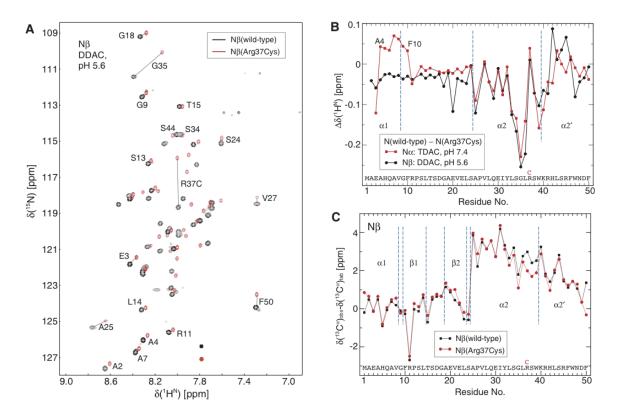
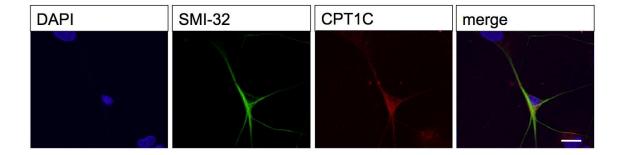

Supplementary Online Content

Rinaldi C, Schmidt T, Situ AJ, et al. Mutation in *CPT1C* associated with pure autosomal dominant spastic paraplegia. *JAMA Neurol*. Published online March 9, 2015. doi:10.1001/jamaneurol.2014.4769.

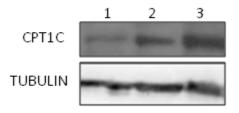

- **eFigure 1.** Diagram of the filtering strategy for the exome sequencing data.
- **eFigure 2.** Comparison of spectral and structural parameter of N β and N β (Arg37Cys) of human CPT1C.
- **eFigure 3.** iPSC-derived motor neurons from an unaffected subject were stained for SMI-32 (Covance, SMI-32R, 1:1,000) and CPT1C (Proteintech, 12969-1-AP; 1:1,000).
- eFigure 4. Western blot analysis of CPT1C.
- **eFigure 5.** COS7 cells were transfected with 1.5 μ g HA-tagged CPT1C and signal was detected using anti-HA (Covance, clone 16B12, 1:5,000), anti-Calreticulin antibody (Calbiochem, 208910, 1:1,000), and anti-AIF antibody (Millipore, AB16501, 1:1,000).
- **eFigure 6.** COS7 cells were co-transfected with 1.5 μ g GFP-tagged sec61, HA-tagged CPT1C wild-type or mutant, HA-empty vector and GFP-empty vector as specified in the picture.

This supplementary material has been provided by the authors to give readers additional information about their work.

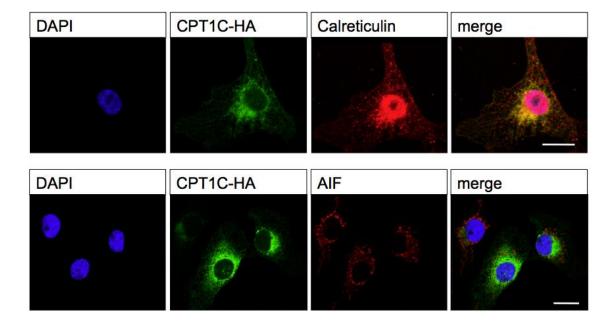
eFigure 1. Diagram of the filtering strategy for the exome sequencing data.


eFigure 2. Comparison of spectral and structural parameter of N β and N β (Arg37Cys) of human CPT1C.

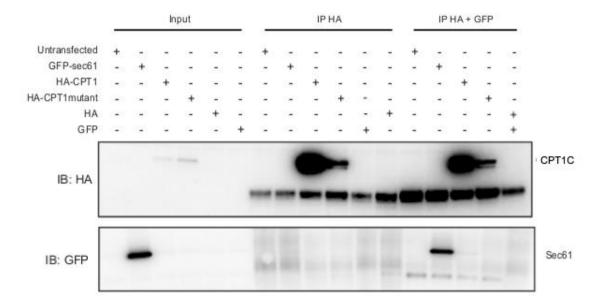
(A) Superposition of ${}^{1}H^{N_{-}15}N$ correlation NMR spectra of wild-type N β and N β (Arg37Cys). The spectra were recorded in the presence of dodecyltrimethylammonium chloride (DDAC) at pH 5.6, 35 °C and a ${}^{1}H$ frequency of 700 MHz. (B) ${}^{1}H^{N}$ chemical shift differences, Dd(${}^{1}H^{N}$), between N α and N α (Arg37Cys), and N β and N β (Arg37Cys). The borders of the secondary structure elements of N α , helices α 1, α 2, and α 2', are indicated. (C) Comparison of N β and N β (Arg37Cys) secondary ${}^{13}C^{\alpha}$ chemical shifts, d(${}^{13}C^{a}$), defined as the difference between observed and tabulated, random coil ${}^{13}C^{a}$ shifts. Positive and negative shifts indicate helical and extended backbone conformations, respectively (Wishart & Case, 2001). The borders of all possible N α and N β secondary structure elements, helices α 1, α 2, α 2', and sheets β 1, β 2 are indicated (Rao et al, 2011).


eFigure 3. iPSC-derived motor neurons from an unaffected subject were stained for SMI-32 (Covance, SMI-32R, 1:1,000) and CPT1C (Proteintech, 12969-1-AP; 1:1,000).

The nuclear DAPI stain is blue. Scale bar=20 µm.


eFigure 4. Western blot analysis of CPT1C.

(antibody developed following the indications in the previous study by Carrasco et al., 2012, by Sigma-Genosys; cropped image) expression in different samples. 1) Ganglion (the majority are sensory neurons); 2) ventral horn of the spinal cord (the majority are motor neurons); and 3) cortex from WT mice.


eFigure 5. COS7 cells were transfected with 1.5 μg HA-tagged CPT1C and signal was detected using anti-HA (Covance, clone 16B12, 1:5,000), anti-Calreticulin antibody (Calbiochem, 208910, 1:1,000), and anti-AIF antibody (Millipore, AB16501, 1:1,000).

The nuclear DAPI stain is blue. Scale bar=20 µm.

eFigure 6. COS7 cells were co-transfected with 1.5 μg GFP-tagged sec61, HA-tagged CPT1C wild-type or mutant, HA-empty vector and GFP-empty vector as specified in the picture.

Co-Immunoprecipitation was detected using an anti-HA antibody (Covance, clone 16B12, 1:5,000) and anti-GFP antibody (IP: molecular probe, A-11122; IB: abcam, ab290, 1:5,000).

