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S.I. HYBRID BROWNIAN DYNAMICS

A. Initial Condition

The initial distribution of microtubules (MTs) is straightforward, because the inter-MT

potential allows for overlap. First, we pick a random point within the circle defined by the

confinement wall, which will potentially be the center of mass of a new MT. Next, we pick

a random orientation, and check if the MT intersects with the confining wall. If it does not,

we place the MT and proceed to placing the next MT until the necessary number of MTs

are placed within the confinement. High overlap penalties tend to remove overlaps within a

few thousand molecular dynamics steps, even at high densities.

B. Microtubules and Motors

There are two stochastic processes in our simulations. The first is the Gaussian distributed

random displacements, δri(t), and rotations, δpi(t) of MTs. This process is discussed in the

main text. The second is the selection of the attachment position of the motor arms.

At each time step, the distances between beads on neighbouring MTs are checked. If the

number of motors attached in the system is less than the predefined number of motors in the

entire system, Nm, bead pairs that have inter-particle distance smaller than the threshold

distance, dt, are picked randomly, and motors are attached between them. The motors act

as harmonic bonds with stiffness km, and energy, Um = kmd
2/2.

A motor arm that is attached to a MT walks with velocity vm until the distance between

the two motor arms reaches the stall length, ds. For extensions beyond ds, the motor arms

stop walking. If the motor extension is larger than dt, both arms of the motor detach

simultaneously (Fig. S1).

Motion of the motor arms also depends on whether the motors are dimeric or tetrameric.

Dimeric motors have one randomly picked anchored motor arm, which remains anchored to

one MT until the motor extension is larger than dt. The other motor arm walks on the MT

with the velocity shown in Fig. S1, as do both arms of a tetrameric motor. We have no

stochastic motor detachment rate, since kinesin molecules are known to be very processive

[1].
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FIG. S1. Motors bind to neighbouring MTs with a constant probability if their length, d, is less

than threshold distance, dt, until the predefined number of attached motors in the system, Nm is

reached. Motors that are longer than dt detach. If the motor length is less than the stall length,

i.e. for d < ds, active motor arms move with constant velocity, vm.

C. Iteration

The overall Brownian dynamics scheme is:

1. Compute forces and torques due to MT attraction and repulsion.

2. If the number of attached motors is less than Nm, look for beads on two different MTs

which are closer than dt, and attach motor arms to these MT pairs. If motors are

active, i.e., d < ds, displace each arm by vmδt along the polar direction of the MT to

which it is attached.

3. Calculate forces and torques on the MTs due to motors and confinement. Add these

values to those obtained from 1.

4. Move MTs based on their respective forces and torques.

5. Update motor arm positions, such that the positions of the arms are conserved after

step 4 on the MTs from before step 4. Remove the motors that are stretched beyond

the motor threshold, i.e., d > dt, and those motors that contain arms that have walked

off the MT.

All the data collected from systems has been measured after the simulations have run for

at least 1.5×103τ , where τ is the onset of the activity time scale discussed in the main text.
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S.II. POTENTIALS

MT dynamics occurs either because of forces from the motors, the inter-MT potential or

the interaction between MTs and the wall.

A. Motors

Consider two MTs, i and j, each of length, L, with orientations pi and pj, which cor-

respond with the directions of motor arm motion, and center-of-masses ri and rj. Note

that orientation vectors pi and pj are necessarily unit vectors. They are parametrised by

contour variables si and sj that equal 0 and 1 at the negative and positive ends of the MTs

respectively. A motor that crosslinks these MTs will have arms at positions mi and mj on

MTs i and j respectively, with motor lengths |mij| = |mj −mi|. We can write a motor

arm position, mi using,

mi = ri + Lsipi. (S1)

Since the motor is treated as a harmonic spring, the motor energy can be written as,

Um =


1

2
km|mij|2, |mij| ≤ dt

0, |mij| > dt

, (S2)

B. Inter-MT potential

MTs are simulated as rigid rods of length L and radius rmin. They are composed of

linearly arranged particles (beads). In order for MTs to ”feel” each other as contiguous

entities, and not a collection of discrete beads, the beads overlap. We placed a bead every

0.5rmin, such that L = 0.5rmin (NB − 1). Each bead which makes up an MT, interacts with

beads from neighbouring MTs with a capped interaction potential, which has an attractive

component. The general form of the potential used in our simulation is

U(r) = AR

(
sm

rm + αm

)n
− AA

(
sm

rm + αm

)n/2
(S3)
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Here, α, AA and AR are dependent on overlap penalty, ER, attraction energy, EA, and the

position of the attractive well, rmin,

α = rmin

((
1 +

√
ER/EA

)2/n

− 1

)−1/m

, (S4)

AA = 2αmn/2s−mn/2EA

(
1 +

√
ER/EA

)
, (S5)

and

AR =
A2

A

4EA

. (S6)

The variable s depends on the length of MTs, L, and the number of particles that makes

up this MT, NB:

s =
L

(NB − 1)
. (S7)

For all simulations, m = 2, n = 8 and rmin = 1. The exponents of the potential are

chosen such that the superposition of multiple, overlapping beads gives a smooth, attrac-

tive MT-MT interaction, with a repulsive core. To characterise the potential, instead of

looking at interaction energies between particles, we look at interaction energies between

MTs in different orientations. In the following examples, one of the MTs (dark blue MT in

Figs. S2, S3, S4) is fixed in position, and the position of the other MT is varied. We plot

the energy that arises as a result of the superposition of the potentials between beads from

the neighbouring MT.

Fig. S2 shows the energy of the two MTs as function of the separation distance, ∆x for

ER = 6kBT and ER = 20kBT . We notice that the position of the minimum attraction energy

shifts closer to the core of the MT than rmin, because of the superposition of the energy wells

of multiple beads. We will call this distance xmin and use it only for the MT sliding example

discussed below. We use ER = 20kBT for all calculations in the main text. At this level of

repulsion, the overlap penalty is six fold higher than the energy of attraction, which makes

MT crossings rare.

In order to ensure that AR does not diverge, we take the limit EA → 0 for curves marked

EA = 0.0. Because of the manner in which our potential is constructed, the shape of the
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FIG. S2. Inter-MT energy as a function of separation distance, ∆x, between an aligned MT

pair, for different EA values. Two regimes of repulsion are illustrated: (A) ER = 6kBT and (B)

ER = 20kBT . Negative energies indicate attraction, and positive energies indicate repulsion. Inset

in (A) shows the orientation with which the calculation is conducted.

potential for EA = 0 differs substantially from larger values of EA (Fig. S2). We, thus, do

not use this potential to simulate systems which are not attractive.

Fig. S3 shows the energy of the MTs as a function of their parallel displacement, ∆y. In

this instance, we slide two aligned MTs apart, along their longitudinal axis. We keep the

orthogonal displacement to be the position where the inter-MT energy is the smallest, xmin =

0.8rmin. The energy increases monotonically as the filaments slide away from each other,

since the attractive interactions decrease, as the number of interacting beads decreases.

When the centers of masses are separated further than the MT length, the number of

interacting beads decreases to 1, and then the energy vanishes as the MTs are moved further

away. The values chosen for the attraction energies correspond with the range of cohesion

energies for the in vitro MT sliding experiment calculated for different PEG concentration

[2].

In Fig. S3, two MTs are rotated with respect to each other, with the center beads of both

MTs overlapping. For ER = 6kBT , and for EA < 0.6kBT the potential is repulsive for all

angles. For ER = 6kBT , EA > 0.6kBT , the potential has minima in two orientations. One

must keep this in mind before using this potential for smaller overlap penalties, which can
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FIG. S3. Inter-MT energy as a function of parallel displacement between MTs’ centers of masses,

∆y, for different EA values. The orthogonal displacement is set to be xmin, the position of the

energy well, seen in Figure S2. We illustrate two regimes of repulsion: (A) ER = 6kBT and (B)

ER = 20kBT . In both cases xmin = 0.8rmin. Inset in (A) shows the orientation with which the

calculation is conducted.

lead to clustering of filaments due to such stable orientations. We avoid this issue here by

using ER = 20kBT . This makes the potential repulsive for all values of EA.

C. MT-wall interaction

Self-propelled, active particles are known to accumulate at confinement walls [3]. In order

to stabilise a layer of MTs close to the wall, in our work, we adhere MTs to the wall using

an attractive wall potential. Beads which make up the MTs interact with the wall with a

6-12 Lennard Jones potential,

Uw(r) =


4ε

[(rmin

r

)12

−
(rmin

r

)6
]

r 6 3rmin

0 r > 3rmin

, (S8)

where r is the distance between a bead and the wall, and rmin is the position of the attrac-

tive energy well. We choose the same range, 3rmin, for MT-MT interactions and MT-wall

interactions. Superposition of these potentials between all the beads that make up an MT
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FIG. S4. Inter-filament energy as a function of increasing the angle of crossing between two

overlapping filaments, θ, for different EA values. We illustrate two regimes of repulsion: (A)

ER = 6kBT and (B) ER = 20kBT . Inset in (A) shows the orientation with which the calculation

is conducted.

FIG. S5. Interaction energy of MT with the wall with a 6-12 Lennard Jones potential. εw = 8kBT ,

σw = rmin. ∆xw are given in units of rmin.

and the wall gives the curve shown in Fig. S5.

A comparison of the energies in Fig. S5, with those of Figs. S2, S3 and S4, shows that the

attractive MT-wall interaction energy is sufficient to stabilise a layer of partially overlapping

MTs close to the wall [4], because the level of attraction is larger (−90 kBT ) than the other

energies (attractive or repulsive) involved in the system.
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S.III. PARAMETERS

The primary parameters varied in the simulations are attraction energy, EA, and number

of motors, Nm. Despite having taken a step toward capturing cellular scale phenomena by

marrying three distinct components of very different length scales, we have tried to capture

biologically accurate lengths in the simulation (Table S1). However, in our coarse-grained

model we chose constant motor speeds, 3.6 times faster than motor speeds from single

molecule experiments. In so doing we remove the force dependency on motor speed and

shift the focus from the loads on individual motors to conduct MT sliding. Instead, we use

motors as coarse-grained entities that propel MTs based on the MT pair’s orientation. In

order to traverse another order of magnitude in length scale and simulate MTs in cell-sized

confinements, such coarse-graining choices need to be explored.

A complete list of parameters used in our simulations is given in Table S1. We match

the parameters to biological values when possible. Note that the viscosity, η, is linked to

the friction coefficient, γ0, used in the dynamical equations [5].

We choose the MT diameter (rmin) and activity time scale (τ) as the characterstic length

and time units, for defining dimensionless parameters, respectively. The thermal energy,

kBT , is the characterstic energy scale. The dimensionless form of the parameters are collected

in Table S2.

The results of a systematic study of the effect of the various parameters on the global

structure and dynamics of MTs for both tetrameric and dimeric motor systems are sum-

marised below. This concerns, in particular, the effect of varying area fraction, confinement

size, motor concentration, motor spring constant and motor velocity.

Each MT is composed of 11 overlapping beads. For all the cases shown in the main text,

there are 927 MTs within the confinement. If we define the MT diameter to be rmin, then the

MTs have an aspect ratio of 5. In order to determine the area fraction of penetrable MTs

within the confinement, we consider the effective bead radius to be reff = 0.8rmin (Fig. S21).

For 927 MTs, the effective packing fraction of MTs is given by NfreffL/πR
2
W = 0.74.
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TABLE S1. Simulation Parameters

Parameter Symbol Value Notes/Biological Values

Thermal energy kBT 4.11 pN nm Room Temperature

MT length L 0.125 µm 2.5± 1.4 µm [6]

MT diameter rmin 25 nm 25 nm [7]

Confinement radius RW 1 µm Oocyte ∼ 200µm [4]

Repulsive peak ER 20kBT Chosen

MT Attractive well EA 0.2− 1.0kBT in vitro experiments [2]

Confining wall

attraction
εw 8.0kBT Chosen

Confining wall range σw 25 nm Chosen

Fluid viscosity η 1 Pa s Cytoplasmic viscosity [8]

Maximum motor speed vm 6.5 µm/s Single motor speed ∼ 1.8 µm/s [9]

Maximum motor

extension
dt 25 nm 80 nm [10]

Motor stall force fs 7.83 pN 5 pN [11]

Motor spring constant km 0.33 pN/nm Single kinesin molecule [12]

A. Packing fraction

To understand the effect of packing fraction on large scale structures, for both cases of

motors, we performed simulations for 649, 834, 927, 1020, and 1205 MTs. The structures

for these packing fractions are shown in Fig. S6. With increasing area fraction of MTs

polarity sorting becomes more prominent, and polar aligned, structured domains become

more pronounced for both types of motors. The diffusion of MTs are hindered for larger

densities for lag times less than τ , for both motor models. This is clear when we compare

the dynamics of motor-driven systems at higher densities with the passive system at an area

fraction of 0.74. However, we observed similar levels of activity for dimeric motors, across

all densities, for lag times larger than τ . For tetrameric motors, denser systems leads to
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TABLE S2. Dimensionless Groups

Parameter Symbol Value

Area fraction NfreffL
πR2

W
0.74

MT aspect ratio L
rmin

5

Confinement diameter RW
rmin

80

Motor to MT ratio Nm
Nf

1

Maximum motor speed vmτ
rmin

50

Maximum motor

extension

dt
rmin

1

Motor stall force fsrmin
kBT

47.7

Motor spring constant kmdt
fs

1

lower levels of activity across all lag times (Fig. S7).

B. Confinement diameter

Simulations of five different confinement diameters show an increase in the number of

polar aligned domains with increasing confinement size for both the dimeric and tetrameric

motor systems (Fig. S8). The active displacements increase with increasing confinement

diameter for both motor systems, at large lag times, (Lag time/τ) ≥ 102 (Fig. S9). As

discussed in the main text, the MSD of MTs plateaus at the confinement radius. We observe

larger active displacements for larger confinements, because MTs are not yet hindered by

the confinement at this time scale.

C. Motor concentration

Motor concentration has the strongest effect on the structures observed, and is one of

the primary parameters discussed in the main text. It is also a parameter that is accessible

in experiments. At low motor concentrations, Nm/Nf = 0.5, the polarity sorting results

in large polar-aligned domains for both dimeric and tetrameric motors, and there are not

enough motors to induce large-scale motion. For Nm/Nf = 3, there is a higher proportion
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of MTs which are aligned with the confining wall for the dimeric motor system. Higher

motor concentration further emphasises the bundling of MTs in the tetrameric motor system

(Fig. S11).

Activity increases with increasing motor concentrations, because there are more active

elements to slide MTs. However, this is more prominent in the dimeric motors than in the

tetrameric motor system (Fig. S11). For dimeric motors, we show the onset of a plateau

in the MSD upon reaching R2
W , where a significant proportion of MTs’ displacements are

limited by the confining wall (Fig. S11C). On this time scale, we do not observe this for the

tetrameric motors, because their dynamics is slower (Fig. S11D).

D. Motor spring constant

Increasing motor spring strength does not induce any appreciable change in overall struc-

ture of the system for both motor systems (Fig. S12). However, increasing the motor spring

constant increases active displacements of MTs for both dimeric and tetrameric motor sys-

tems. This is the most effective method to diminish the difference in MT activity between

the dimeric and tetrameric motors (Fig. S13).

E. Motor velocity

Increasing motor velocity does not change the overall structure of the system for both

motor systems (Fig. S14). However, it decreases the crossover time between diffusion and

activity dramatically for the dimeric motor system (Fig. S15). The differences between the

tetrameric and dimeric motors are greatly enhanced for higher motor velocities, since the

crossover time appears to be conserved for the tetrameric motors, possibly due to the lack

of antialigned MTs. In the main text, we have used the motor velocity that is biologically

motivated.
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FIG. S6. Snapshots of steady state structures for different area fractions for dimeric and tetrameric

motors. The area fractions correspond to 649, 834, 927, 1020, and 1205 MTs within the confine-

ment. All packing fraction are computed using reff = 0.8rmin. 927 MTs are used for all results

in the main text. For these simulations, RW/L = 8, εw = 8kBT , EA = 0.2 , vmτ/rmin = 50,

kmdt/fs = 1 and Nm/Nf = 1.
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FIG. S7. MSD/Lag time for different area fractions for dimeric and tetrameric motors. The

area fractions correspond to 649, 834, 927, 1020, and 1205 MTs within the confinement. MSD

is normalised by L2 and lag time is normalised by τ . RW/L = 8, εw = 8kBT , EA = 0.2kBT ,

vmτ/rmin = 50, kmdt/fs = 1 and Nm/Nf = 1.
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FIG. S8. Snapshots of steady state structures for different diameters of confinement relative to

rmin. We use RW/L = 8 for all findings in the main text. The area fraction is kept constant at

0.74, εw = 8kBT , EA = 0.2kBT , kmdt/fs = 1, vmτ/rmin = 50 and Nm/Nf = 1.
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FIG. S9. MSD/Lag time for different confinement diameters. MSD is normalised by L2 and lag

time is normalised by τ . The area fraction is kept constant at 0.74, εw = 8kBT , EA = 0.2kBT ,

kmdt/fs = 1, vmτ/rmin = 50 and Nm/Nf = 1. Note that we use more MTs and more motors in

systems with larger confinements.
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FIG. S10. Snapshots of steady state structures for different Nm/Nf for dimeric and tetrameric

motors. We use Nm/Nf = 1 for all findings in the main text. The area fraction is 0.74, RW/L = 8,

εw = 8kBT , EA = 0.2kBT , kmdt/fs = 1 and vmτ/rmin = 50.
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FIG. S11. MSD/Lag time for different Nm/Nf for dimeric (A) and tetrameric (B) motors. MSD

vs lag times for dimeric (C) and tetrameric (D) motors. The squared wall radius is represented by

the dotted blue line in (C) and (D). MSD is normalised by L2 and lag time is normalised by τ .

The area fraction is 0.74, RW/L = 8, εw = 8kBT , EA = 0.2kBT , kmdt/fs = 1 and vmτ/rmin = 50.
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FIG. S12. Snapshots of steady state structures for different kmdt/fs. A motor spring constant

of kmdt/fs = 1 was used for all findings in the main text. The area fraction is 0.74, RW/L = 8,

εw = 8kBT , EA = 0.2kBT , kmdt/fs = 1, vmτ/rmin = 50 and Nm/Nf = 1.
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FIG. S13. MSD/Lag time for different kmdt/fs. MSD is normalised by L2 and lag time is normalised

by τ . The area fraction is 0.74, εw = 8kBT , EA = 0.2kBT , vmτ/rmin = 50, RW/L = 8 and

Nm/Nf = 1.
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FIG. S14. Snapshots of steady state structures for different vmτ/rmin. A motor velocity of

vmτ/rmin = 50 was used for all findings in the main text. The area fraction is 0.74, RW/L = 8,

εw = 8kBT , EA = 0.2kBT , kmdt/fs = 1 and Nm/Nf = 1.
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FIG. S15. MSD/Lag time for different vmτ/rmin. MSD is normalised by L2 and lag time is

normalised by τ . The area fraction is 0.74, RW/L = 8, εw = 8kBT , EA = 0.2kBT , kmdt/fs = 1

and Nm/Nf = 1.
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S.IV. LOCAL POLAR ORDER PARAMETER

In order to characterise a MT’s neighbourhood, we define a pairwise motor partition

function, qij(ri, p̂i, rj, p̂j) as [13]

qij = ρ2

∫ 1/2

−1/2

dsi

∫ 1/2

−1/2

dsje
−βUm(|mij |), (S9)

where ρ is the linear density of binding sites on a single MT, and si and sj parametrise the

positions of motor arms on MTs i and j, respectively (Eq. S1).

The quantity weights pairwise interactions of MTs on the basis of motor binding site

availability, which is a function of MT pair’s relative orientation and distance. For instance,

qij becomes significant only for pairs of MTs in close proximity, and qij = 1 when they

are perfectly overlapping each other. When two MTs are sufficiently far away, such that

no motors can interact between them, qij = 0, and the MTs are said to be outside motor

range (Fig. S16(A and E)). Since the motor energy Um(|mij|) increases quadratically with

increasing motor extension (Eq. S2), the partition function, qij, decays rapidly as binding

sites for motors on the MTs become farther and less (Figure S16).

For MTs within motor range, we define them to be antialigned if (pi · pj) < 0 and polar-

aligned if (pi · pj) ≥ 0. Weighing (pi · pj) by qij gives a good representation of local polar

order, because it invokes the polarity of just the neighbourhood of the MT in question. And

the notion of neighbourhood is clearly defined as the availability of motor binding between

the MT pair in question. Moreover, by taking the sum of all interacting MTs with MT i,

ψ(i) =
∑

i 6=j(pi ·pj)qij/
∑

j 6=i qij, depends solely on the polarity of the neighbourhood of MT

i. We employ ψ(i) to find correlations in velocities with the polarity of MT neighbourhood.

Figure S17 shows antiparallel and parallel orientations of MTs at stationary state for

systems with dimeric and tetrameric motors, where MTs are coloured based on their local

polar order parameter. In the dimeric motor system (Fig. S17A), large polar-aligned MT

clusters compose the entire system. Geometric frustration due to the confinement, and the

motion of MTs within polar-aligned clusters give rise to an interface of antialigned MTs that

is perpetually created and destroyed throughout the simulation. A significant population of

motile, antialigned MTs are observed, in particular close to the confining wall. For the sys-

tem with tetrameric motors (Fig. S17B), static, polar-aligned bundles of strongly attracting

MTs make up the system. The strong attraction within aligned bundles hinders the for-
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FIG. S16. Pairwise motor partition function, qij , quantifies the availability of motor binding

between MT pairs. (A, B, C and D) shows the effect of rotational degrees of freedom on MT pairs.

(E, F, G, H) shows the effect of translational degrees of freedom on MT pairs. The shaded region

indicates the region available for motor binding. (D) and (H) are identical and show an instance

of near perfect overlap, and availability of motor binding between MT pairs.

mation of interfaces of antialigned MTs. Nevertheless, the confinement hinders the sorting

mechanism, such that a considerable population of antialigned MTs is observed. They ap-

pear intermittently, and quickly become members of polar-aligned bundles, re-establishing

the stationary structure of the system.
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FIG. S17. Stationary configuration of MTs in systems with (A) dimeric and (B) tetrameric motors

for EA = 1.0kBT and Nm/Nf = 1. Arrow heads represent the direction of motor-arm motion on

MT. The colour of each arrow represents the local polar orientational order parameter.
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S.V. SUPPLEMENTARY FIGURES
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FIG. S18. Parallel MT velocity vs. radial distance for tetrameric, dimeric and passive systems.

This is the same as Fig. 9 in the main text, but includes the velocities for the cases with both

attractive and non-attractive confining walls. MTs near the confining wall are slower in the systems

with the non-attractive walls relative to the systems with the attractive wall. EA = 0.2kBT and

Nm/Nf = 1. Velocities are normalised by L/τ . Radial distance is normalised by confining wall

radius, RW.

22



time

Dimeric Motor System

time

Tetrameric Motor System

Av
er

ag
e 

Lo
ca

l P
ol

ar
 O

rd
er

,

Av
er

ag
e 

Lo
ca

l P
ol

ar
 O

rd
er

,

0.5 1.0 2.0 3.0 4.0Nm/Nf
(A) (B)

(C) Tetrameric Motor System
Dimeric Motor System

or
de

rin
g 

tim
e

Nm/Nf

0.5 1.0 2.0 3.0 4.0Nm/Nf

FIG. S19. Estimation of time taken to form structures for dimeric and tetrameric motor systems

for different motor concentrations. The system evolves from the initial state of an equilibrated no

motor system. The average local polar order 〈ψi〉 is the mean ψi of all MTs in the system at a

given time. This is seen to fluctuate about a fixed value for both dimeric (A) and tetrameric (B)

motor systems. Assuming that the ordering only happens initially, we fit a decaying exponential,

A exp (−t/λ) to this data, − (〈ψi(t)〉 − 〈ψi〉ss) (insets). 〈ψi〉ss is the steady state, average local

polar order obtained from the last 1000 steps. (C) λ is reported as the ordering time as a function

of different motor concentrations. Ordering time is normalised by, τ , the timescale for the onset

of activity. Area fraction is 0.74, RW/rmin = 80, εw = 8kBT , EA = 0.2kBT , vmτ/rmin = 50 and

kmdt/fs = 1, as per simulations presented in the main text.
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FIG. S20. Inverse of mean motor life time as a function of motor velocity for tetrameric and dimeric

motors. Mean motor life time is obtained by fitting an exponential function, A exp (−tmp/λmp)

to the histogram of motor processivity. tmp and λmp is the motor processivity and the fitting

parameter to obtain mean motor life time respectively. Mean motor life time is measured in units

of τ . λ−1
mp is plotted against motor velocity, and we report the slopes of linear fits in the table.

We treat motors on polar-aligned MTs and antialigned MTs separately. Motor velocity is given

as vmτ/rmin. Area fraction is 0.74, RW/rmin = 80, εw = 8kBT , EA = 0.2kBT , Nm/Nf = 1 and

kmdt/fs = 1.
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FIG. S21. Time-averaged radial distribution function of beads that make up MTs. We used dimeric

motors for the curve which has Nm/Nf = 1. The beads belonging to the same MT as the bead in

question were omitted for this calculation. The first peak occurs in the same point as the energy

well indicated in Fig. S2. The beads which are at overlapping distances (0.0 < r/rmin < 0.5)

occur near the confining wall due to the high attraction potential. The plot is normalised with the

packing fraction of beads within the confinement.
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FIG. S22. Translational mean squared displacement (MSD) of MTs’ center of masses by region.

EA = 0.2kBT and Nm/Nf = 1. The confinement is split into three sections, as illustrated in the

inset. MTs whose centers of masses fall inside each of these sections at various time origins is used

as a reference point to compute the MSD. If an MT leaves its original section, we continue to track

it according to its position at the time origin. The region closest to the wall is the most dynamic

in the cases with the tetrameric and dimeric motors. MSD is normalized using L2. Lag time is

normalised using the onset of the activity time scale, τ . The radial distance of the MT’s center of

mass, r is normalised by the radius of the confinement, RW.
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S.VI. SUPPLEMENTARY VIDEOS

MOVIE S1. No motor system. Video shows the evolution of the system beginning from the random

initial condition. The number on the top of the video is time in units of τ . Length units shown in

the video are in terms of rmin. EA = 0.2kBT and Nm/Nf = 0.

MOVIE S2. Dimeric motor system. Video shows the evolution of the dimeric motor system

beginning from the random initial condition. The number on the top of the video is time in units

of τ . Note the fast moving MTs at the edge of the confinement. Length units shown in the video

are in terms of rmin. EA = 0.2kBT and Nm/Nf = 1.
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MOVIE S3. Dimeric motor system, at higher motor concentration. Video shows the evolution of

the dimeric motor system beginning from the random initial condition. The number on the top of

the video is time in units of τ . Note the fast moving MTs at the edge of the confinement. There

are more spaces in between clusters since a higher concentration of motors binds MTs closer to

each other. Length units shown in the video are in terms of rmin. EA = 0.2kBT and Nm/Nf = 2.

MOVIE S4. Tetrameric motor system. Video shows the evolution of the tetrameric motor system

beginning from the random initial condition. The number on the top of the video is time in units

of τ . Length units shown in the video are in terms of rmin. EA = 0.2kBT and Nm/Nf = 1.
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MOVIE S5. Dimeric motor system with trajectory of four probe MTs. The video corresponds to

Fig. 8 in the main text. EA = 0.2kBT and Nm/Nf = 1.
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