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ABSTRACT During migration of cells in vivo, in both pathological processes such as cancer metastasis or physiological events
such as immune cell migration through tissue, the cells must move through narrow interstitial spaces that can be smaller than the
nucleus. This can induce deformation of the nucleus which, according to recent experiments, may result in rupture of the nuclear
envelope that can lead to cell death, if not prevented or healed within an appropriate time. The nuclear envelope, which can be
modeled as a double lipid bilayer attached to a viscoelastic gel (lamina) whose elasticity and viscosity primarily depend on the
lamin composition, may utilize mechanically induced, self-healing mechanisms that allow the hole to be closed after the defor-
mation-induced strains are reduced by leakage of the internal fluid. Here, we present a viscoelastic model of the evolution of a
hole nucleated by deformations of the nuclear lamina and estimate the herniation of chromatin through the hole and its relation to
the lamin expression levels in the nuclear envelope.
INTRODUCTION
The nucleus of animal cells, which contains the genetic
material of the cell in its interior nucleoplasm, is the largest
organelle in the cells, with a typical radius of �3 mm in
mammalian cells (1,2), and occupies �10% of the total
cell volume (3). The nucleoplasm includes DNA organized
into chromatin, dispersed in a small molecule (water/
protein/enzyme) solution, which is bounded by the nuclear
envelope (NE), comprised of a two-bilayer membrane
separated by a volume termed the ‘‘perinuclear space’’.
The inner nuclear membrane (INM) is connected to a visco-
elastic, dense network of intermediate filament proteins
mostly comprising the A- and B-type lamins (the lamina).
The INM and the outer nuclear membrane are connected
by many nuclear pore complexes (NPCs), containing pro-
teins sometimes modeled as polymer brushes grafted to
the inside of cylindrical tubes (4), which results in a pro-
tein-covered channel of 50 nm diameter that connects the
cytoplasm and the nucleoplasm. The NPC regulates the
essential transport of proteins, RNA molecules, and other
small ions and molecules to and from the nucleus (5,6);
this maintains a controlled environment in the nucleoplasm,
distinguished from the cytoplasm, which is essential for
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proper function of the cell. Because the function of the
NE is essential for the survival of the cell, a pathological
event that impairs the integrity of the NE may cause an un-
regulated loss of genetic material and thus lead to cell death.

Recent experiments (7) have shown that motile cells
placed on a perforated plate deform as they migrate (within
24 h) from the upper to the lower regions of the plate. How-
ever, the migrating cells show a marked reduction in their
survival rate as they traverse pores that are smaller than
their nucleus size. By using A-type lamin partial knockout
cells, it was shown that the survival rate was dependent on
the A-type lamin content of the nuclear lamina, which is
attached to the INM (8); similar results were obtained in
A-type lamin knockout cells subjected to cyclic mechanical
strain (9). The composition of the lamina network affects
the viscoelastic properties of the NE and the nucleus
(10,11), whose rheology obeys power-law scaling:
behaving elastically at short times and as a fluid at long
times, with no single timescale separating the two regimes
(12,13). Migration of cells through narrow constrictions,
both in vitro (microfluidic channels) and in vivo (3D
collagen networks), may impair the integrity of the NE,
resulting in unregulated exchange of cytoplasmic and
nucleoplasmic proteins and DNA double-strand breaks,
with a probability that increases with decreasing constric-
tion cross section (14,15). Rupture of the NE has not yet
been directly imaged in the recently published studies
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and is inferred through observations of the exchange of
nucleoplasmic and cytoplasmic proteins (7,14–17). Our
predictions for rupture and healing can so far only be corre-
lated with evidence for protein exchange. Evidence of
rupture is not unique to migration assays and has also
been observed in nuclei squeezed between two parallel sur-
faces (18). These observations imply that rupture of the NE
may be generically caused by deformation-induced, lateral
strains and stresses, whose experimental origins may be
different. In migration assays, when the constriction dimen-
sions are smaller than the radius of the nucleus, the nucleus
must deform for the cells to fit the constriction and migrate.
Even in vivo, the NE can support pressure gradients that
arise during migration (19); we therefore expect that for
relatively small deformations, in the absence of holes, the
flow of fluid outside of the nucleus through the NPC must
be small so that the nuclear volume is approximately
conserved. Shear deformation (deformation that keeps the
volume constant) of the undeformed, approximately spher-
ical nucleus in its undeformed state, as shown in Fig. 1 A,
increases the area of the NE; such area increase results in
elastic stretch that leads to surface tensions and strains,
which can eventually cause rupture. Interestingly, DNA
damage was observed in migrating cells even in the absence
of rupture; the damage may be caused by changes in the
nucleoplasmic, spatial concentration profile of chromatin
that sequester repair enzymes and other essential factors
from regions of high chromatin density (16,20).

Understanding and controlling rupture dynamics in vesi-
cles is important for many areas of science, engineering, and
medicine such as drug delivery (21), antimicrobial peptides
(22), membrane fusion (23), and DNA delivery (24). Due to
the importance of the problem, extensive research has been
conducted regarding the nucleation and dynamics of pores
in fluid, lipid membranes, both in flat membranes (25,26)
and in closed vesicles (27–34). However, this body of
knowledge disregards the special characteristics of the
nucleus, such as its complex internal fluid and viscoelastic
membrane. As a result, although migration of cells through
interstitial pores in the extracellular matrix is a key charac-
teristic of many biological processes both physiological
(embryogenesis, white blood cell migration, wound healing,
etc.) and pathological (cancer metastasis or tissue invasion),
the mechanism that protects these cells during migration
and its fundamental origin is still not well understood.

Measurements of hole formation, growth, and healing,
have previously been performed in the context of lipid
bilayer vesicles that contain homogenous aqueous solutions.
The surface tension was induced not by passage through
narrow pores, but by laser tweezers (35) or adhesion (27)
(topological changes). In addition, and most importantly,
the membrane and internal liquid were fluid in nature and
not viscoelastic. A leading hydrodynamic theoretical work
on the subject formulated equations describing the dy-
namics of hole growth and closing coupled to internal fluid
leak-out (27,28); numerical solutions of the equations over a
wide range of parameters indicated different regimes of the
dynamics. In addition, analytical and scaling arguments
explaining some of these regimes were presented. Although
these studies gave insights into hole formation and dy-
namics and indeed introduced the concept of outflow of fluid
as a controlling factor in hole formation, they were per-
formed in the context of viscous, fluid-filled, lipid vesicles
whose properties are different from the NE and chromatin
network (36).

The majority (90%) of migration-induced NE rupture
events are preceded or coincide with formation and eventual
disappearance (probably due to bursting) of nuclear mem-
brane blebs (14). Protein complexes associated with damage
response (to bilayers, i.e., ESCRT III proteins that promote
bilayers healing and to chromatin, i.e., 53BP1 that binds
double-stranded breaks) are recruited after bleb bursting
(15). This points to the role of blebs as membrane hole
nucleation sites that can then lead to chromatin damage.
Disruption of the lamina network, either by lamin knock-
down or due to mutations, is positively correlated with the
formation of blebs, abnormal nuclear morphology, or
impaired nuclear mechanics (18,37,38). This implies a
possible mechanistic relation between the integrity of the
nuclear lamina and the formation of blebs and subsequent
bursting. In this work, we focus on the physics of laminar
hole formation and healing, which we assume to be
controlled by flow of the lamina; we hypothesize that
laminar hole nucleation is an essential first step that must
FIGURE 1 Models of the nuclear shape. (A) Un-

deformed state: here we have a sphere of radius Rn

and surface area Au. (B) Deformed state: here we

show a cylinder of length L and radius Rc (which

equals the cross-sectional radius of the constriction

when Rc < Rn) with two hemispherical caps; the

total surface area of the deformed state is Ad. Con-

servation of the volume of the nucleus determines

the length L via the relation 4pRn
3/3 ¼ 4pRc

3/

3 þ pRc
2L. From this, one can find the total area

Ad of the deformed nucleus as a function of the

constriction cross-sectional radius Rc. To see this

figure in color, go online.
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precede and then lead to bleb formation, which persists until
the laminar hole is healed. However, the physics of bleb
formation and bursting is outside the scope of this article,
which focuses on lamina hole dynamics/healing and its
role in facilitating chromatin extrusion. Our theory thus
focuses on the dynamics of rupture in the lamina, which is
a crucial first step that precedes bleb formation.

Upon deformation, the internal pressure in the nucleus
increases due to the compressive forces exerted on the
nucleoplasm. In regions where no external forces are ex-
erted (such as the leading edge), the increased pressure is
equilibrated via the Laplace law by the surface tension of
the NE. Therefore, the presence of a hole in the lamina
(but not the membranes) disrupts the mechanical force bal-
ance near the hole. This may lead to fluid outflow from the
nucleus that inflates the bilayers in the vicinity of the hole,
leading to the formation of a bleb. Once this happens, chro-
matin normally found in the nucleus can herniate through
the lamina hole and then reside in the bleb (14,18). If the
bleb bursts, the chromatin may then be damaged due to its
exposure to the chemical environment of the cytoplasm.
We theoretically predict the dynamics of the lamina ruptures
and suggest their biological significance. The molecular
properties enter in parameters such as the hole line tension,
i.e., lamina 2D Young’s modulus E and viscosity h, and the
local chromatin-dependent viscosity of the nucleoplasm.
(Note that whereas we regard the lamina as compressible
within its plane, it is indeed incompressible in three dimen-
sions when its finite thickness is taken into account—
namely, stretching in plane leads to a reduction in
thickness.)

The theory in this article comprises two subsections: In the
first, we formulate and solvewhat is, to the best of our knowl-
edge, a novel hydrodynamic theory that may describe the
postnucleation evolution of the hole radius and lateral strain
in the nuclear lamina modeled as a deformed, viscoelastic
shell that contains a fluid-filled gel network (as a model of
the nucleoplasm) on its lumen side. We analyze this theory
analytically in two limits: one in which the deformation-
induced strain is relaxedmainly due to outflow; and the other
in which strain reduction is mainly due to hole growth. In the
second subsection, which is most relevant for the biological
problem of chromatin damage, we predict the relative
amount of chromatin that herniates through the hole and
resides within the forming bleb, as a function of the visco-
elastic properties of the lamina. This connects the rupture
dynamics predicted by our model and others (28) to biolog-
ical, rupture-induced damage. Relating the viscoelastic prop-
erties of the lamina to the expression of lamins allows
prediction of the optimal expression required to prevent sig-
nificant chromatin herniation, thus optimizing survivability
during migration as expected (to some extent) in vivo. These
subsections are followed by a discussion that links the theo-
retical predictions to experimental observation and proposes
future experiments to quantitatively test our ideas.
1062 Biophysical Journal 113, 1060–1071, September 5, 2017
MATERIALS AND METHODS

The theoretical methods of elasticity and hydrodynamics were used to

calculate the rupture and healing properties of the lamina. These are

detailed in the Supporting Material.
Physical background

The viscoelastic properties of the NE are primarily determined by the

nuclear lamina (10,11,13). Various experiments have measured the relative

contributions of the different lamin proteins to the mechanical properties of

the NE (10,11,37). However, the roles of the different lamins is not yet a

matter of consensus, because the varying results and conclusions may

depend on the experimental method and the timescales of measurements.

In the following sections, where we present and solve the theoretical model,

all the predictions are expressed only in terms of the viscosity and 2D

Young’s modulus of the nuclear envelope. At this level, the theory is generic

in nature; the relation between the viscoelastic parameters and the molecu-

lar compositions to lamin expression is outside the scope of the theory and

must be determined from experiment.

The physics governing area changes in lipid bilayers, which are typically

�4 nm thick (39), is determined by the joint contribution of the elastic

forces due to the decrease in the 2D density of lipid molecules (40) and

the entropic forces due to suppression of the membranes’ thermal undula-

tions (26). Bending moduli of membranes scale as a power law of the mem-

brane thickness (between 2 and 3) (41,42). Because the NE comprises two

lipid bilayers and a lamina that is �14 nm thick (43), it is at least sixfold

thicker than lipid bilayers (and may be even thicker because the two lipid

bilayers are spaced), and thus has a much larger bending modulus. This

effectively suppresses the thermal undulation of the NE and its components

and enables the use of purely mechanical, linear elastic constitutive laws

when describing the lamina.

Hole formation in flat, tensed membranes, whose molecular area density

is lower than its value in a relaxed membrane, results in two opposing con-

tributions to the energy of the membrane: In the first, the hole lowers the

membrane energy proportional to its area, due to dispersion, in the rest of

the membrane, of the lipid molecules that were originally in the area of

the hole. This increases the area density of molecules closer to their equi-

librium value and thus reduces the surface deformational energy. In the

second, the hole increases the membrane energy in a manner proportional

to the hole circumference due to the energy associated with the line tension

(29). Line tension promotes hole healing and arises due to the bending

energy costs of curving the lipid leaflets on a scale of the order of their

thickness, required to eliminate hydrophilic-hydrophobic contact at the

circumference of the hole. The competition between line tension and sur-

face tension determines a critical nucleation radius that depends on the

deformation-induced surface tension of the membrane; holes smaller than

the critical radius will close whereas larger holes will grow up to a charac-

teristic radius (this radius can be metastable (27)). In vesicles comprising

only a single lipid bilayer, the time required for the hole formation/healing

cycle is of the order of seconds (28), which is much faster than the time-

scales of migration and rupture measured in migration-induced nuclear

rupture (14). Experiments have not yet directly imaged nuclear rupture;

so far, existence of rupture was inferred from leakage of nuclear proteins

such as GFP-NLS into the cytoplasm (7,14,15,17). Measurements of the

time evolution of cytoplasmic fluorescent signal after rupture suggest that

the healing of the ruptures occurs on the scale of a few tens of minutes

(14,15,17). This time is greatly increased (approximately doubled) by the

disruption of the ESCRT III system (15), which indicates its role in the heal-

ing of holes in the bleb.

Because the NE contains a variety of integral proteins which, in a coarse-

grained picture, can be thought of as defects in a homogeneous viscoelastic

layer, it is reasonable to assume that the hole nucleated at such a defect site,

such as the NPC. Because the microscopic details of the nucleation are

unknown, we consider the growth of a hole whose initial radius is larger
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than the critical nucleation radius, and define Ri as the initial hole radius,

taken to be 25 nm, of the order of the NPC channel size (5).

The qualitative features of the elastic response of shells, such as the NE,

to deformations depends on whether the shells are closed (lack holes with

free boundaries) or open (contain holes with free boundaries). Whereas in

open shells the boundary of the hole is free to move to reduce the lateral

strains, this is not the case in closed shells. Therefore, in open shells, the

main contribution to the deformation energy originates in bending of the

shell, whereas in closed shells the deformation results in global, in-plane

strains (42). Bending involves much smaller deformation energies

compared with in-plane strains so that the only large strains in an open shell

are those in the direct vicinity of the hole, which cause its growth. In the

case of an intact NE, the rigid protein ring formed by NPC can be modeled

as a hole with fixed boundaries that cannot relax the imposed surface ten-

sion by their motion. Therefore, in its intact state, the NE behaves as a

closed shell that is strained (in-plane) over its entire area. On the other

hand, rupture of the NE (with the creation of a hole whose size is signifi-

cantly larger than that of the NPC) creates free boundaries that can adjust

to the imposed surface tensions by their motion so that the NE can be

modeled as an open shell, in which the lateral strains are concentrated

only in the vicinity of the hole. For this reason, we consider only single

and not multiple holes in the NE.

Closed surfaces, such as vesicles or the NE, express mechanical equilib-

rium via the Young-Laplace relation that states that the product of their

curvature and surface tension is equal to half the pressure difference be-

tween the two sides of the surface. However, once a hole is formed in an

otherwise closed membrane, these initial pressure differences lead to an

outflow of internal fluid through the hole. This outflow reduces the total

area of the surface and hence the packing area per molecule and the surface

tension. When the packing area is reduced to its equilibrium packing area

that minimizes the membrane free energy value (in the absence of external

stress), the surface tension vanishes and along with it, the pressure differ-

ence. Previous experiments on the rupture of vesicles, have shown that

the two competing mechanisms of surface tension relief (hole growth)

and total area reduction (outflow of internal fluid) cause the hole to shrink

after an initial period of growth and eliminate the metastable state of the

hole that exists in flat membranes (26,27).

However, the nucleoplasm is not a simple viscous fluid (44), and the rela-

tion between the flow and pressure gradient is therefore complex. In this

article, the nucleoplasm is considered to be a (very) high concentration so-

lution of chromatin fibers in a good solvent (water þ small molecules; see

Fig. 2 A). We model the chromatin as a semiflexible polymer with persis-

tence length lp. The persistence length of dsDNA in physiological condi-

tions is �50 nm (45), and we assume that lp > 50 nm due to higher level

organization of dsDNA in chromatin fiber. The rheology of the nucleoplasm

is considered in two extreme limits, one in which only the aqueous phase

can flow (see Fig. 2 B) and another, in in which both the chromatin and

the aqueous phase flow together (see Fig. 2 C). Particle nanotracking
experiments have measured an effective, coarse-grained, kinematic viscos-

ity of nucleoplasm that is more than three orders-of-magnitude larger than

the kinematic viscosity of water (44), implying that the joint flow of the

chromatin and the aqueous phase is considerably more viscous than that

of the aqueous phase alone.
RESULTS

Rupture and healing dynamics

In this subsection, we formulate and solve a theory for the
coupled dynamics of hole growth/healing of a deformed
viscoelastic shell (as a model of the nuclear envelope) and
the resulting outflow of a high concentration solution of
semiflexible polymer in a good solvent (as a model of chro-
matin; see Fig. 2 A). We consider the postnucleation
dynamics of a hole that has been nucleated at a defect site
in the shell. High curvature regions in the deformed shell
are characterized by higher bending energy; thus, nucleation
of holes in regions of high curvature is thermodynamically
favorable. We therefore suggest that, for the case of migra-
tion-induced deformation, a probable nucleation site of the
hole is in the leading edge of the migrating shell because
it is characterized by relatively high curvature. Whereas
the flow of the solvent phase alone is characterized by a
kinematic viscosity hs, the effect of the semiflexible poly-
mer (which can spatially rearrange during outflow due to
friction with the solvent phase) on the rheology of the solu-
tion has not yet been elucidated. The friction between the
solvent phase and the semiflexible polymer impedes the
outflow of the aqueous phase in a manner that may depend
on many details.

To account for the unknown, complex effect of the semi-
flexible polymer on the solvent phase outflow, we consider
two very different and simple limiting-case models for the
rheology of the solution in our calculations of hole growth
and closure. In the first, we consider a scenario in which
the semiflexible polymers rearrange such that a channel is
formed in between regions where the semiflexible polymers
are more densely packed and solvent phase flow is greatly
reduced (see Fig. 2 B). This channel serves as a conduit
FIGURE 2 Models for chromatin organization

and aqueous phase flow. (A) Shown here is a high

concentration of semiflexible polymer (as a model

of chromatin) in a good solvent (water þ mole-

cules); the rheology of this model is complex

because the polymer chains can rearrange as the

solvent phase flows out of the nuclear volume via

a hole in the nuclear envelope. (B) Limiting case

model I: here, polymer chains rearrange (due to

the solvent phase flow) to form a channel that serves

as a conduit to the solvent phase outflow. The

conduit has an effective radius of order of the hole

radius R and effective contour length d*. (C)

Limiting-case model II: here the polymer and

solvent phases flow together and are coarse-grained

as a homogenous viscous fluid of viscosity hs*.
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that directs the flow of the solvent phase and therefore min-
imizes dissipation by reduction of the friction between the
solvent phase and the semiflexible polymers. The flow in
the conduit is modeled as a laminar flow in a cylinder
(Hagen-Poiseuille flow) whose radius is set by the hole
size that allows the solvent phase flow (which is the driving
force for the rearrangements of the semiflexible polymers
that result in the formation of the channel). The effective
tube length can be much larger than the hole size. In the sec-
ond model, we consider a coarse-grained model of the flow
in which the semiflexible polymer phase and the solvent
phase are lumped together as a homogenous, viscous fluid
with an effective, kinematic viscosity that is much larger
than the hs, the kinematic viscosity of the solvent phase
alone (see Fig. 2 C). The two models are very different
from a physical perspective: in the first model, the semiflex-
ible polymer phase rearranges but does not flow, so that it is
distinct from the flowing solvent phase. In the second
model, the semiflexible polymer and solvent phases flow
together and are treated as a single, homogenous fluid. We
show below that, although these two limiting-case models
greatly differ, our qualitative predictions for the dependence
of the hole growth/healing dynamics and the degree of
deformation-induced, polymer extrusion on the viscoelastic
properties of the shell are insensitive to which model is used.

Both cases result in similar dynamics that can be approx-
imated by hole growth that increases exponentially with
time, until the hole reaches a maximal radius Rm. This
regime is followed by an approximately linear decrease of
the hole size with time. The major differences between the
two models result in different expressions for Rm and the
velocity of hole closing (after it reaches its maximum) as
functions of the viscoelastic properties of the shell. For
this reason, we conclude that the dynamics of an exponential
increase, followed by a linear decrease that is common to
both models, is insensitive to the details of the effect of
the semiflexible polymer phase on the rheology of the solu-
tion. We therefore predict that the experimental dynamics of
the rupture are of the same form. Below, we show that the
qualitative dependence of the amount of polymer that is
extruded on the viscoelastic properties of the shell is also
independent of the model used for the rheology of the solu-
tion. The biological consequences are explicated in the
Discussion section at the end of the article, which may be
relevant to the reduction in cell viability measured in
experiments.

Before deformation and the resulting hole nucleation, the
viscoelastic shell is regarded as impermeable and has
the shape of a sphere with area Au (see Fig. 1 A). When
the spherical shell is deformed, the surface area of the shell
increases (because a sphere has minimal area for a fixed
volume), laterally stretching the shell. We treat the surface
tensions and lateral strains by averaging over the entire
area so that the initial strain, ε0, is proportional to the differ-
ence between the areas of the shell in the deformed and
1064 Biophysical Journal 113, 1060–1071, September 5, 2017
undeformed states. (Before hole formation, the NE is
approximately impermeable (46), so no outflow occurs.)
We account for the rearrangements of the molecules in the
shell by an approximately uniform lateral strain driven by
the deformation; the timescale for molecular rearrange-
ments in the shell is expected to be much faster than the
time for hole growth/healing (tens of minutes), because
hole growth/healing involves macroscopic displacements
of molecules whereas the rearrangements involve only local
displacements at the molecular scale.

Before a hole nucleates, the area of the deformed shell is
denoted by Ad; thus, the initial lateral strain ε0 is given by-
the difference of the deformed and undeformed areas ε0 ¼
(Ad � Au)/Au. In this article, for geometrical simplicity, we
consider deformation of the shell due to forced migration
through a constriction. Other deformation mechanisms
(e.g., squeezing between plates or others), can in principle
be modeled but we focus here on migration due to its bio-
logical ubiquity. For the constriction case, we model the
deformed shell as a cylinder with two hemispherical
caps whose radius is equal to that of the constriction
(see Fig. 1 B). The geometry in Fig. 1 relates Ad to
the constriction cross-sectional area Ac ¼ pRc

2 by
Ad ¼ ð1=3Þð4Ac þ Au

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAu=AcÞ
p Þ.

The hemispherical, laterally strained caps have smaller
radii of curvature and larger surface tension than those of
the initial, spherical nucleus. Stabilization of this larger cur-
vature structure implies (via the Young-Laplace relation;
Eq. 2) a larger pressure gradient across the shell compared
with the initial, undeformed situation. Once a hole is
formed, this pressure gradient gives rise to outflow of the
solution from the inner side of the shell to the outer side.
When hole nucleates, the solvent phase along with some
semiflexible polymers flow out through the hole due to
this pressure gradient. The importance of this outflow in
hole dynamics was previously pointed out in the context
of vesicle rupture (27). We note that local changes in the sur-
face tension also contribute to the pressure difference, but
our mean field model approximates the surface tension as
uniform for the deformations of interest.

The lateral strain ε resulting from the deformation-
induced, increased shell area implies surface tension s;
our model uses linear viscoelastic theory (applicable for
shell rupture caused by lateral strains of a few percent) to
relate the surface tension and lateral strain by s¼ Eε, where
E is the 2D Young’s modulus. If the shell is modeled as a
Maxwellian, viscoelastic material, the dynamics of its
flow and therefore of the hole growth/closing can be com-
plex and dependent on the past configuration of the material.
To simplify the problem, we approximate the dynamics of
the shell to be solid-like at times that are shorter than the
typical viscoelastic timescale t¼ h/E, where h is the surface
viscosity of the shell (which is its kinematic viscosity multi-
plied by the shell thickness), and viscous fluidlike at times
larger than t. In the solid regime, ignoring plastic
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deformations that are usually not relevant for small strains,
the material cannot flow, so that the hole radius does not
change significantly (see Supporting Material). At times
larger than t, the shell flows as a fluid and its dynamics
can be calculated from force balance of the flow around a
hole of radius R within a locally flat, viscous layer (see Sup-
porting Material) (27):

dR

dt
¼ 1

2h
R

�
s� T

R

�
: (1)

Equation 1 describes the time evolution of only the hole
radius; to predict the full rupture dynamics, an equation
for the evolution of the combined area A (defined to be
the sum of the shell and the hole area) due to outflow,
must be derived. The outflow is driven by a pressure differ-
ence Dp between the two sides of the shell; Dp is related to
the surface tension by Young-Laplace law,

Dp ¼ 2sC; (2)

where C ¼ 1/Rc is the curvature in the vicinity of the hole
(see Fig. 1 B). The relation between the flow rate Q of the
solvent phase and the pressure difference Dp is different
for the two models of the solution rheology considered;
we now discuss each of them separately.
Case I: solvent phase flow through a conduit formed by
semiflexible polymers

In the first case that we consider (see Fig. 2 B), the flow of
the solvent phase is modeled as a flow through an effective
cylindrical tube of radius R and length d*, where the dissi-
pation is due to the friction between the flowing solvent
phase and the walls of a conduit of contour length d*,
bounded by a dense polymer region where solvent flow
is strongly impeded. In this picture, the effective dissipa-
tion length d* can be much larger than R, depending on
the contour length of the conduit, which might be very
tortuous, leading to d* that can be greater even than the
dimensions of the shell. In this subsection, we formulate
and solve a hydrodynamic theory for the dynamics of
hole growth and shrinking in the shell for Hagen-Poiseuille
outflow.

In the low Reynolds number limit, the outflow is laminar,
so that the flow rate Q is (47) (see Supporting Material):

Q ¼ �Rc

2

dA

dt
¼ pDpR4

8hsd
� ; (3)

where Dp is the pressure difference between the two sides of
the shell, hs is the viscosity of the solvent phase of the nucle-
oplasm, and A is the combined area of both the shell and the
hole. Equation 3 is accurate in the limit that d*>> R so that
end effects can be neglected.
Substituting linear elasticity relation s ¼ Eε and Eq. 2
into Eqs. 1 and 3 leads to two coupled equations that
describe the dynamics of the combined area of the shell
and the local hole radius:

dR

dt
¼ E

h

R

2

�
ε� T

E

1

R

�
; (4)

dA E p2R4
dt
¼ �

2hsd
� Ac

ε: (5)

These equations show that the rate of change of the combined
area is related to the hole radius by the outflow, whereas the
rate of change of the hole radius is related to the lateral strain
ε and the line tension T. (The strain is reduced from its initial
value by the molecules donated to the shell due to the pres-
ence of the hole and by the area reduction due to outflow.)

To simplify the equations, we rescale the variables ~R and
~A to be of order unity, i.e., ~R ¼ R=Ri, ~A ¼ A=Au, and
~t ¼ t=t, where t ¼ h/E and Ri is the initial radius of the
hole directly after nucleation. Then, to account for more
physical variables, we replace the variable ~A that appears
in Eq. 5 with the lateral strain, which results in the simpli-
fied, approximated form (see Supporting Material):

d~R

d~t
¼ 1

2
~Rε� b

2
; (6)

�
~2�
dε

d~t
¼ � 1þ 2rR

d
r~R

2
εþ r~Rb; (7)

where ε ¼ ðA� pR2 � AuÞ=Au ¼ ~A� r~R
2 � 1 is the

dimensionless, small lateral strain; and b, r, and d are small,
dimensionless parameters equal to ðT=ERiÞ, ðpR2

i =AuÞ, and
ðhsd�=hÞ, respectively (see Supporting Material). Hence-
forth we omit the tilde signs and write R, A, and t.

The dynamical Eqs. 6 and 7 are highly nonlinear and
cannot be fully solved analytically. However, some general
observations can still be made concerning the dynamics.
First ε, which is initially positive, cannot become negative
because if ε approaches zero, the derivative in Eq. 7 is domi-
nated by the positive term rbR, which then increases ε.
Second, the hole will grow ððdR=dtÞ> 0Þ up to a maximal
size Rm that satisfies Rε ¼ b at the time for which R ¼ Rm

as dictated by Eq. 6. Hole growth and outflow decrease ε

until it reaches its minimal value (which is shortly after
R ¼ Rm), because hole closing increases the lateral strain
and decreases the outflow. For the minimal strain, the deriv-
ative in Eq. 7 is zero and so εmin ¼ ðb=ð1þ ð2rR2=dÞÞRÞ,
and the rate of hole closing is then equal
to ðdR=dtÞ ¼ ðb=2Þ=ð1þ ð2rR2=dÞÞ � ðb=2Þz� ðb=2Þ
ðð2rR2=dÞ[ 1 for R � Rm; see Supporting Material),
according to Eq. 6.
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During hole closing, the lateral strain increases due to the
increase of the area outside the hole, which is now occupied
by a lower density of molecules because some of those have
returned to the previously larger hole. However, that effect is
mitigated by outflow from the inner side of the shell that
keeps the lateral strain small. If that outflow is large enough,
the strain can be maintained at negligibly small values so
that Eq. 6 predicts that the hole radius decreases linearly
with time. When the effective dissipation length is too
high, the outflow is too small to mitigate the growth of the
lateral strain by hole closing (rbR is not small compared
to �2r2/d R4

ε in Eq. 7), which in turn slows the rate of
hole radius decrease. The hole closing rate then returns to
the value of �b/2 when the hole is small enough, because
1/2 Rε will again be negligible compared with �b/2 in
Eq. 6. Numerical solutions of the equations for a wide range
of effective dissipation lengths verify our predictions of the
late-time behavior of the hole radius (see Fig. 3).

At early times, before the hole radius reaches its maximal
value and then decreases linearly with time, the dynamics is
complex and more sensitive to the model parameters. How-
ever, one can still qualitatively explain the behavior at early
A C

B D
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times in two limits:1) fast, outflow-induced strain relaxation
compared with hole growth-induced strain relaxation,
and 2) for the opposite case. In limit 1, the strain is quickly
relieved by outflow whereas the hole size remains approxi-
mately constant (or grows very slowly). In that case, the hole
radius decreases very soon after the hole forms. In the oppo-
site case of slow outflow (limit 2), the shell combined area is
approximately constant as the hole radius increases (due to
the surface tension). At early times, when the lateral strain is
approximately constant and the constant term in Eq. 6 is
negligible, this equation predicts exponential growth of
the hole radius as a function of time (28); this can be derived
analytically from Eqs. 4 and 5 (see the SupportingMaterial).

Our numerical analysis of the equations shown in Fig. 3
A demonstrates that due to the exponential growth,
the maximal hole radius can be significantly greater than
the initial hole radius. For biologically relevant values of
the parameters (see Supporting Material), we expect
r2/d << 1 but not negligibly small; this supports the
assumption that the physical process of hole growth
and healing is characterized by the hole-growth-dominated
dynamics. In the other limit, r2/d >> 1, which is
FIGURE 3 Rescaled hole radius R as a function of

dimensionless time t for hole-growth-dominated (A)

and outflow-dominated (B) dynamics. (C) This shows

the maximal hole radius as a function of the shell vis-

cosity numerically (dashed line) and analytically, using

Eq. 9 (solid line). (D) Given here is the pore radius as a

function of time in rescaled units for increasing inner

fluid viscosity from left to right, taken from Bro-

chard-Wyart et al. (28) with permission (fig. 2 in the

reference). In (A–C), the time is rescaled by the visco-

elastic timescale t ¼ h/E, which is estimated to 20 s

from the measurements of (10). To see this figure in co-

lor, go online.
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characterized by either large initial holes or small effective
dissipation length d*, the dynamics of the hole radius are
characterized by only a small increase of the hole radius
that is quadratic in time. Our numerical analysis of the
equations, shown in Fig. 3 B, shows that this generally leads
to a small increase of the hole radius compared to its initial
value before the line tension dominates the physics and the
hole begins to shrink. A physical understanding of these
two limits is as follows: when d* is relatively small, the
outflow occurs quickly, thus reducing the shell area and re-
laxing the surface tension induced by the deformation. The
hole has then only a relatively short time to grow before the
surface tension is reduced and the line tension dominates,
causing the hole to shrink. In the other limit, the outflow
is much slower and the surface tension is not quickly
relaxed, thus permitting the hole to grow to much larger
values before the surface tension is relieved and the line
tension causes the hole to shrink.

For the purpose of fully characterizing the rupture
dynamics (which affects the amount of polymer that
extrudes through the hole) in addition to the early and
late-time behaviors, one must consider the transition be-
tween these two regimes. We thus approximate (see Sup-
porting Material) R(t) as a piecewise function of time,
comprising different expressions for growth and healing,
where the transition time between the two regimes is de-
noted by tm at which the hole reaches its maximum size, Rm.

A closed-form for the maximal radius Rm is given by an
expression that can be derived from the dynamical equations
(see Supporting Material):

2b

Ztm
0

R3dtz1þ ε0d

r2
� R4

m: (8)

For the case of hole-growth-driven strain-relief dynamics
ððd=r2Þ[ 1Þ, we approximate the slope of the linear
decrease regime to be �b/2, and find that (see Supporting
Material)

Rmz

�
ε0d

r2

�1
4

; (9)

which is in good agreement with the numerics for a wide
range of shell surface viscosities, as shown in Fig. 3 C.

Equation 9 can be written in dimensional units as
ðpR2

m=AuÞ ¼ ðε0ðhsd�=hÞÞð1=2Þ, which predicts the ratio of
the maximal hole area and the shell undeformed area
(for the fixed constriction cross-sectional area). This ratio
increases as the square root of the initial strain ε0, solvent
kinematic viscosity hs, and the effective dissipation length
d*. The value ε0 is the initial strain that drives hole
growth, whereas the strain relief that limits hole growth
decreases with increasing hs or d*, which limits the
outflow and promotes hole growth. The maximal radius
also decreases with shell surface viscosity h, which slows
the hole growth, thus allowing more strain relief by
outflow.
Case II: nucleoplasm as a homogenous viscous fluid

In this case, we coarse-grain the semiflexible polymer and
solvent phases and model them both as a homogenous fluid
with an effective, kinematic viscosity hs*, which is much
higher than the kinematic viscosity of the solvent phase
alone. In this model, the dissipation length corresponds to
the actual thickness of the shell and is therefore typically
smaller than the radius of the hole, particularly when the
hole size approaches its maximum, the stage at which the
outflow is highest and thus most important. This is in contrast
to the former case in which d* was much larger than the hole
radius so that the end effects of the flow could be neglected.
Here, the inner side of the shell forms a barrier to the flow,
which causes bending of the flow lines except in the vicinity
of the small hole; this results in an effective dissipation length
proportional to R, which leads to a scaling law for Q of the
form Q � DpR3/hs (compared with Q � DpR4/(d*hs) in the
former case); a detailed derivation can be found in section
4.29 of (47). This leads to a slightly modified set of equations,
which are presented and discussed in the seminal article of
the Brochard-Wyart group (28). These equations were solved
numerically and analytically in the limit of high internal fluid
kinematic viscosity, which is appropriate for the high value of
the effective, kinematic viscosity of the solution in this
model. The dynamics is characterized by an exponential
growth of the hole size up to a maximal hole size, followed
by an approximately linear decrease of the hole radius,
with a velocity of ðdR=dtÞ ¼ �ð8TdRm=3h

�
sAuÞ or

ðd~R=d~tÞ ¼ �ð8br~d=3pdÞ~Rm in dimensionless form (where
lengths are rescaled by Ri). The final stage of hole closing
is a fast regimewith velocity of�T/2h, similar to the velocity
as predicted in the former case (see Fig. 3 D).

However, in contrast to the similarities between the
dynamics of case I and case II, the maximal hole radius
Rm in case II is much larger than that predicted in case I.
The ratio of the expressions for outflow of case II and I is
ðhsd�=h�sRÞ and can be very small if the effective, kinematic
viscosity in case II is much larger than the kinematic viscos-
ity of case I, especially for a large hole radius. This implies
that the outflow Q in case II is much smaller and is actually
negligible in the short, exponentially growing regime in the
limit of a large effective, kinematic viscosity of the solution.
This means that in this case, the maximal hole radius is the
same as the metastable hole radius in flat, tensed membranes
(26), and can be written for rescaled dimensionless parame-
ters as (see Supporting Material):

Rm ¼
ffiffiffiffi
ε0

r

r
� b

2ε0
: (10)
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This is qualitatively different from case I, in which the
outflow cannot be neglected in the hole growth regime
and serves as a strain relief mechanism that impedes hole
growth, leading to a maximal hole radius much smaller
than the maximal hole radius of case II. An additional
important characteristic of Eq. 10 is that, in contrast to
Eq. 9 in the former model, Eq. 10 is independent of the
viscoelastic properties of the shell.

Because the fast closing regime is characterized by a hole
size that is relatively small, most of the outflow occurs in the
slow, approximately linear closing regime (28). Therefore,
the fast closing regime is not of any importance in our
work; henceforth, we neglect this regime and focus on the
slow, approximately linear, closing regime that is the rate-
limiting step for hole closing. We shall see in the next
subsection that the contribution to the amount of polymer
that is extruded through the rupture is primarily determined
by this regime.
Polymer extrusion as a model for chromatin
herniation

As long as the hole is open, there is a finite probability for a
polymer to extrude through the hole. However, this requires
the polymer to bend to a radius of curvature that is smaller
than the size of the hole. For flow rates that are smaller
than ðkBT=hsÞz5ðmm3=sÞ (for solvent kinematic viscosity
that is comparable to that of water), a condition that is satis-
fied in systems of biological relevance (see SupportingMate-
rial), the bending of the polymer chains is driven by thermal
fluctuations (48,49). The rate ne of chromatin escape can
therefore be written as a sum of Boltzmann factors, and can
be approximated by ne ¼ n0e

�ðplp=2RÞ (where n0 is an attempt
frequency, and lp is the persistence length of the semiflexible
polymer), which represents the extrusion rate of a polymer
chain that is bent to a radius of curvature equal to themaximal
radius allowed, the hole radius R, by thermal fluctuation.

To estimate the total amount of polymer that extrudes
during a hole growth/healing cycle, which is taken to be
exponential growth up to maximal hole radius Rm followed
by a linear decrease with a dimensionless, rescaled velocity
of �a, we integrate ne over the entire cycle, which results in
the dimensionless measure of the amount of extruded poly-
mer Lc (see the Supporting Material):

Lc ¼ n0t

a
Rm

0
B@e

� plp
2Rm þ plp

2Rm

Ei

�
� plp
2Rm

�1CA; (11)

where t is the typical viscoelastic timescale h/E of the shell,
a ¼ b/2 for case I, which considers formation of a conduit;
and a ¼ ð8brd=3pdÞRm for the model of case II, where the
entire polymer solution is treated as a high-viscosity,
viscous fluid.
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Equation 11 is correct for both models of the polymer
solution rheology, even though the two models represent
completely different approaches to model the complex
hydrodynamics of the solution. We therefore conclude that
Eq. 11 is universal in the sense that all models for the com-
plex hydrodynamics of the solution will result in expres-
sions of the form of Eq. 11, which differ in the
dependences of a and Rm on the model parameters. It is
important to note that whereas a appears in the expression
for the amount of extruded polymer as a prefactor, Rm

appears in the exponent; therefore, changes in Rm affect
the amount of extruded polymer much more dramatically
than changes of a. This is expected, because the amount
of extruded polymer scales linearly with the time that the
hole is open, which in turn, approximately scales as �1/a,
but scales exponentially with the bending energy required
to bend the polymer, which scales as �1/ Rm for a maxi-
mally sized hole. This also explains why neglecting the
fast closing regime of case II is reasonable; the fast closing
regime occur for relatively small hole radii, where the
amount of extruded polymer is exponentially smaller than
the amount for hole radii around Rm. Thus, the amount of
extruded polymer is more sensitive to the maximal hole
size in the shell than to its closing velocity.
DISCUSSION

We now relate our theory and its predictions to experimental
observations of migration-induced rupture and damage. The
theory does not depend on the details of the forces applied to
the nucleus; what is important is the deformation of the NE
that induces stretched, relatively high curvature regions.
Thus, many of the results may be applicable to modes of
deformation that cause blebbing and rupture other than
migration, such as squeezing of the nucleus between two
parallel surfaces (18). To apply the theory to these scenarios,
the expression for the initial strain and the relation between
viscoelastic properties of the NE and the lamins must be
revised to account for the new geometry and deformation
timescales.

In the scenario we consider, a hole in the lamina (even in
the absence of one in the bilayer) is an essential first step
that leads to bleb formation and inflation due to outflow,
caused by the lack of mechanical force balance across the
NE at the site of the laminar hole. The relatively high
bending energy of the leading edge can promote nucleation
of a hole in the lamina at the leading edge of the cell and
nucleus; this prediction is consistent with the experimental
observations of the frequent blebbing at the leading edge
(8,14,15). We model the process by calculating the
dynamics of hole growth and healing and polymer extrusion
of a deformed viscoelastic shell that is filled with a high-
concentration polymer solution in a good solvent. This
model applies to a migrating nucleus where the lamina is
treated as a viscoelastic layer and the chromatin as a
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semiflexible polymer in a good solvent. Thus, our quantita-
tive predictions focus on the dynamics of growth and heal-
ing in the lamina, which is coupled to outflow of fluid from
the nucleus, through the hole and into the forming bleb. In
addition, we estimate the amount of chromatin that herniates
into the bleb as a function of the viscoelastic properties of
lamina.

We now discuss possible biophysical implications of hole
formation/healing, outflow, and chromatin herniation. These
are not explicitly treated by our model but it is interesting to
connect our viscoelastic hydrodynamics of the lamina to a
possible interpretation of the subsequent processes of bio-
logical interest and observations. Although we do not
explicitly treat bleb growth, our model is relevant because
the growth is driven by outflow of fluid from the nucleo-
plasm through the lamina hole and into the bleb, eventually
causing it to burst, which then transfers chromatin to the
cytoplasm. This scenario suggests that the main cause of
rupture-associated damage is exposure of chromatin to the
cytoplasmic environment, which is biochemically different
than the nucleoplasm and may promote chromatin damage.
Therefore, the amount of extruded chromatin may correlate
with chromatin damage. Of course, it is the bursting of the
bleb, not the hole in the lamina, which causes the measured
leakage of nucleoplasmic proteins to the cytoplasm; thus,
our predictions of the lamina rupture dynamics should not
be used to make predictions regarding the leakage of nucle-
oplasmic proteins, which is experimentally associated with
rupture. The hole in the bleb may also heal due to competi-
tion between the line tension (which may be effectively
augmented by the involvement of the ESCRT system) and
the surface tension, which decreases over time due to
outflow. We suppose that the time for the healing of holes
in the viscoelastic lamina is much longer than the time of
bleb formation and bursting. Therefore, we expect multiple
cycles of bleb formation and bursting while the hole is open.

To date, experiments have presented qualitative evidence
of NE rupture and/or loss of repair enzymes (based mainly
on exchange of cytoplasmic and nucleoplasmic proteins),
but not direct measurements of the dynamics of hole open-
ing and closing (7,14,15,17). Different cells are character-
ized by different lamin expression levels and therefore
different lamin content of their NE; these molecular-level
differences can account for varying viscoelastic properties
of the NE (10,11,37). The viscoelastic properties of the lam-
ina control chromatin herniation and as a consequence,
nuclear migration-induced damage. Qualitative indications
of damage, such as the loss of survivability, chromatin her-
niation, or double-stranded breaks, were shown to increase
with depletion of A-type lamins (8,14).

In addition to hole formation/healing, we have estimated
in Eq. 11 the amount of chromatin that herniates through a
hole in the lamina and into the bleb; if the bleb subsequently
bursts, the chromatin can be transferred into the cytoplasm.
Our estimate for herniation (Eq. 11) is presented as a closed
form expression depending on two parameters that charac-
terize the dynamics of hole growth and healing: the maximal
hole radius Rm and the approximately linear, closing veloc-
ity a. The chromatin herniation is predicted to decrease with
decreasing Rm or increasing a. However, the contribution of
the two do not affect the amount of herniated chromatin in
the same manner: whereas the herniation decreases expo-
nentially with Rm, it decreases only inversely with a, which
appears as a prefactor in Eq. 11. The parameters Rm and
a are determined by the line tension T, which is proportional
to the 2DYoung’s modulus E (see Supporting Material), and
the surface viscosity of the lamina h; however, the exact
dependence of Rm and a on the viscoelastic parameters
h and E is sensitive to the rheology of the nucleoplasm. In
our model, we predict that Rm decreases with increasing
h but is independent of E, whereas a decreases with h and
increases with E.

An increase of the lamina surface viscosity h slows the
2D flows within the lamina and retards hole growth. This
retardation means that a relatively large amount of nucleo-
plasm can flow out of the hole leading to additional strain
relief, compared with a system in which the hole grows
quickly, so that the change of nuclear volume during hole
growth is minimal. Thus, an increase of the surface viscosity
of the lamina reduces the maximal hole radius, at least for
case I of the rheology that we considered above. Because
chromatin herniation is exponentially sensitive to the hole
radius, our predicted decrease of Rm with increasing lamina
surface viscosity (for one of the rheological models) means
that increasing the laminar viscosity should greatly reduce
the chromatin herniation.

Conversely, an increase of the 2D Young’s modulus E,
which controls the line tension responsible for hole closing,
does not considerably modify the maximal hole radius. For
large holes, the force due to line tension is inversely propor-
tional to the hole radius and thus negligible compared with
the surface tension. The line tension is thus relevant only af-
ter the surface tension becomes relaxed, at the hole closing
regime. Indeed, in both models of the nuclear rheology
the maximal hole radius is approximately independent
of the line tension T. However, the line tension does affect
the hole closing rate because the line tension is the driving
force for the healing process. Indeed, the hole closing veloc-
ity, a, increases with T. Thus, increasing the laminar elastic
modulus, E, will lead to an increase of a and to a decrease in
the herniation of chromatin. In contrast to an increase in the
laminar viscosity, which leads to a possibly exponential
decrease of the herniation, an increase of E algebraically de-
creases the herniation because it enters through the prefactor
and not the exponent.

Various experiments have measured the relative contribu-
tions of the different lamin subtypes to the viscoelastic prop-
erties of the NE. These experiments, which differed in the
timescales and method of measurements, have been inter-
preted to ascribe differing contributions of A-type lamins
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to the viscoelastic properties. In some experiments, A-type
lamins were found to contribute primarily to the viscosity
h (10,50), whereas in others it was found to contribute to
the stiffness (11,37). Our predictions for chromatin hernia-
tion summarized here are cast in terms of the viscoelastic
parameters and future experiments elucidating their molec-
ular origins at the timescales appropriate to laminar hole
formation/closing will enable further understanding at the
molecular scale.

Returning to the focus of our theory, we suggest the
following experiments. First, quantitative imaging of the
lamina hole size as a function of the viscoelastic properties
of the NE can distinguish between the two models we
presented for the nucleoplasm rheology and determine
which is more realistic. For example, measurements of the
maximal hole radius Rm, as a function of the NE surface
viscosity h, can distinguish the conduit model (case I)
from the homogeneous viscous fluid model (case II),
because Eq. 9 for case I predicts Rm � h�1/4, whereas Eq.
10 for Rm (case II) is independent of h. Similar quantifica-
tion can be done for the velocity of hole closing in regime
where the velocity is approximately constant. In addition,
quantification of chromatin herniation as a function of Rm

or a, by quantitative imaging of the hole size as a function
of time, can test Eq. 11 for chromatin herniation. Quantifi-
cation of the amount of chromatin that herniates through
the hole as a function of the A-type lamin expression levels
should also allow experiments to distinguish between the
proposed contributions of type-A lamins to the viscoelastic
properties of the lamina: if expression of type-A lamins
mainly augments the viscosity, one might observe an expo-
nential change of the chromatin herniation, whereas if it
mainly augments the stiffness (through increasing E), we
predict a possibly weaker algebraic dependence.
SUPPORTING MATERIAL

Supporting Materials and Methods are available at http://www.biophysj.
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Elastic deformation of the hole

Here, we show that in the elastic regime, the hole radius does not appreciably change from
its initial radius. For times that are shorter than the typical viscoelastic timescale τ = E/η,
the change in the hole radius is governed by linear elasticity. For approximately flat shells,
this is a problem of a two-dimensional annulus with boundary conditions of constant stress
σ̃0 that equals Ẽε0 at infinity, where Ẽ is the three-dimensional Young’s modulus (E is the
two-dimensional Young’s modulus, which is related to Ẽ by E ∼ Ẽ · d where d is the shell
thickness), and a size dependent line tension of the hole on the perimeter of the annulus.
Force balance dictates

∂σ̃rr
∂r

+
1

r
(σ̃rr − σ̃θθ) = 0 (1)

where σ̃ij is the component of the stress tensor. In linear elasticity the stresses and strains
are related by

σ̃ij =
Ẽ

1 + ν

(
εij +

ν

1− 2ν
tr (ε) δij

)
(2)

1



where εij are the components of the strain tensor and ν is the Poisson ratio. We work in
a coordinate system in which the ẑ axis is the symmetry axis of the annulus and z = 0

characterizes the midplane of the shell. From symmetry considerations, the θ component of
the displacement vector ~u vanishes while other components are θ independent. This means
that εrr = ∂ur

∂r
, εθθ = ur

r
, εzz = ∂uz

∂z
and εrz = 1

2

(
∂ur
∂z

+ ∂uz
∂r

)
while all other components vanish.

The upper and lower surfaces of the shell are traction free. This means, for a thin
shell, that all the components of σ̃iz can be approximated to be zero, in particular σ̃zz = 0

which gives, using Eq. 2 and the relations between the strain and displacement components,
εzz = − ν

1−ν

(
∂ur
∂r

+ ur
r

)
. Substituting this into Eq. 2 together with the relation between the

strain and displacement components leads to:

σ̃rr =
Ẽ

1 + ν

(
∂ur
∂r

+
ν

1− ν

(
∂ur
∂r

+
ur
r

))
(3)

σ̃θθ =
Ẽ

1 + ν

(
ur
r

+
ν

1− ν

(
∂ur
∂r

+
ur
r

))
(4)

Substituting these relations into Eq. 1 gives the differential equation

∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2

= 0 (5)

whose solution is
ur = Ar +B

1

r
(6)

whereA andB are integration constants determined by the boundary conditions σ̃rr (r →∞) =

σ̃0 and d·σ̃rr (r = Ri) = T
Ri
. Using equations 6 and 3 allow us to express the radial component

of the stress tensor as a function of r and the integration constants:

σ̃rr (r) =
Ẽ

1 + ν

(
1 + ν

1− ν
A−B 1

r2

)
(7)

The expression above, together with the stress boundary conditions determines A =
(1−ν)σ̃0

Ẽ
and B = 1+ν

Ẽ
R2
i σ̃0 − 1+ν

Ẽ
RiT
d
. Substituting the integration constants A and B into 6

with R = Ri results in the displacement of the hole ur (r = Ri) = 2Ri
σ̃0
Ẽ
− (1 + ν) T

d·Ẽ . In
linear elasticity T/d, σ̃0 � Ẽ, so that the change in the hole radius is negligible compared
with the radius itself. We therefore conclude that in the short-time elastic regime, the hole
radius is essentially unchanged for times smaller than the typical viscoelastic timescale τ ,
where the shell is approximated to respond elastically.
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Derivation of the dynamical equations

To formulate the equations for the hole dynamics in case I, we have to account for the flow
of the shell, the high-concentration, polymer solution and their coupling. We consider each
of these in separate subsections.

Shell flow dynamics

For times larger than the typical viscoelastic timescale τ = η/E, the shell flow is controlled by
low Reynolds number hydrodynamics. We approximate the shell to be a three-dimensional
incompressible, viscous thin film with a hole of radius R. The boundary conditions are:
surface tension σ equals Eε at infinity and an equivalent surface tension of T/R (t) that
arises from the line tension and the time dependent hole radius; the upper and lower surfaces
of the film are traction free. We again work in a coordinate system in which the ẑ axis is the
symmetry axis of the annulus and z = 0 characterizes the midplane of the shell. Symmetry
considerations dictate, that the θ component of the velocity field ~v of the shell vanishes and
that vr and vz are θ independent. Using these symmetry arguments, the incompressibility
condition is written as:

∇ · ~v (r, t) =
1

r

∂ (rvr)

∂r
+
∂vz
∂z

= 0 (8)

For a thin shell, the flow of the molecules is quasi two-dimensional in the plane of the shell
while the change in its thickness is governed by its three-dimensional incompressibility. Thus,
changes in the molecular rearrangements in the z direction occur almost instantaneously; vz
and its derivatives are therefore very small compared with their corresponding quantities in
the radial direction.

Eq. 8 is therefore well approximated by 1
r
∂(rvr)
∂r

= 0, therefore vr = G (t, z) /r. Since the
upper and lower surfaces are traction free, the hydrodynamic stress tensor σ̃zr vanishes on
both surfaces. For a thin shell, this means that σ̃zr is approximately zero throughout the
thickness of the shell: σ̃zr = η̃

(
∂vz
∂r

+ ∂vr
∂z

)
= 0, where η̃ is the kinematic viscosity of the shell

and is related to the surface viscosity η by η = d · η̃. Neglecting ∂vz/∂r means that vr is
approximately z independent, thus vr = G (t) /r. The radial component of the hydrodynamic
stress tensor is therefore:

σ̃rr = −p+ 2η̃
∂vr
∂r

= −p− 2η̃G (t)

r2
(9)
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where p is the pressure field in the shell that enters the Navier-Stokes equation. This hy-
drodynamic stress tensor, together with the boundary conditions at the circumference of
the hole σ̃rr (r = R) = T

R·d and at infinity σ̃rr (r →∞) · d = σ, determine p · d = σ and
R2

2η

(
σ − T

R

)
= G (t), so that vr (r = R) = G (t) /R.

However, the velocity at the circumference of the hole vr (r = R) is equal to the rate of
change of the hole radius vr (r = R) = Ṙ, thus:

Ṙ =
R

2η

(
σ − T

R

)
(10)

which describes the hole growth/healing due to a surface tension σ and a line tension T .

Outflow dynamics

On the scale of the entire shell, the curvature of the shell must be taken into account since it
induces a pressure gradient between its two sides, as described by Young-Laplace law. In the
presence of a hole, this pressure gradient drives outflow; the outflow decreases the volume
and combined area A of the shell. Reduction of the shell area increases the packing density
of molecules, which was (before nucleation of the hole) lower than its equilibrium value (due
to the constriction), so that the lateral stresses and strains are relieved.

To account for the evolution equation of the combined area A due to outflow, which is
determined by the hole radius R and pressure gradient ∆p, we again use low Reynolds number
hydrodynamics, where now ~v refers to the velocity of the solvent phase of the inner solution
and the pressure p now refers to the pressure field inside the high-concentration, polymer
solution. This time, the viscosity is not that of the shell but is the kinematic viscosity ηs of
the solvent phase of the polymer solution. In the model of case I, a channel forms due to
solvent phase flow in the dense, polymer phase. The channel is modeled by a tube of radius
R and a contour length of d∗, which is greater than the actual shell thickness d and the hole
radius R. In the limit of low Reynolds number, the flow is laminar, meaning that the fluid
flow in parallel layers that do not mix. We again work in a cylindrical coordinate system, in
which the axis of symmetry of the hole is the ẑ axis and z = 0 characterizes the midplane of
the effective cylinder. The equations governing the flow are the Navier-Stokes equation:

∇p = ηs∇2~v (11)

and the incompressibility condition, which for laminar, cylindrically symmetric flow (vθ =

4



vr = 0 and vz, p are θ independent) becomes:

∇ · ~v =
∂vz
∂z

= 0 (12)

∂p

∂r
= 0 (13)

∂p

∂z
= ηs

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+
∂2vz
∂z2

)
(14)

The boundary conditions we use for the velocity field are no-slip boundary conditions on
the inner walls of the channel, which are vz (r = R, z) = vr (r = R, z) = 0. For the pressure,
in the absence of end effects (applicable when d∗ � R) the boundary conditions are set by
the pressure gradient across the membrane (the pressure outside the shell is our reference
and is set to zero): p (r, z = 0) = −∆p and p (r, z = d∗) = 0. The solution of these equations
with the specified boundary conditions is:

p (z) = ∆p
(
z

d∗
− 1

)
(15)

vz =
∆p

4ηsd∗

(
R2 − r2

)
(16)

The total outflow Q is calculated by integration of the velocity vz over the area of the
hole:

Q =

R̂

0

2πrdr
∆p

4ηsd∗

(
R2 − r2

)
=
π∆pR4

8ηsd∗
(17)

The pressure difference ∆p is related to the surface tension by force balance across the
shell (Young-Laplace law). Force balance dictates ∇· σ̃ = 0 (σ̃ is again the three-dimensional
stress tensor); in a spherical coordinate system, in which the origin is the center of the
ruptured hemisphere the force balance equation becomes

∂σ̃rr
∂r

+ 2
σ̃rr
r
− 1

r
(σ̃θθ + σ̃φφ) = 0 (18)

where σ̃θθ = σ̃φφ = σ/d (the surface tension divided by the shell thickness) which is
constant throughout the thin shell. The stress boundary conditions are σ̃rr (r = Rc) = −∆p

and σ̃rr (r = Rc + d) = 0, where Rc is the radius of the hemisphere (and the constriction
cross section) and d is the actual thickness of the shell. Multiplying the force balance Eq. 18

5



by r2 and integrating between Rc and Rc + d, gives the relation:

∆p ≈ 2σ

Rc

(19)

which becomes accurate for a thin shell where d � Rc. Substituting this relation in Eq. 17
results in:

Q =
πσR4

4ηsRcd∗
(20)

The outflow decreases the volume Vs of the deformed shell and causes the length L of the
cylindrical part of the shell (see Fig. 1B) to decrease. This can be related to the change in
the combined area A in the following way:

−Q =
dVs
dt

=
d

dt

(
4πR3

c

3
+ πR2

cL

)
= πR2

c

dL

dt
(21)

dA

dt
=

d

dt

(
4πR2

c + 2πRcL
)

= 2πRc
dL

dt
= −2Q

Rc

(22)

Substituting Eq. 20 in the relation above, results in an equation that describes the time
evolution of the combined area A:

dA

dt
= − π2σR4

2ηsAcd∗
(23)

where Ac = πR2
c is the cross sectional area of the constriction. Together with Eq. 10 for the

dynamics of the hole size, Eq. 23 forms a complete set of coupled equations that describe
the dynamics of the rupture in the fluid-like regime. Using linear elasticity relation σ = Eε

the equation becomes:

dR

dt
=

E

2η
R
(
ε− T

ER

)
(24)

dA

dt
= − π2R4E

2ηsAcd∗
ε (25)

Dimensionless form of the equations

This set of equation is non-linear and cannot in general be solved analytically. However, solu-
tions can be obtained in approximate manner using perturbation expansions of the variables,
which first requires identification of the small parameters. This can be done by transforma-
tion of the equations to dimensionless form. We thus rescale the hole radius R by its initial
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radius Ri, the shell and constriction areas A and Ac by Au and the time t by the typical
viscoelastic timescale τ = η/E. This results in the following set of equations:

dR̃

dt̃
=

1

2
R̃
(
ε− β 1

R̃

)
(26)

dÃ

dt̃
= −ρ

2R̃4

2δÃc
ε (27)

where the parameters β, ρ and δ are T
ERi

,
πR2

i

Au
and ηsd∗

η
respectively. henceforth, for brevity the

tilde signs will be omitted from the rescaled variables. The theory is analyzed in the linear
regime, so that the difference between the undeformed nuclear radius Rn and the constriction
cross sectional radius Rc is small, i.e Rn −Rc � Rn. The radii Rn and Rc are related to the
undeformed shell area and the constriction cross sectional area by πR2

c = Ac and 4πR2
n = Au.

Therefore Ãc = Ac
Au

= 1
4

(
1− Rn−Rc

Rn

)2
= 1

4
+O

(
Rn−Rc
Rn

)
. However, in the linear elastic regime,

the strain ε is also a small parameter; therefore the deviation of Ãc from 1
4
is higher order in

small terms, so that to leading order Ãc can be replaced by 1
4
. To linear order in ε the set of

equations becomes:

dR

dt
=

1

2
R

(
ε− β

R

)
(28)

dA

dt
≈ −2ρ2R4

δ
ε (29)

We further rewrite this using the strain ε, which is a variable which is more physical than
the combined area and thus replace A by ε. The lateral strain ε is the ratio of the excess
area to the undeformed area Au and can therefore be written, in non-rescaled variables as
ε = A−πR2−Au

Au
or in rescaled variables ε = A− ρR2− 1. Therefore, the time derivative of the

lateral strain is

dε

dt
=

dA

dt
− 2ρR

dR

dt
= −

(
1 +

2ρR2

δ

)
ρR2ε+ ρRβ (30)

For the biologically relevant values of the initial hole radius of Ri = 25nm, which is of the
order of the NPC channel size, and the undeformed shell radius of the order of the radius of
the nucleus Rn ≈ 3µm , ρ ≈ 1.73 · 10−5. The value of the parameter δ = ηsd∗

η
depends on

the value of d∗. The equivalent three-dimensional, kinematic viscosity of the lamina (which
equals η/d where d is the lamina thickness) is of the order of one kPa · s [1] (we assume
that the contribution of the bilayers to the mechanical properties of the NE is small compare
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to the lamina); therefore the biologically relevant value of the ratio ηsd/η is of the order
10−6 if ηs is taken to be similar to the kinematic viscosity of water (10−3 Pa · s). Choosing
d∗/d ≈ 10 − 100 to account for the tortuosity of the channel, we get δ ≈ 10−5 − 10−4 and
ρ/δ ≈ 1 − 0.1. Multiplying this by

(
R
Ri

)2
, which can be much greater than unity when the

rupture grows to its maximal size, we find 2ρR2

δ
> 1. Thus, the evolution of the strain can be

approximated by
dε

dt
= −2ρ2R4

δ
ε+ ρRβ (31)

it should be stressed that this approximated form is more accurate when R is close to its
maximal size, for R ≈ 1 Eq. 30 should be used.

For completeness, we estimate in this subsection the value of the parameter β for the
model of the lamina as a viscoelastic shell. To estimate β, we start by considering the origin
of the line tension. In a coarse-grained view, the bulk of the shell is more hydrophobic than
its surfaces (this is the driving force for the creation of the shell in aqueous solution). Thus,
hole nucleation creates interface between the hydrophilic solvent and the hydrophobic bulk
of the shell; this interface is thermodynamically unfavorable and drives bending of the shell
around the circumference of the hole in order to eliminate this interface (see Fig 3. in [2]).
This bending energy is results in a line tension, which is the energy of creating unit length
of that interface. The bending energy per unit area of the shell is fB = 1

2
K (κ1 + κ2)

2, but
for bending around the hole one curvature is much larger than the other κ1 = 2

d
� 1

R
= κ2

(d is the shell thickness) so that fB = 1
2
K
(
2
d

)2
. The bending modulus K of a plate can

be calculated using the equation K = Ẽh3

12(1−ν2) where h is the plate thickness, Ẽ and ν are
the three-dimensional Young and Poisson moduli respectively [3]. Since the shell folds over
itself, it can be viewed as a folded plate, thus h = d/2, and ν = 1/2 due to three-dimensional
membrane incompressibility. Therefore

T = d · fb =
dẼ

(
d
2

)3
24
(

1−
(
1
2

)2)
(

2

d

)2

=
Ẽd2

36
(32)

It is important to note that the modulus Ẽ that appears above is the three-dimensional
Young’s modulus, not the two-dimensional Young’s modulus E. However, we expect the two
to differ by a factor of the order of d, therefore we approximate T = Ed/36 in this subsection.

β equals (by definition) to T
ERi

= d
36Ri
≈ 1

72
(d ≈ 14nm [4]).
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Perturbation analysis and estimate of maximal hole size

Rm

The dynamics of the hole radius R and the combined shell area A are determined by the
equations 28 and 29:

dR

dt
=

1

2
R

(
A− ρR2 − 1− β

R

)
(33)

dA

dt
= −2αR4

(
A− ρR2 − 1

)
(34)

where α = ρ2/δ. The dynamics of the hole growth at short times is determined by the value
of α and there are two asymptotic limits of interest:

1. Outflow-driven dynamics: In this limit, the majority of the lateral strains due to the
constriction are relieved by the outflow of the internal fluid. This limit is characterized
by large initial holes (i.e., ρ is relatively large) and small effective dissipation length
(i.e., δ is relatively small), which corresponds to values of α which are large α ≡ ρ2

δ
� 1.

We now follow the perturbation analysis of this limit, beginning with an expansion of
R (t) and A (t) as power series in the small parameter 1/α:

R = R0 +
1

α
R1 +O

(
1

α2

)
(35)

A = A0 +
1

α
A1 +O

(
1

α2

)
(36)

Rewriting the equations 33 and 34 so that the small parameter 1/α appears instead of
α gives:

dR

dt̃
=

1

2α
R

(
A− 1− ρR2 − β

R

)
(37)

dA

dt̃
= −2R4

(
A− 1− ρR2

)
(38)

where t̃ = αt. Substituting the expansions of R and A and matching the zeroth order
terms give:

dR0

dt̃
= 0⇒ R0 = 1 (39)

dA0

dt̃
= −2

(
A0 − 1− ρ

)
(40)

9



so that (the initial condition for A0 is A0
(
t̃ = 0

)
= 1 + ε0)

A0 = 1 + ρ+ (ε0 − ρ) e−2t̃ (41)

For t̃� 1/2, the exponent in Eq. 41 can be linearized; this gives:

A0 = 1 + ε0 − 2 (ε0 − ρ) t̃ (42)

In the other limit, the exponent in Eq. 41 is very small, therefore A0 ≈ 1 + ρ. This
means that the lateral strain and stresses are now fully relieved, which corresponds to
the regime of hole closing. The dynamics of hole closing is found by calculating the
first order correction for R, again by matching orders:

dR1

dt̃
=

1

2α

(
A0 − 1− ρ

)
− 1

2α
β (43)

for short times t̃� 1/2 (hole growth) :

dR1

dt̃
=

1

2α

(
A0 − 1− ρ

)
− 1

2α
β (44)

R1 =
(ε0 − ρ− β)

2α
t̃− 1

2
(ε0 − ρ)

t̃2

α
(45)

and for long times t̃� 1/2 (hole shrinking):

dR1

dt̃
≈ − 1

2α
β (46)

R1 = C − 1

2
βt (47)

where C is an integration constant that can be calculated from matching the two
regimes.

2. Hole growth-driven dynamics: In this limit, the majority of the lateral strains are
relieved by the growth of the hole. This limit is characterized by small initial holes
(i.e., ρ is relatively small) and large effective dissipation length (i.e., δ is relatively
large), corresponding to values of α ≡ ρ2

δ
� 1. Expanding R and A in in the small

parameter α:

R = R0 + αR1 +O
(
α2
)

(48)
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A = A0 + αA1 +O
(
α2
)

(49)

Using this equation, equations 33 and 34 give, to zeroth order:

dA0

dt
= 0⇒ A0 = 1 + ε0 (50)

so that
dR0

dt
=

1

2

(
−
(
R0
)3
ρ+ ε0R

0 − β
)

(51)

For short time when R0 is of order unity, we find in the limit that ρ� ε0 − β

R0 =
β

ε0
+

(
1− β

ε0

)
e

1
2
ε0t (52)

The hole radius of course does not grow indefinitely but is bounded due to the con-
tribution of the (R0)

3 term in Eq. 51. The maximal hole radius can be calculated by
searching for the steady state dR0

dt
= 0, which results in a polynomial equation of the

third degree (R0)
3
ρ − ε0R0 + β = 0; the maximal value of R0 is the largest real root

of the three, which is equal to
√

ε0
ρ
− β

2ε0
to first order in β. In the absence of outflow

(zeroth order), the maximal hole radius is stable; this is the maximal hole radius in
case II (for nucleoplasm as a homogenous viscous fluid) in which outflow is negligible
during the exponential growth regime. Addition of slow outflow relieves some of the
lateral strains and causes the hole to shrink. Since the lateral strain ε = A− 1− ρR2 is
close to zero when R is near its maximal value, Eq. 28 can be written approximately
as dR

dt
= −β

2
right after the hole reaches its maximal value. Therefore, the dependence

of the hole size on time in this regime is approximately a linear function of time with
a slope of −β

2
. However, in the case that the effective dissipation length is too high,

outflow will not mitigate the growth of the lateral strain (ρβR is not small compared
to − (1 + 2ρR2/δ) ρR2ε in 30). This in turn will slow the rate of hole radius decrease,
which will return to the value of −β

2
for a small enough hole, since 1

2
Rε will again be

negligible compared with −β
2
in Eq. 28. In this limit, we predict a step-like bump in

the dependence of the hole radius on time, which slightly slows the average shrinking
rate of the hole. Numerical solutions of the equations over a wide range of effective
dissipation lengths verify our prediction of the late-time behavior of the hole radius.
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Estimate of the maximal hole radius

Up to this point, the early and late time dynamics of the hole radius have been calculated
analytically for different asymptotic regimes. However, in order to fully characterize the
dynamics, the transition between the early and late time regimes, or equivalently the maximal
hole radius, must be determined. The time at which the transition (or maximal hole radius)
occurs is derived from an identity as follows: Multiplying Eq. 29 by −1

4
δ
ρ2

gives

−1

4

δ

ρ2
dA

dt
=

1

2
R4
(
A− ρR2 − 1

)
(53)

Next, multiplying Eq. 28 by R3

1

4

d (R4)

dt
=

1

2
R4
(
A− ρR2 − 1

)
− β

2
R3 (54)

and substituting Eq. 53 into Eq. 54 gives

1

4

d (R4)

dt
= −1

4

δ

ρ2
dA

dt
− β

2
R3 (55)

Integrating this identity above between the limits of t = 0 and t = tf (the time in which
the hole closes), using the initial and final conditionsR (t = 0) = 1, R (t = tf ) = 0, A (t = 0) =

1 + ε0 and A (t = tf ) = 1 gives the identity:

tf̂

0

R3dt =
1

2β
+

1

2β

ε0δ

ρ2
(56)

It is important to remark that the final condition A (t = tf ) = 1 is approximate since in
principle, residual strains after healing are possible. However, in the range of parameters
which are biological relevant the residual strain is negligible.

The identity in Eq. 56 serves as a constraint that can be used to approximate the
transition time between the growth and hole closing regimes. We approximate the hole radius
as a function of time to be a piecewise function, where in each regime it is characterized by
the asymptotic early and late time dynamics as respectively calculated in equations 52 and
47 (the second applicable to both hole-growth and outflow-driven dynamics); the transition
time, or the time at which the hole reaches its maximal radius, Rm can be found using Eq.
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56. Denoting the transition time by tm we split the integral into two regimes:

tf̂

0

R3dt =

tm̂

0

R3dt+

tf̂

tm

R3dt (57)

The late-time (t > tm) dependence of the hole radius in time is approximately R (t) =

Rm− β
2

(t− tm). Substituting this dependence into the second integral in the right hand side
of 57, using R (tf ) = Rm − β

2
(tf − tm) = 0⇒ tf − tm = 2Rm

β
gives:

tf̂

tm

R3dt =

tf̂

tm

(
Rm −

β

2
(t− tm)

)3

dt =

2Rm
β̂

0

(
Rm −

β

2
t′
)3

dt′ =
1

2β
R4
m (58)

Therefore, from equations 56, 57 and 58 it follows that

2β

tm̂

0

R3dt = 1 +
ε0δ

ρ2
−R4

m (59)

For the case of hole-growth driven dynamics, which are characterized by δ
ρ2
� 1, the

identity above is approximately

R4
m + 2β

tm̂

0

R3dt ≈ ε0δ

ρ2
(60)

Solving for t from Eq. 52 for the early-time (t < tm) dynamics calculated in this limit,

dt =
2dR

ε0R− β
(61)

the second term on the LHS of Eq. 60 becomes

2β

tm̂

0

R3dt = 2β

Rm̂

1

2R3dR

ε0R− β

=
4β

3ε0

(R3
m − 1

)
+

3

2

β

ε0

(
R2
m − 1

)
+ 3

β2

ε20
(Rm − 1) + 3

(
β3

ε30

)
ln

Rm − β
ε0

1− β
ε0

(62)

As mentioned before, we take β = 1
72
, therefore β

ε0
≈ 1

2
. Substituting this ratio and the
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order of magnitude Rm ≈ 10 shows that the value of the integral 2β
tḿ

0

R3dt is smaller than

R4
m. We therefore neglect the integral so that Eq. 60 is approximately written as

Rm =

(
ε0δ

ρ2

) 1
4

(63)

Eq. 63 can be written in dimensional units as πR2
m

Au
=
(
ε0

ηsd∗

η

) 1
2 , which predicts the ratio of

the maximal hole area and the undeformed area (for fixed constriction cross-sectional area).
This ratio increases as the square root of the initial strain ε0, internal polymer solution
kinematic viscosity ηs and the dissipation length d∗. ε0 is the initial strain that drives hole
growth, while the strain relief that limits hole growth decreases with increasing ηs or d∗,
which limits the outflow and promotes hole growth. The maximal radius also decreases with
the shell surface viscosity η, which slows the hole growth, thus allowing more strain relief by
outflow.

This is an approximation that is accurate for small β and large ε0. In conclusion, for hole
growth-driven dynamics (relevant to case I in the main text) the hole radius as a function of
time is approximated as:

R (t) ≈


β
ε0

+
(
1− β

ε0

)
e

1
2
ε0t t < tm(

ε0δ
ρ2

) 1
4 − β

2
(t− tm) t ≥ tm

(64)

where
(
ε0δ
ρ2

) 1
4 = β

ε0
+
(
1− β

ε0

)
e

1
2
ε0tm .

polymer extrusion as a model for chromatin herniation

To estimate the amount of herniated chromatin, we model the nucleoplasm as a fluid-filled
network that comprises a high concentration polymer melt (chromatin) immersed in a viscous
solution of water and small molecules. Herniation requires bending of the fibers to radii of
curvature which are smaller than the size of the hole. For flow rates smaller than kBT

ηs
≈ 5µm

3

s

(ηs being the kinematic viscosity of the solvent phase which is taken to be the kinematic
viscosity of water) and in the absence of active process, the bending of the polymers is driven
by thermal fluctuations [5, 6]. An upper bound for the flow rate can be calculated by taking
Eq. 20 and replacing all the variables by their maximal values (Rm is taken to be the larger
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value predicted in case II). [All parameters in following equation have their true dimensions.]

Q <
πEε0R

4
m

4ηsRcd∗
≈ (Ad − Au)3

4πτδRcAu
∼ 3

µm3

s
(65)

The actual maximal flow rate is expected to be much smaller than this upper bound since
ε is close to zero when R ∼ Rm, so that the condition Q < kBT

ηs
≈ 5µm

3

s
is surely satisfied for

system of biological relevance. Thus, the herniation is not convective, but rather is driven by
thermal fluctuations. In order to herniate, a polymer chain must bend to a radius of curvature
that is smaller or equal to the radius of the hole R, for a length of at least πR such that a
hemicircle is formed; otherwise it cannot slide outside of the hole. Due to the short screening
length (Debye length) of the electrostatic interactions in the nucleus which we model, which
is of the order of few nanometers [7], the inter- and intra-fiber electrostatic interactions can
be neglected. Furthermore, for reasons that are not entirely clear, chromatin fibers in the
nucleus may not be entangled [8]. Therefore, the prevalence of steric interaction when the
polymer chains locally reorganizes in the vicinity of the hole and these interactions can be
neglected as well. With these approximations, the minimal energy Eh of the configuration
of the polymer chain that allows herniation arises only from bending, and can be written
in terms of the persistence length lp of the polymer (whose exact value for chromatin is
unknown since the in-vivo microscopic structure of chromatin fiber is controversial [9]) as
Eh = πkBT lp/(2x) where x is the radius of curvature and T is the temperature.

The rate of polymer extrusion is therefore the sum over possible radii of curvature from
0 to the hole radius R of Boltzmann probabilities of the form ν0 exp

(
−π

2
lp/x

)
, where ν0 is

a parameter with dimension of inverse time that represents the molecular kinetics and x is
the summation variable. Since the exponent is negative and depends on 1/x, the sum is
dominated by the contribution of the term with the largest x. We thus approximate the
extrusion rate by ν0 exp

(
−π

2
lp/R (t)

)
, where R (t) is the hole radius. The total amount of

extruded polymer is obtained by integration of the above expression over the entire hole
growth/healing cycle of the hole. Cases I and II of the dynamics differ in their prediction
for the velocity of hole closing and the maximal hole radius Rm. We therefore calculate the
amount of extruded polymer for a general case characterized by an exponential hole growth
up to radius Rm followed by a decrease of the hole radius with a constant velocity α. [All
variables here, including t have their true dimensions.]
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Lc = ν0

tf̂

0

e−
πlp

2R(t)dt = ν0τ


tm̂

0

e−
πlp

2R(t)dt+

tf̂

tm

e−
πlp

2R(t)dt

 (66)

Taking β/ε0 < 1, exp
(
−π

2
lp/R (t)

)
� 1 for small R (t) and using Eq. 64, we find

Lc ≈
ν0τ

α

Rm̂

1

e−
πlp
2R dR ≈ ντ

α

(
Rme

− πlp
2Rm +

πlp
2

Ei
(
− πlp

2Rm

))
(67)

where Ei is the exponential integral function that defined as Ei (x) = P
x́

−∞

et

t
dt (where P is

the principal part).
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