section) and d is the actual thickness of the shell. Multiplying the force balance Eq. 18
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by r2 and integrating between Rc and Rc + d, gives the relation:

∆p ≈ 2σ

Rc

(19)

which becomes accurate for a thin shell where d � Rc. Substituting this relation in Eq. 17
results in:

Q =
πσR4

4ηsRcd∗
(20)

The outflow decreases the volume Vs of the deformed shell and causes the length L of the
cylindrical part of the shell (see Fig. 1B) to decrease. This can be related to the change in
the combined area A in the following way:

−Q =
dVs
dt

=
d

dt

(
4πR3

c

3
+ πR2

cL

)
= πR2

c

dL

dt
(21)

dA

dt
=

d

dt

(
4πR2

c + 2πRcL
)

= 2πRc
dL

dt
= −2Q

Rc

(22)

Substituting Eq. 20 in the relation above, results in an equation that describes the time
evolution of the combined area A:

dA

dt
= − π2σR4

2ηsAcd∗
(23)

where Ac = πR2
c is the cross sectional area of the constriction. Together with Eq. 10 for the

dynamics of the hole size, Eq. 23 forms a complete set of coupled equations that describe
the dynamics of the rupture in the fluid-like regime. Using linear elasticity relation σ = Eε

the equation becomes:

dR

dt
=

E

2η
R
(
ε− T

ER

)
(24)

dA

dt
= − π2R4E

2ηsAcd∗
ε (25)

Dimensionless form of the equations

This set of equation is non-linear and cannot in general be solved analytically. However, solu-
tions can be obtained in approximate manner using perturbation expansions of the variables,
which first requires identification of the small parameters. This can be done by transforma-
tion of the equations to dimensionless form. We thus rescale the hole radius R by its initial
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radius Ri, the shell and constriction areas A and Ac by Au and the time t by the typical
viscoelastic timescale τ = η/E. This results in the following set of equations:

dR̃

dt̃
=

1

2
R̃
(
ε− β 1

R̃

)
(26)

dÃ

dt̃
= −ρ

2R̃4

2δÃc
ε (27)

where the parameters β, ρ and δ are T
ERi

,
πR2

i

Au
and ηsd∗

η
respectively. henceforth, for brevity the

tilde signs will be omitted from the rescaled variables. The theory is analyzed in the linear
regime, so that the difference between the undeformed nuclear radius Rn and the constriction
cross sectional radius Rc is small, i.e Rn −Rc � Rn. The radii Rn and Rc are related to the
undeformed shell area and the constriction cross sectional area by πR2

c = Ac and 4πR2
n = Au.

Therefore Ãc = Ac
Au

= 1
4

(
1− Rn−Rc

Rn

)2
= 1

4
+O

(
Rn−Rc
Rn

)
. However, in the linear elastic regime,

the strain ε is also a small parameter; therefore the deviation of Ãc from 1
4
is higher order in

small terms, so that to leading order Ãc can be replaced by 1
4
. To linear order in ε the set of

equations becomes:

dR

dt
=

1

2
R

(
ε− β

R

)
(28)

dA

dt
≈ −2ρ2R4

δ
ε (29)

We further rewrite this using the strain ε, which is a variable which is more physical than
the combined area and thus replace A by ε. The lateral strain ε is the ratio of the excess
area to the undeformed area Au and can therefore be written, in non-rescaled variables as
ε = A−πR2−Au

Au
or in rescaled variables ε = A− ρR2− 1. Therefore, the time derivative of the

lateral strain is

dε

dt
=

dA

dt
− 2ρR

dR

dt
= −

(
1 +

2ρR2

δ

)
ρR2ε+ ρRβ (30)

For the biologically relevant values of the initial hole radius of Ri = 25nm, which is of the
order of the NPC channel size, and the undeformed shell radius of the order of the radius of
the nucleus Rn ≈ 3µm , ρ ≈ 1.73 · 10−5. The value of the parameter δ = ηsd∗

η
depends on

the value of d∗. The equivalent three-dimensional, kinematic viscosity of the lamina (which
equals η/d where d is the lamina thickness) is of the order of one kPa · s [1] (we assume
that the contribution of the bilayers to the mechanical properties of the NE is small compare
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to the lamina); therefore the biologically relevant value of the ratio ηsd/η is of the order
10−6 if ηs is taken to be similar to the kinematic viscosity of water (10−3 Pa · s). Choosing
d∗/d ≈ 10 − 100 to account for the tortuosity of the channel, we get δ ≈ 10−5 − 10−4 and
ρ/δ ≈ 1 − 0.1. Multiplying this by

(
R
Ri

)2
, which can be much greater than unity when the

rupture grows to its maximal size, we find 2ρR2

δ
> 1. Thus, the evolution of the strain can be

approximated by
dε

dt
= −2ρ2R4

δ
ε+ ρRβ (31)

it should be stressed that this approximated form is more accurate when R is close to its
maximal size, for R ≈ 1 Eq. 30 should be used.

For completeness, we estimate in this subsection the value of the parameter β for the
model of the lamina as a viscoelastic shell. To estimate β, we start by considering the origin
of the line tension. In a coarse-grained view, the bulk of the shell is more hydrophobic than
its surfaces (this is the driving force for the creation of the shell in aqueous solution). Thus,
hole nucleation creates interface between the hydrophilic solvent and the hydrophobic bulk
of the shell; this interface is thermodynamically unfavorable and drives bending of the shell
around the circumference of the hole in order to eliminate this interface (see Fig 3. in [2]).
This bending energy is results in a line tension, which is the energy of creating unit length
of that interface. The bending energy per unit area of the shell is fB = 1

2
K (κ1 + κ2)

2, but
for bending around the hole one curvature is much larger than the other κ1 = 2

d
� 1

R
= κ2

(d is the shell thickness) so that fB = 1
2
K
(
2
d

)2
. The bending modulus K of a plate can

be calculated using the equation K = Ẽh3

12(1−ν2) where h is the plate thickness, Ẽ and ν are
the three-dimensional Young and Poisson moduli respectively [3]. Since the shell folds over
itself, it can be viewed as a folded plate, thus h = d/2, and ν = 1/2 due to three-dimensional
membrane incompressibility. Therefore

T = d · fb =
dẼ

(
d
2

)3
24
(

1−
(
1
2

)2)
(

2

d

)2

=
Ẽd2

36
(32)

It is important to note that the modulus Ẽ that appears above is the three-dimensional
Young’s modulus, not the two-dimensional Young’s modulus E. However, we expect the two
to differ by a factor of the order of d, therefore we approximate T = Ed/36 in this subsection.

β equals (by definition) to T
ERi

= d
36Ri
≈ 1

72
(d ≈ 14nm [4]).
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Perturbation analysis and estimate of maximal hole size

Rm

The dynamics of the hole radius R and the combined shell area A are determined by the
equations 28 and 29:

dR

dt
=

1

2
R

(
A− ρR2 − 1− β

R

)
(33)

dA

dt
= −2αR4

(
A− ρR2 − 1

)
(34)

where α = ρ2/δ. The dynamics of the hole growth at short times is determined by the value
of α and there are two asymptotic limits of interest:

1. Outflow-driven dynamics: In this limit, the majority of the lateral strains due to the
constriction are relieved by the outflow of the internal fluid. This limit is characterized
by large initial holes (i.e., ρ is relatively large) and small effective dissipation length
(i.e., δ is relatively small), which corresponds to values of α which are large α ≡ ρ2

δ
� 1.

We now follow the perturbation analysis of this limit, beginning with an expansion of
R (t) and A (t) as power series in the small parameter 1/α:

R = R0 +
1

α
R1 +O

(
1

α2

)
(35)

A = A0 +
1

α
A1 +O

(
1

α2

)
(36)

Rewriting the equations 33 and 34 so that the small parameter 1/α appears instead of
α gives:

dR

dt̃
=

1

2α
R

(
A− 1− ρR2 − β

R

)
(37)

dA

dt̃
= −2R4

(
A− 1− ρR2

)
(38)

where t̃ = αt. Substituting the expansions of R and A and matching the zeroth order
terms give:

dR0

dt̃
= 0⇒ R0 = 1 (39)

dA0

dt̃
= −2

(
A0 − 1− ρ

)
(40)
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so that (the initial condition for A0 is A0
(
t̃ = 0

)
= 1 + ε0)

A0 = 1 + ρ+ (ε0 − ρ) e−2t̃ (41)

For t̃� 1/2, the exponent in Eq. 41 can be linearized; this gives:

A0 = 1 + ε0 − 2 (ε0 − ρ) t̃ (42)

In the other limit, the exponent in Eq. 41 is very small, therefore A0 ≈ 1 + ρ. This
means that the lateral strain and stresses are now fully relieved, which corresponds to
the regime of hole closing. The dynamics of hole closing is found by calculating the
first order correction for R, again by matching orders:

dR1

dt̃
=

1

2α

(
A0 − 1− ρ

)
− 1

2α
β (43)

for short times t̃� 1/2 (hole growth) :

dR1

dt̃
=

1

2α

(
A0 − 1− ρ

)
− 1

2α
β (44)

R1 =
(ε0 − ρ− β)

2α
t̃− 1

2
(ε0 − ρ)

t̃2

α
(45)

and for long times t̃� 1/2 (hole shrinking):

dR1

dt̃
≈ − 1

2α
β (46)

R1 = C − 1

2
βt (47)

where C is an integration constant that can be calculated from matching the two
regimes.

2. Hole growth-driven dynamics: In this limit, the majority of the lateral strains are
relieved by the growth of the hole. This limit is characterized by small initial holes
(i.e., ρ is relatively small) and large effective dissipation length (i.e., δ is relatively
large), corresponding to values of α ≡ ρ2

δ
� 1. Expanding R and A in in the small

parameter α:

R = R0 + αR1 +O
(
α2
)

(48)
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A = A0 + αA1 +O
(
α2
)

(49)

Using this equation, equations 33 and 34 give, to zeroth order:

dA0

dt
= 0⇒ A0 = 1 + ε0 (50)

so that
dR0

dt
=

1

2

(
−
(
R0
)3
ρ+ ε0R

0 − β
)

(51)

For short time when R0 is of order unity, we find in the limit that ρ� ε0 − β

R0 =
β

ε0
+

(
1− β

ε0

)
e

1
2
ε0t (52)

The hole radius of course does not grow indefinitely but is bounded due to the con-
tribution of the (R0)

3 term in Eq. 51. The maximal hole radius can be calculated by
searching for the steady state dR0

dt
= 0, which results in a polynomial equation of the

third degree (R0)
3
ρ − ε0R0 + β = 0; the maximal value of R0 is the largest real root

of the three, which is equal to
√

ε0
ρ
− β

2ε0
to first order in β. In the absence of outflow

(zeroth order), the maximal hole radius is stable; this is the maximal hole radius in
case II (for nucleoplasm as a homogenous viscous fluid) in which outflow is negligible
during the exponential growth regime. Addition of slow outflow relieves some of the
lateral strains and causes the hole to shrink. Since the lateral strain ε = A− 1− ρR2 is
close to zero when R is near its maximal value, Eq. 28 can be written approximately
as dR

dt
= −β

2
right after the hole reaches its maximal value. Therefore, the dependence

of the hole size on time in this regime is approximately a linear function of time with
a slope of −β

2
. However, in the case that the effective dissipation length is too high,

outflow will not mitigate the growth of the lateral strain (ρβR is not small compared
to − (1 + 2ρR2/δ) ρR2ε in 30). This in turn will slow the rate of hole radius decrease,
which will return to the value of −β

2
for a small enough hole, since 1

2
Rε will again be

negligible compared with −β
2
in Eq. 28. In this limit, we predict a step-like bump in

the dependence of the hole radius on time, which slightly slows the average shrinking
rate of the hole. Numerical solutions of the equations over a wide range of effective
dissipation lengths verify our prediction of the late-time behavior of the hole radius.
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Estimate of the maximal hole radius

Up to this point, the early and late time dynamics of the hole radius have been calculated
analytically for different asymptotic regimes. However, in order to fully characterize the
dynamics, the transition between the early and late time regimes, or equivalently the maximal
hole radius, must be determined. The time at which the transition (or maximal hole radius)
occurs is derived from an identity as follows: Multiplying Eq. 29 by −1

4
δ
ρ2

gives

−1

4

δ

ρ2
dA

dt
=

1

2
R4
(
A− ρR2 − 1

)
(53)

Next, multiplying Eq. 28 by R3

1

4

d (R4)

dt
=

1

2
R4
(
A− ρR2 − 1

)
− β

2
R3 (54)

and substituting Eq. 53 into Eq. 54 gives

1

4

d (R4)

dt
= −1

4

δ

ρ2
dA

dt
− β

2
R3 (55)

Integrating this identity above between the limits of t = 0 and t = tf (the time in which
the hole closes), using the initial and final conditionsR (t = 0) = 1, R (t = tf ) = 0, A (t = 0) =

1 + ε0 and A (t = tf ) = 1 gives the identity:

tf̂

0

R3dt =
1

2β
+

1

2β

ε0δ

ρ2
(56)

It is important to remark that the final condition A (t = tf ) = 1 is approximate since in
principle, residual strains after healing are possible. However, in the range of parameters
which are biological relevant the residual strain is negligible.

The identity in Eq. 56 serves as a constraint that can be used to approximate the
transition time between the growth and hole closing regimes. We approximate the hole radius
as a function of time to be a piecewise function, where in each regime it is characterized by
the asymptotic early and late time dynamics as respectively calculated in equations 52 and
47 (the second applicable to both hole-growth and outflow-driven dynamics); the transition
time, or the time at which the hole reaches its maximal radius, Rm can be found using Eq.
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56. Denoting the transition time by tm we split the integral into two regimes:

tf̂

0

R3dt =

tm̂

0

R3dt+

tf̂

tm

R3dt (57)

The late-time (t > tm) dependence of the hole radius in time is approximately R (t) =

Rm− β
2

(t− tm). Substituting this dependence into the second integral in the right hand side
of 57, using R (tf ) = Rm − β

2
(tf − tm) = 0⇒ tf − tm = 2Rm

β
gives:

tf̂

tm

R3dt =

tf̂

tm

(
Rm −

β

2
(t− tm)

)3

dt =

2Rm
β̂

0

(
Rm −

β

2
t′
)3

dt′ =
1

2β
R4
m (58)

Therefore, from equations 56, 57 and 58 it follows that

2β

tm̂

0

R3dt = 1 +
ε0δ

ρ2
−R4

m (59)

For the case of hole-growth driven dynamics, which are characterized by δ
ρ2
� 1, the

identity above is approximately

R4
m + 2β

tm̂

0

R3dt ≈ ε0δ

ρ2
(60)

Solving for t from Eq. 52 for the early-time (t < tm) dynamics calculated in this limit,

dt =
2dR

ε0R− β
(61)

the second term on the LHS of Eq. 60 becomes

2β

tm̂

0

R3dt = 2β

Rm̂

1

2R3dR

ε0R− β

=
4β

3ε0

(R3
m − 1

)
+

3

2

β

ε0

(
R2
m − 1

)
+ 3

β2

ε20
(Rm − 1) + 3

(
β3

ε30

)
ln

Rm − β
ε0

1− β
ε0

(62)

As mentioned before, we take β = 1
72
, therefore β

ε0
≈ 1

2
. Substituting this ratio and the
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order of magnitude Rm ≈ 10 shows that the value of the integral 2β
tḿ

0

R3dt is smaller than

R4
m. We therefore neglect the integral so that Eq. 60 is approximately written as

Rm =

(
ε0δ

ρ2

) 1
4

(63)

Eq. 63 can be written in dimensional units as πR2
m

Au
=
(
ε0

ηsd∗

η

) 1
2 , which predicts the ratio of

the maximal hole area and the undeformed area (for fixed constriction cross-sectional area).
This ratio increases as the square root of the initial strain ε0, internal polymer solution
kinematic viscosity ηs and the dissipation length d∗. ε0 is the initial strain that drives hole
growth, while the strain relief that limits hole growth decreases with increasing ηs or d∗,
which limits the outflow and promotes hole growth. The maximal radius also decreases with
the shell surface viscosity η, which slows the hole growth, thus allowing more strain relief by
outflow.

This is an approximation that is accurate for small β and large ε0. In conclusion, for hole
growth-driven dynamics (relevant to case I in the main text) the hole radius as a function of
time is approximated as:

R (t) ≈


β
ε0

+
(
1− β

ε0

)
e

1
2
ε0t t < tm(

ε0δ
ρ2

) 1
4 − β

2
(t− tm) t ≥ tm

(64)

where
(
ε0δ
ρ2

) 1
4 = β

ε0
+
(
1− β

ε0

)
e

1
2
ε0tm .

polymer extrusion as a model for chromatin herniation

To estimate the amount of herniated chromatin, we model the nucleoplasm as a fluid-filled
network that comprises a high concentration polymer melt (chromatin) immersed in a viscous
solution of water and small molecules. Herniation requires bending of the fibers to radii of
curvature which are smaller than the size of the hole. For flow rates smaller than kBT

ηs
≈ 5µm

3

s

(ηs being the kinematic viscosity of the solvent phase which is taken to be the kinematic
viscosity of water) and in the absence of active process, the bending of the polymers is driven
by thermal fluctuations [5, 6]. An upper bound for the flow rate can be calculated by taking
Eq. 20 and replacing all the variables by their maximal values (Rm is taken to be the larger
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value predicted in case II). [All parameters in following equation have their true dimensions.]

Q <
πEε0R

4
m

4ηsRcd∗
≈ (Ad − Au)3

4πτδRcAu
∼ 3

µm3

s
(65)

The actual maximal flow rate is expected to be much smaller than this upper bound since
ε is close to zero when R ∼ Rm, so that the condition Q < kBT

ηs
≈ 5µm

3

s
is surely satisfied for

system of biological relevance. Thus, the herniation is not convective, but rather is driven by
thermal fluctuations. In order to herniate, a polymer chain must bend to a radius of curvature
that is smaller or equal to the radius of the hole R, for a length of at least πR such that a
hemicircle is formed; otherwise it cannot slide outside of the hole. Due to the short screening
length (Debye length) of the electrostatic interactions in the nucleus which we model, which
is of the order of few nanometers [7], the inter- and intra-fiber electrostatic interactions can
be neglected. Furthermore, for reasons that are not entirely clear, chromatin fibers in the
nucleus may not be entangled [8]. Therefore, the prevalence of steric interaction when the
polymer chains locally reorganizes in the vicinity of the hole and these interactions can be
neglected as well. With these approximations, the minimal energy Eh of the configuration
of the polymer chain that allows herniation arises only from bending, and can be written
in terms of the persistence length lp of the polymer (whose exact value for chromatin is
unknown since the in-vivo microscopic structure of chromatin fiber is controversial [9]) as
Eh = πkBT lp/(2x) where x is the radius of curvature and T is the temperature.

The rate of polymer extrusion is therefore the sum over possible radii of curvature from
0 to the hole radius R of Boltzmann probabilities of the form ν0 exp

(
−π

2
lp/x

)
, where ν0 is

a parameter with dimension of inverse time that represents the molecular kinetics and x is
the summation variable. Since the exponent is negative and depends on 1/x, the sum is
dominated by the contribution of the term with the largest x. We thus approximate the
extrusion rate by ν0 exp

(
−π

2
lp/R (t)

)
, where R (t) is the hole radius. The total amount of

extruded polymer is obtained by integration of the above expression over the entire hole
growth/healing cycle of the hole. Cases I and II of the dynamics differ in their prediction
for the velocity of hole closing and the maximal hole radius Rm. We therefore calculate the
amount of extruded polymer for a general case characterized by an exponential hole growth
up to radius Rm followed by a decrease of the hole radius with a constant velocity α. [All
variables here, including t have their true dimensions.]
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Lc = ν0

tf̂

0

e−
πlp

2R(t)dt = ν0τ


tm̂

0

e−
πlp

2R(t)dt+

tf̂

tm

e−
πlp

2R(t)dt

 (66)

Taking β/ε0 < 1, exp
(
−π

2
lp/R (t)

)
� 1 for small R (t) and using Eq. 64, we find

Lc ≈
ν0τ

α

Rm̂

1

e−
πlp
2R dR ≈ ντ

α

(
Rme

− πlp
2Rm +

πlp
2

Ei
(
− πlp

2Rm

))
(67)

where Ei is the exponential integral function that defined as Ei (x) = P
x́

−∞

et

t
dt (where P is

the principal part).
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