Supporting Information

Absolute binding free energies between T4 lysozyme and 141 small molecules: calculations based on multiple rigid receptor structures

Bing Xie, Trung Hai Nguyen, and David D. L. Minh*

Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA

E-mail: dminh@iit.edu

^{*}To whom correspondence should be addressed

70 active compounds	SMILES
1-methylpyrrole	CN1C=CC=C1
iodobenzene	Ic1ccccc1
p-methylphenyl azide	CC1=CC=C(C=C1)N=[N+]=[N-]
phenyl azide	[N-]=[N+]=NC1=CC=CC=C1
allyl ethyl sulfoxide	CCS(=O)(=O)CC=C
fluorobenzene	Fc1ccccc1
ethylbenzene	CCc1ccccc1
bromoethane	CCBr
benzyl mercaptan	SCc1ccccc1
2-phenylpropanol	CC(CO)C1=CC=CC=C1
anisole	COcleccc1
iodoethane	CCI
diisopropyl disulfide	CC(C)SSC(C)C
diethyl disulfide	CCSSCC
cyclohexene	C1CCC=CC1
4-(methylthio)nitrobenzene	1 = CC = C(C = C1)[N +](=O)[O -]
2,6-difluorobenzyl bromide	C1 = CC(=C(C(=C1)F)CBr)F
thiophenol	Sc1ccccc1
β -chlorophenetole	C1=CC=C(C=C1)OCCCI
cis-3-hexenyl formate	CC/C=C\CCOC=O
6-methyl-1,5-heptadiene	CC(=CCCC=C)C
2-ethoxyphenol	CCOC1=CC=CC=C1O
3-methyl benzyl azide	CC1=CC(=CC=C1)CN=[N+]=[N-]
n-methylaniline	CNC1=CC=CC=C1
1,2-benzenedithiol	C1=CC=C(C(=C1)S)S
1,2-dichlorobenzene	C1 = CC = C(C(=C1)Cl)Cl
2-(methylthio)-thiophene	CSc1cccs1
thiophene-2-thiol	Sc1cccs1
2-(thienylthio)-acetone	CC(=O)CSc1cccs1
methyl ethyl cyclopentene	CCC1 = C(C)CCC1
allyl ethyl sulfide	CCSCC=C
allyl sulfide	C = CCSCC = C
allyl n-propylether	CCCOCC=C
3-phenyl-1-propanethiol	SCCCc1ccccc1
3-iodotoluene	Cc1cccc(c1)I
3-ethyltoluene	CCc1cccc(C)c1
2-methylbenzofuran	Cc1cc2cccc2o1
4-iodotoluene	Cc1ccc(cc1)I
4-ethyltoluene	CCc1ccc(C)cc1
3-phenyl-1-propanol	OCCCc1ccccc1
benzofuran	c2cc1ccccc1o2
amylbenzene	CCCCCc1ccccc1
1-phenyl-1-propyne	CC#Cclccccc1
1,2-benzisoxazole	c1noc2ccccc12
2-iodotoluene	Cc1ccccc1I
2-iodopropane	CC(C)I

Table S1: Names and SMILES strings 1 of all 141 small molecules

2-ethyltoluene	CCc1ccccc1C
2-ethylfuran	CCc1ccco1
benzene	clccccc1
indene	C1C=Cc2cccc21
indole	c2cc1ccccc1[nH]2
hexafluorobenzene	Fc1c(c(c(c1F)F)F)F)F)F
methylcyclohexane	CC1CCCC1
m-xylene	Cc1cccc(c1)C
isobutylbenzene	CC(C)Cc1ccccc1
n-hexylbenzene	CCCCCc1ccccc1
nitrobenzene	[O]N(=O)c1ccccc1
naphthalene	c2ccc1ccccc1c2
n-butylbenzene	CCCCc1ccccc1
phenylacetylene	C#Cc1ccccc1
dipropyl disulfide	CCCSSCCC
n-propylbenzene	CCCc1ccccc1
o-xylene	Cc1ccccc1C
styrene	C=Cc1ccccc1
thianaphthene	c2cc1ccccc1s2
sec-butyl-benzene	CCC(C)c1ccccc1
thioanisole	CSc1ccccc1
toluene	Cc1ccccc1
p-xylene	Cc1ccc(cc1)C
iodopenta fluorobenzene	C1(=C(C(=C(C(=C1F)F)I)F)F)F)
-	
71 inactive compounds	SMILES
71 inactive compounds 2-iodoethanol	SMILES OCCI OCCE
71 inactive compounds 2-iodoethanol 2-bromoethanol	SMILES OCCI OCCBr
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol	SMILES OCCI OCCBr OCclccccc1
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol 3-chlorophenol	SMILES OCCI OCCBr OCclccccc1 Oclcccc(Cl)c1
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol 3-chlorophenol azulene ethemel	SMILES OCCI OCCBr OCc1ccccc1 Oc1cccc(Cl)c1 c1cc2ccccc2c1
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol 3-chlorophenol azulene ethanol methanol	SMILES OCCI OCCBr OCclccccc1 Oclcccc(Cl)c1 clcc2ccccc2c1 CCO
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol 3-chlorophenol azulene ethanol methanol dimethyl culforide	SMILES OCCI OCCBr OCc1ccccc1 Oc1cccc(Cl)c1 c1cc2cccccc2c1 CCO CO CS(O)C
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol 3-chlorophenol azulene ethanol methanol dimethyl-sulfoxide meritulane	$\begin{array}{c} \text{SMILES} \\ \hline \text{OCCI} \\ \text{OCCBr} \\ \text{OCc1ccccc1} \\ \text{Oc1cccc(Cl)c1} \\ \text{c1cc2cccccc2c1} \\ \text{CCO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Calcac(C)ac(C)c1} \end{array}$
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol 3-chlorophenol azulene ethanol methanol dimethyl-sulfoxide mesitylene 2.5 dimethylfuran	$\begin{array}{c} \text{SMILES} \\ \text{OCCI} \\ \text{OCCBr} \\ \text{OCclccccc1} \\ \text{Occlccccc(Cl)c1} \\ \text{clcc2cccccc2c1} \\ \text{CCO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Cclcc}(\text{C})\text{cc}(\text{C})\text{c1} \\ \text{Cclccc}(\text{C})\text{c1} \\ \text{Cclccc}(\text{C})\text{c1} \end{array}$
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol 3-chlorophenol azulene ethanol dimethyl-sulfoxide mesitylene 2,5-dimethylfuran p. grosol	$\begin{array}{c} \text{SMILES} \\ \hline \text{OCCI} \\ \text{OCCBr} \\ \text{OCc1ccccc1} \\ \text{Occ1ccccc(Cl)c1} \\ \text{c1cc2cccccc2c1} \\ \text{CCO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Cc1ccc(C)cc(C)c1} \\ \text{Cc1ccc(C)o1} \\ \text{Cc1ccc(C)oc1} \\ \text{Cc1ccc(C)oc1} \\ \end{array}$
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol 3-chlorophenol azulene ethanol methanol dimethyl-sulfoxide mesitylene 2,5-dimethylfuran p-cresol chloroform	$\begin{array}{c} \text{SMILES} \\ \hline \text{OCCI} \\ \text{OCCBr} \\ \text{OCcleccccl} \\ \text{Ocleccc(Cl)cl} \\ \text{clcc2cccccc2cl} \\ \text{CCO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Cclcc(C)cc(C)cl} \\ \text{Cclccc(C)ol} \\ \text{Cclccc(O)ccl} \\ \text{Cclccc(O)ccl} \\ \text{Clccc(O)ccl} \\ \text{Clccc(Cl)cl} \\ \end{array}$
71 inactive compounds 2-iodoethanol 2-bromoethanol benzyl-alcohol 3-chlorophenol azulene ethanol dimethyl-sulfoxide mesitylene 2,5-dimethylfuran p-cresol chloroform pontafluorophonyl azido	$\begin{array}{c} \text{SMILES} \\ \hline \text{OCCI} \\ \text{OCCBr} \\ \text{OCclcccccl} \\ \text{Oclcccc(Cl)cl} \\ \text{clcc2ccccc2cl} \\ \text{CCO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Cclcc(C)cc(C)cl} \\ \text{Cclccc(C)ol} \\ \text{Cclccc(C)ocl} \\ \text{ClC(Cl)Cl} \\ \text{Eclcc(F)c(F)c(N-[N+l-[N])c(F)clF} \\ \end{array}$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6.7-ifluorobenzotriazole	$\begin{array}{c} \mbox{SMILES} \\ \hline OCCI \\ OCCBr \\ OCc1ccccc1 \\ Oc1cccc(Cl)c1 \\ c1cc2cccccc2c1 \\ CCO \\ CO \\ CS(=O)C \\ Cc1cc(C)cc(C)c1 \\ Cc1ccc(C)c1 \\ Cc1ccc(O)cc1 \\ ClC(Cl)Cl \\ Fc1c(F)c(F)c(N=[N+]=[N-])c(F)c1F \\ Fc1ccc2nce[N+]c2c1F \\ \hline \mbox{Fc1}ccc2nce[N+]c2c1F \\ \hline \end{array}$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6,7-ifluorobenzotriazolepentafluoropaniline	$\begin{array}{c} \text{SMILES} \\ \hline \text{OCCI} \\ \text{OCCBr} \\ \text{OCclcccccl} \\ \text{Occlcccccl} \\ \text{Oclcccc(Cl)cl} \\ \text{clcc2cccccc2cl} \\ \text{CCO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Cclcc(C)cc(C)cl} \\ \text{Cclccc(C)ccl} \\ \text{Cclccc(O)ccl} \\ \text{Cclccc(O)ccl} \\ \text{ClC(Cl)Cl} \\ \text{Fclc(F)c(F)c(N=[N+]=[N-])c(F)clF} \\ \text{Fclccc2nn[nH]c2clF} \\ \text{Nclc(F)c(F)c(F)c(F)c[N=IF]} \end{array}$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6,7-ifluorobenzotriazolepentafluoroaniline1.4-dijodobenzene	$\begin{array}{ c c c c c c } & SMILES \\ \hline OCCI \\ OCCBr \\ OCclecccc1 \\ Ocleccc(Cl)c1 \\ clcc2ccccc2c1 \\ CCO \\ CO \\ CS(=O)C \\ Cclcc(C)cc(C)c1 \\ Cclccc(C)cc1 \\ Cclccc(O)cc1 \\ ClC(Cl)Cl \\ Fc1c(F)c(F)c(N=[N+]=[N-])c(F)c1F \\ Fc1ccc2nn[nH]c2c1F \\ Nc1c(F)c(F)c(F)c(F)c1F \\ lclccc(I)cc1 \\ lclcccc1 \\ lclccc(I)cc1 \\ lclccc1 \\ lclcc1 \\ lclcc2 \\ lclc2 \\$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6,7-ifluorobenzotriazolepentafluoroaniline1,4-diiodobenzene12-diiodobenzene	$\begin{array}{c} \mbox{SMILES} \\ \hline OCCI \\ OCCBr \\ OCc1ccccc1 \\ Oc1cccc(Cl)c1 \\ c1cc2cccccc2c1 \\ CCO \\ CO \\ CS(=O)C \\ Cc1cc(C)cc(C)c1 \\ Cc1ccc(C)cc1 \\ Cc1ccc(O)cc1 \\ ClC(Cl)Cl \\ Fc1c(F)c(F)c(N=[N+]=[N-])c(F)c1F \\ Fc1ccc2nn[nH]c2c1F \\ Nc1c(F)c(F)c(F)c(F)c1F \\ Ic1ccc(I)cc1 \\ Ic1cccc1 \\ Ic1cccc1 \\ Ic1ccccc1 \\ Ic1cccccc1 \\ Ic1ccccc1 \\ Ic1ccccc1 \\ Ic1cccccc1 \\ Ic1cccccc1 \\ Ic1cccccc1 \\ Ic1ccccc1 \\ Ic1cccccc1 \\ Ic1ccccc1 \\ Ic1cccccc1 \\ Ic1cccccc1 \\ Ic1cccccccccc$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6,7-ifluorobenzotriazolepentafluoroaniline1,4-diiodobenzene1,2-diiodobenzenetrans-cinnamaldebyde	$\begin{array}{c} \text{SMILES} \\ \hline \text{OCCI} \\ \text{OCCBr} \\ \text{OCclccccc1} \\ \text{Occlccccc2c1} \\ \text{Occlccccc2c1} \\ \text{CCO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Cclcc}(\text{C})\text{cc}(\text{C})\text{c1} \\ \text{Cclccc}(\text{C})\text{cc1} \\ \text{Cclccc}(\text{O})\text{cc1} \\ \text{ClC}(\text{Cl})\text{cc1} \\ \text{ClC}(\text{Cl})\text{cl} \\ \text{Fc1c}(\text{F})\text{c}(\text{F})\text{c}(\text{N}=[\text{N}+]=[\text{N}-])\text{c}(\text{F})\text{c}1\text{F} \\ \text{Fc1ccc2nn[nH]c2c1F} \\ \text{Nc1c}(\text{F})\text{c}(\text{F})\text{c}(\text{F})\text{c}(\text{F})\text{c}1\text{F} \\ \text{Ic1cccc(I)cc1} \\ \text{Ic1cccc1I} \\ \text{Ic1cccc1I} \\ \text{O}=\text{CC}=\text{Cc1ccccc1} \end{array}$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6,7-ifluorobenzotriazolepentafluoroaniline1,4-diiodobenzene1,2-diiodobenzenetrans-cinnamaldehydecyclohexane	$\begin{array}{c} \mbox{SMILES} \\ \hline OCCI \\ OCCBr \\ OCclecccc1 \\ Ocleccc(Cl)c1 \\ clcc2ccccc2c1 \\ CCO \\ CO \\ CS(=O)C \\ Cclcc(C)cc(C)c1 \\ Cclccc(C)c1 \\ Cclccc(O)cc1 \\ ClC(Cl)Cl \\ Fc1c(F)c(F)c(N=[N+]=[N-])c(F)c1F \\ Fc1ccc2nn[nH]c2c1F \\ Nc1c(F)c(F)c(F)c(F)c(F)c1F \\ Iclcccc1 \\ Iclccccc1 \\ Iclccccc1 \\ O=CC=Cclccccc1 \\ ClCCCCC1 \end{array}$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6,7-ifluorobenzotriazolepentafluoroaniline1,4-diiodobenzene1,2-diiodobenzenetrans-cinnamaldehydecyclohexanetert-butylbenzene	$\begin{array}{c} \text{SMILES} \\ \hline \text{OCCI} \\ \text{OCCBr} \\ \text{OCcleccccl} \\ \text{OCcleccccl} \\ \text{Oclcccc(Cl)cl} \\ \text{clcc2ccccc2cl} \\ \text{CCO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Cclccc(C)cc(C)cl} \\ \text{Cclccc(C)ocl} \\ \text{Clccc(C)ocl} \\ \text{ClC(Cl)Cl} \\ \text{Fclcc(F)c(F)c(N=[N+]=[N-])c(F)clF} \\ \text{Fclccc2nn[nH]c2clF} \\ \text{Nclc(F)c(F)c(F)c(F)c(F)clF} \\ \text{Iclcccc(I)ccl} \\ \text{Iclccccl} \\ \text{Iclccccl} \\ \text{CC(C)(C)clcccccl} \\ \\ \text{CC(C)(C)clcccccl} \\ \end{array}$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6,7-ifluorobenzotriazolepentafluoroaniline1,4-diiodobenzene1,2-diiodobenzenetrans-cinnamaldehydecyclohexanetert-butylbenzeneisobutane	$\begin{array}{c} \mbox{SMILES} \\ \hline OCCI \\ OCCBr \\ OCc1ccccc1 \\ Oc1cccc(Cl)c1 \\ c1cc2ccccc2c1 \\ CCO \\ CO \\ CS(=O)C \\ Cc1cc(C)cc(C)c1 \\ Cc1ccc(C)cc1 \\ ClCccc(C)cc1 \\ ClC(Cl)Cl \\ Fc1c(F)c(F)c(F)c(N=[N+]=[N-])c(F)c1F \\ Fc1ccc2nn[nH]c2c1F \\ Nc1c(F)c(F)c(F)c(F)c(F)c1F \\ Ic1cccc(I)cc1 \\ Ic1ccccc1 \\ Ic1ccccc1 \\ O=CC=Cc1ccccc1 \\ ClCCCCC1 \\ CC(C)C \\ \end{array}$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6,7-ifluorobenzotriazolepentafluoroaniline1,4-diiodobenzene1,2-diiodobenzenetrans-cinnamaldehydecyclohexanetert-butylbenzeneisobutane(-)-camphene	$\begin{array}{c} \text{SMILES} \\ \hline \text{OCCI} \\ \text{OCCBr} \\ \text{OCcleccccl} \\ \text{Ocleccc(Cl)cl} \\ \text{clcc2ccccc2cl} \\ \text{CCO} \\ \text{CO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Cclcc(C)cc(C)cl} \\ \text{Cclccc(C)ccl} \\ \text{Cclccc(O)ccl} \\ \text{Clccc(O)ccl} \\ \text{ClC(Cl)Cl} \\ \text{Fclc(F)c(F)c(N=[N+]=[N-])c(F)c1F} \\ \text{Fclccc2nn[nH]c2c1F} \\ \text{Nclc(F)c(F)c(F)c(F)c(F)c1F} \\ \text{Iclccccl} \\ \text{Iclccccl} \\ \text{Iclccccl} \\ \text{O}=\text{CC}=\text{Cclcccccl} \\ \text{ClC(C)(C)clcccccl} \\ \text{CC(C)(C)clcccccl} \\ \text{CC(C)(C)clcccccl} \\ \text{CC(C)(C)clcccccl} \\ \\ \text{CC(C)(C)clcccccl} \\ \\ \text{CC(C)(C)clcccccl} \\ \\ \end{array}$
71 inactive compounds2-iodoethanol2-bromoethanol2-bromoethanolbenzyl-alcohol3-chlorophenolazuleneethanolmethanoldimethyl-sulfoxidemesitylene2,5-dimethylfuranp-cresolchloroformpentafluorophenyl-azide6,7-ifluorobenzotriazolepentafluoroaniline1,2-diiodobenzene1,2-diiodobenzenetrans-cinnamaldehydecyclohexanetert-butylbenzeneisobutane(-)-campheneDL-camphor	$\begin{array}{c} \text{SMILES} \\ \hline \text{OCCI} \\ \text{OCCBr} \\ \text{OCcleccccl} \\ \text{Ocleccc(Cl)cl} \\ \text{clcc2ccccc2cl} \\ \text{CCO} \\ \text{CO} \\ \text{CO} \\ \text{CS}(=\text{O})\text{C} \\ \text{Cclcc}(\text{C})\text{cc}(\text{C})\text{cl} \\ \text{Cclccc}(\text{O})\text{ccl} \\ \text{Clccc}(\text{O})\text{ccl} \\ \text{Clccc}(\text{O})\text{ccl} \\ \text{ClC(Cl)Cl} \\ \text{Fclc}(\text{F})\text{c}(\text{F})\text{c}(\text{N}=[\text{N}+]=[\text{N}-])\text{c}(\text{F})\text{c}1\text{F} \\ \text{Fclcc2nn[nH]c2c1F} \\ \text{Nclc}(\text{F})\text{c}(\text{F})\text{c}(\text{F})\text{c}(\text{F})\text{c}1\text{F} \\ \text{IclcccclI } \\ \text{IclcccclI} \\ \text{IclcccclI} \\ \text{O}=\text{CC}=\text{Cclcccccl} \\ \text{ClC(C)(C)clcccccl} \\ \text{CC(C)(C)clcccccl} \\ \text{CC(C)(C)clcccccl} \\ \text{CC1(C)C2CCC(C2)Cl=C} \\ \text{CC1(C)C2CCC1(C)C(=O)C2 \\ \end{array}$

1-octanol 1-heptanol N-heptylbenzene dibutyl-disulfide 1-propanol 1.1-diethvlurea benzaldehvde 2.6-diffuorophenvl azide benzoic-acid n,n'-dimethylaniline benzaldehvde-oxime quinoline furan pyridine 2,1-benzisoxazole 2,5-diaminophenol 2-methylbenzyl alcohol 4-hydrazinothieno[2,3-D]pyrimidine 1,6-naphthyridine 8-aminoquinoline 1,2,4-triazolo[1,5-A]pyrimidine 3-methoxymethylindole 1-methylnaphthalene 2-amino-4-hydroxypteridine acenaphthylene 2-(methylsulfanyl)-4-quinazolinamine aniline D-camphor 3,5-dichloroanisole (+)-camphene 3,5-difluoro-aniline 3-methylyrrole 2-fluoro-aniline 2,4-difluoro-aniline 2-fluorobenzaldehvde 2,4-difluoro-phenol 1-vinylimidazole 3-fluorobenzonitrile 5-bromopyrimidine 4-vinylpyridine methyl chlorodifluoroacetate nitrosobenzene 2-benzvlpvridine 1-naphthalenemethanol 2-fluoroaniline 2-phenoxyethanol 1-phenyl-semicarbazide

phenol

CCCCCCCCO CCCCCCCO CCCCCCc1ccccc1 CCCCSSCCCC CCCO CCN(CC)C(=O)NO = Cc1ccccc1FC1=CC=CC(F)=C1N=[N+]=[N-]OC(=O)c1ccccc1CN(C)C1=CC=CC=C1ON=Cc1ccccc1 c1ccc2nccc2c1 c1ccoc1 c1ccncc1 clonc2cccc12 c1(c(N)ccc(c1)N)Oc1(CO)c(C)cccc1c12c(ncnc1scc2)NN c12cnccc1nccc2 c12cccc(N)c1nccc2 c12ncnn2cccn1 c12c(COC)c[nH]c2cccc1 c12cccc(C)c1cccc2c12c([nH]c(N)nc1nccn2)=Oc12c3cccc1cccc2C=C3 c12nc(SC)nc(c2cccc1)N Nc1cccc1 O = C1CC2CCC1(C)C2(C)CCOc1cc(Cl)cc(Cl)c1 CC1([C@@H]2CC[C@@H](C2)C1=C)C Nc1cc(F)cc(F)c1Cc1cc[nH]c1 Nc1cccc1F Nc1ccc(F)cc1FO = Cc1c(ccc1)FOc1ccc(F)cc1FC(=C)N1ccnc1c1(ccc(cc1)C#N)c1ncncc1Br c1(ccncc1)C=CC(C(OC)=O)(F)(F)ClC1 = CC = C(C = C1)N = Oc1(cccc1)Cc2ccccn2 c12c(cccc1cccc2)CO C1=CC=C(C(=C1)N)FC1 = CC = C(C = C1)OCCONC(=O)NNc1ccccc1 Oc1ccccc1c1

Table S2: **YANK binding free energy estimates** between T4 lysozyme and 24 ligands. The mean value and standard deviation (in parentheses) of three independent simulations are reported.

Ligand names	Ligand	ΔG°	Ligand names	Ligand	ΔG°
	struc-	$(\rm kcal/mol)$		struc-	$(\rm kcal/mol)$
	trues			trues	
1-methylpyrrole	CH ₃	-3.65 (0.39)	benzofuran		-5.31 (0.42)
4-ethyltoluene	<u> </u>	-6.52 (0.14)	allyl ethyl sulfide	H,C CH,	-4.23 (0.34)
benzene	\bigcirc	-4.45 (0.25)	hexafluorobenzene		-2.42(0.27)
indole		-4.48 (0.12)	m-xylene	нус	-5.05 (0.21)
N-hexylbenzene	0~~~	-7.90 (0.02)	nitrobenzene	6	-8.58 (0.19)
p-xylene		-5.84 (0.09)	DL-camphor	H ₃ H ₃	-7.45(0.35)
1-propanol	н,с	-1.84 (0.19)	1,1-diethylurea	H ₃ C NH ₂	-4.98 (0.33)
1,4-diiodobenzene	, C) '	-9.70 (0.13)	1,2-diiodobenzene		-11.48 (0.13)
2-bromoethanol	В/ОН	-2.16 (0.28)	2-iodoethanol	1~~_ОН	-2.28 (0.32)
benzyl alcohol	C	-3.75(0.15)	benzaldehyde oxime	\bigcirc	-5.53(0.55)
phenol		-2.88 (0.39)	ethanol	носна	-0.88 (0.14)
methanol	HO—CH ₃	0.38(0.27)	dimethyl-sulfoxide	H ₃ C CH ₃	-0.82 (0.98)

Figure S1: **2D** histograms of the first and second principal components of the unbound (left column) and bound (right column) receptor conformations sampled by YANK for complexes between T4-lysozyme and 24 ligands. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. Ligands on this page, from top to bottom, are 1-methylpyrrole, benzene, benzofuran.

Figure S1: continued. **2D** histograms of the first and second principal components of the unbound (left column) and bound (right column) receptor conformations sampled by YANK for complexes between T4-lysozyme and 24 ligands. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. Ligands on this page, from top to bottom, are allyl ethyl sulfide, hexafluorobenzene, indole.

Figure S1: continued. **2D** histograms of the first and second principal components of the unbound (left column) and bound (right column) receptor conformations sampled by YANK for complexes between T4-lysozyme and 24 ligands. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. Ligands on this page, from top to bottom, are m-xylene, n-hexylbenzene, nitrobenzene.

Figure S1: continued. **2D** histograms of the first and second principal components of the unbound (left column) and bound (right column) receptor conformations sampled by YANK for complexes between T4-lysozyme and 24 ligands. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. Ligands on this page, from top to bottom, are ethanol, methanol, dimethyl-sulfoxide.

Figure S1: continued. **2D** histograms of the first and second principal components of the unbound (left column) and bound (right column) receptor conformations sampled by YANK for complexes between T4-lysozyme and 24 ligands. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. Ligands on this page, from top to bottom, are 4-ethyltoluene, DL-camphor, 1-propanol.

Figure S1: continued. **2D** histograms of the first and second principal components of the unbound (left column) and bound (right column) receptor conformations sampled by YANK for complexes between T4-lysozyme and 24 ligands. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. Ligands on this page, from top to bottom, are 1,1-diethylurea, 1,4-diiodobenzene, 1,2-diiodobenzene.

Figure S1: continued. **2D** histograms of the first and second principal components of the unbound (left column) and bound (right column) receptor conformations sampled by YANK for complexes between T4-lysozyme and 24 ligands. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. Ligands on this page, from top to bottom, are 2-bromoethanol, 2-iodoethanol, benzyl-alcohol.

Figure S1: continued. **2D** histograms of the first and second principal components of the unbound (left column) and bound (right column) receptor conformations sampled by YANK for complexes between T4-lysozyme and 24 ligands. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. Ligands on this page, from top to bottom, are benzaldehyde-oxime, p-xylene, phenol.

Figure S2: Configuration space comparison between YANK and AlGDock. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. 2D histograms (plotted on a log scale) were created by projecting YANK snapshots on the first two PCs and weighting points by Eq. 5 of the main text. The black dots are projections of the 576 snapshots used in AlGDock calculations onto the same eigenvectors. Progressing from left to right and from the top to the bottom, the complexes have a decreasing absolute difference in binding free energy estimates between YANK and AlGDock. The ligand names are 1,1-diethylurea, methanol, benzaldehyde-oxime, ethanol, dimethyl-sulfoxide, and DL-camphor.

Figure S2: continued. **Configuration space comparison** between YANK and AlGDock. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. 2D histograms (plotted on a log scale) were created by projecting YANK snapshots on the first two PCs and weighting points by Eq. 5 of the main text. The black dots are projections of the 576 snapshots used in AlGDock calculations onto the same eigenvectors. Progressing from left to right and from the top to the bottom, the complexes have a decreasing absolute difference in binding free energy estimates between YANK and AlGDock. The ligand names are n-hexylbenzene, 1-propanol, benzene, 1,2-diiodobenzene, 4-iodotoluene, and nitrobenzene.

Figure S2: continued. **Configuration space comparison** between YANK and AlGDock. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. 2D histograms (plotted on a log scale) were created by projecting YANK snapshots on the first two PCs and weighting points by Eq. 5 of the main text. The black dots are projections of the 576 snapshots used in AlGDock calculations onto the same eigenvectors. Progressing from left to right and from the top to the bottom, the complexes have a decreasing absolute difference in binding free energy estimates between YANK and AlGDock. The ligand names are 2-bromoethanol, p-xylene, benzyl-alcohol, m-xylene, 2-iodoethanol, and 1,4-diiodobenzene.

Figure S2: continued. **Configuration space comparison** between YANK and AlGDock. Principal components analysis was performed on snapshots from all YANK simulations for heavy atoms within 5 Å of Val 111 in PDB ID 3DMZ. 2D histograms (plotted on a log scale) were created by projecting YANK snapshots on the first two PCs and weighting points by Eq. 5 of the main text. The black dots are projections of the 576 snapshots used in AlGDock calculations onto the same eigenvectors. Progressing from left to right and from the top to the bottom, the complexes have a decreasing absolute difference in binding free energy estimates between YANK and AlGDock. The ligand names are phenol, 1-methylpyrrole, benzofuran, hexafluorobenzene, allyl ethyl sulfide, and indole.

Figure S3: **Binding free energies for 24 ligands** estimated using YANK (x-axis) and Al-GDock (y-axis). Only snapshots from YANK simulations with 4 active ligands were included. The snapshots were weighted with scheme (c).

Table S3: **Comparing AlGDock and YANK** binding free energy estimates. The AlGDock free energies were calculated using different weighting schemes. RMSE is in units of kcal/mol. In contrast to Table 1 of the main text, only BPMFs from simulations with active ligands were used.

	Full (24)			Activ	e (11)	Inactive (13)		
	Linear							
	Regression	RMSE	R	RMSE	R	RMSE	R	
a	y=1.06x+0.83	1.82(0.21)	0.87(0.01)	1.25(0.19)	0.77(0.04)	2.19(0.37)	0.88(0.04)	
b	y=1.07x+0.47	1.83(0.24)	0.86(0.01)	1.35(0.23)	0.72(0.05)	2.15(0.39)	0.88(0.03)	
c	y=1.09x+0.52	1.75(0.22)	0.87(0.01)	0.89(0.11)	0.87(0.04)	2.23(0.36)	0.87(0.04)	
d	y=1.10x+0.13	1.87(0.31)	0.87(0.02)	1.07(0.20)	0.86(0.03)	2.34(0.48)	0.87(0.04)	
e	y=1.19x+0.95	1.52(0.18)	0.92(0.02)	0.95(0.36)	0.93(0.01)	1.87(0.21)	0.92(0.03)	
f	y=1.19x+0.67	1.50(0.21)	0.93(0.02)	1.04(0.31)	0.94(0.02)	1.80(0.26)	0.92(0.03)	

Table S4: Solvation and binding free energies for all 141 ligands. The column labeled B indicates whether the ligand had thermal shift activity (Y) or not (N). The columns for solvation (ΔG_{solv}) and binding (ΔG°) are experimental (E) or based on OBC2 (O) or PBSA (P) implicit solvent. Binding free energy estimates are based on AlGDock BPMF estimates for 384 receptor snapshots weighted by scheme (c). Ligands are listed in order of increasing PBSA binding free energy estimate. All free energies are in units of kcal/mol.

Ligand	В		ΔG_{solv}			ΔG°	
		Е	0	Р	Е	О	Р
(+)-camphene	Ν		2.33	5.52		-10.13(1.10)	-6.8(1.90)
n-propylbenzene	Υ	-2.13	0.26	2.66	-6.55	-7.78(0.22)	-6.62(1.14)
methylcyclohexane	Υ		2.42	5.30		-7.66(0.28)	-6.59(0.73)
cyclohexene	Υ		1.46	3.52		-5.76(0.22)	-5.96(0.47)
diisopropyl disulfide	Υ		-0.87	3.32		-6.13(0.41)	-5.87(1.47)
(-)-camphene	Ν		2.33	5.53		-8.34(0.92)	-5.86(1.99)
1,1-diethylurea	Ν		0.81	2.11		-9.67(0.53)	-5.61(0.59)
methyl ethyl cy- clopentene	Y		2.49	5.15		-8.41(0.26)	-5.48(0.35)
cvclohexane	Ν		2.12	4 61		-6.64(0.27)	-5.32(0.26)
6-methyl-1 5-	V		2.12 2.38	5.63		-7.72(0.21)	-5.19(0.66)
heptadiene	T		2.00	0.00		1.12(0.21)	0.10(0.00)
2-(methylthio)- thiophene	Y		-0.85	0.84		-6.06(0.14)	-5.16(0.65)
1-phenyl-	Ν		0.16	0.36		-10.29(0.44)	-5.14(0.84)
dipropyl disulfido	\mathbf{V}		0.10	3 88		6.73(0.52)	4 03(0 82)
4 othyltoluono	V	1.65	-0.10	$\frac{0.00}{2.70}$	5 49	-0.13(0.02) 7.80(0.18)	-4.93(0.02)
1.2 bonzisovazolo	V	-1.00	1.38	2.70	-0.42	6.04(0.10)	-4.00(0.01)
isobutylbonzono	V	283	-1.00 0.52	-1.55	6 51	755(0.18)	-4.34(0.18)
amylbenzene	V	-2.00	$\begin{array}{c} 0.52 \\ 0.88 \end{array}$	1.44 1.91	-0.01	-7.53(0.10)	-4.25(1.00)
diethyl disulfide	V		-1.04	1.24		-5.75(0.36)	-4.29(0.34)
n-yylene	V	-1 /0	-1.04	1.57 1.72	-4.67	-7.05(0.30)	-3.00(0.32)
n-butylbenzene	v	_2 01	$0.05 \\ 0.57$	3.45	-6 70	-7.52(0.32)	-3.9(0.86)
2-ethyltoluene	v	-1.65	0.33	2.10 2.41	-4 56	-7.57(0.25)	-3.79(0.84)
toluene	v	_0.82	-0.51	0.00	-5 52	-4.80(0.12)	-3.75(0.04)
1_hentanol	N	-0.02	-0.01 -2.35	0.50	-0.02	-7.30(0.12)	-3.16(0.15)
1.2 dichlorobonzono	V		-2.33	0.50	6 37	7.39(0.02) 7.76(0.18)	-3.50(1.05) 3.55(0.50)
soc butyl bonzono	V		-0.21 0.57	3.57	-0.57	-7.70(0.18) 8.04(0.48)	-3.50(0.50) 3.5(0.82)
2_othylfuran	V		-0.56	1.28		-3.04(0.48)	-3.4(0.58)
1 vinylimidazolo	N		-0.50 0.12	1.20		5.86(0.10)	-5.4(0.00) 3 32(0 53)
indono	V	1.08	-0.12 1.77	-0.05	5 1 2	5.07(0.03)	-3.32(0.53)
2 1 honzisovazolo	I N	-1.00	-1.11 3.57	-0.50	-0.10	-5.97(0.17) 5.88(0.12)	-3.29(0.03) 3.26(1.03)
2,1-DeliziSoxazole	V		-3.37	1.86		-5.88(0.12) 7 10(0.28)	-3.20(1.03) 3 10(1 30)
2-methydenzoruran thioanisolo	V		-2.80 1.94	-1.00		-7.19(0.28) 6 51(0.26)	-3.19(1.50) 3 18(0.53)
allyl n propylether	V		-1.24	0.07 2.35		-0.31(0.20) 5 33(0.28)	-3.10(0.00)
fluorobonzono	ı V		0.21 0.87	⊿.55 0.60		-3.33(0.20) 3.07(0.19)	-3.12(0.01) 3.00(0.40)
thispophthene	I V	1 25	-0.07	0.09 1.20	5 71	-3.37 (0.12) 6 03(0.10)	-3.03(0.40) 3.03(0.68)
bonzofuror	I V	-1.30 1.94	-2.39 2.07	-1.04 2.05	5 16	-0.03(0.19) 4 85(0.19)	-3.03(0.00)
1 octanol	I N	-1.24	-0.01 2.05	-ə.∠ə 1.99	-5.40	-4.00(0.12) 5 49(0.19)	-3.03(0.98) 2.04(1.42)
1-octanoi	ΤN		-2.00	1.22		-0.42(0.18)	-2.94(1.43)

allyl ethyl sulfide	Υ		-0.48	2.09		-4.78(0.21)	-2.92(0.39)
phenyl azide	Υ		-1.09	-1.05		-7.66(0.15)	-2.89(0.69)
benzene	Υ	0.00	-1.10	0.10	-5.19	-3.29(0.13)	-2.85(0.63)
p-methylphenyl	Υ		-0.41	-0.02		-8.20(0.15)	-2.82(0.81)
azide							
ethylbenzene	Υ	-1.40	-0.06	1.83	-5.76	-6.11(0.18)	-2.77(0.42)
nitrosobenzene	Ν		-1.51	-0.99		-6.47(0.09)	-2.73(0.47)
1-phenyl-1-propyne	Υ		-0.78	-0.10		-8.74(0.37)	-2.69(0.47)
m-xylene	Υ	-1.38	0.11	1.76	-4.75	-6.12(0.22)	-2.56(0.36)
isobutane	Ν		2.30	4.43		-3.86(0.19)	-2.47(0.20)
3-ethyltoluene	Υ	-2.01	0.56	2.73	-5.12	-7.48(0.22)	-2.44(1.09)
tert-butylbenzene	Ν		0.33	3.00		-9.19(0.78)	-2.38(0.73)
3-methyl benzyl azide	Y		-0.86	-0.34		-9.11(0.19)	-2.23(0.95)
cis-3-hexenvl for-	Υ		-3.11	0.06		-5.70(0.33)	-2.22(0.85)
mate							
allyl sulfide	Υ		-0.44	2.33		-5.13(0.22)	-2.19(0.43)
benzaldehyde-oxime	Ν		0.29	0.87		-7.86(0.15)	-2.18(0.36)
nitrobenzene	Υ		-2.91	-2.87		-7.74(0.13)	-2.15(0.62)
2-fluoro-aniline	Ν		-5.54	-3.86		-2.36(0.13)	-2.08(0.94)
styrene	Υ		-1.01	0.30		-5.21(0.13)	-2.06(0.41)
pentafluorophenyl-	Ν		-0.37	1.06		-6.67(0.56)	-2.05(0.88)
azide	\mathbf{V}	0.02	5.96	4.07	1 20	4 20(0 16)	1.04(0.02)
2.5. dimethylfuren	I N	-0.02	-5.20	-4.97	-4.09	-4.20(0.10)	-1.94(0.92) 1 70(0.28)
2,5-dimethynuran	IN N		-0.59	$1.14 \\ 2.01$		-4.97(0.12)	-1.79(0.36) 1.78(0.85)
2-muoroamme			-0.00	-3.91		-2.20(0.13)	-1.78(0.63) 1.72(0.57)
o-pilenyi-i-	I		-2.09	0.04		-0.37(0.23)	-1.75(0.57)
anisole	Y		-2.53	-1 20		-4.89(0.13)	-1.69(0.41)
1 2 4-triazolo[1 5-	N		-5.45	-6.26		-6.66(0.10)	-1.66(0.66)
Alpyrimidine	11		0.10	0.20		0.00(0.10)	1.00(0.00)
2 4-diffuoro-aniline	Ν		-5.01	-3.02		-2.97(0.16)	-1.6(0.78)
1-methylpyrrole	V		-2.37	-1 45	-4 44	-3.01(0.10)	-1.55(0.42)
4-	Ŷ		-2.65	-1.88	1.11	-10.14(0.35)	-1.54(0.51)
(methylthio)nitrobenz	ene		2.00	1.00		10.11(0.00)	1.01(0.01)
phenvlacetvlene	Υ		-1.18	-0.81		-7.61(0.13)	-1.45(1.07)
dibutyl-disulfide	Ν		0.57	5.55		-5.39(0.39)	-1.42(0.54)
hexafluorobenzene	Y		0.48	3.32		-2.89(0.46)	-1.4(0.40)
naphthalene	Υ		-2.25	-1.26		-6.81(0.31)	-1.13(0.43)
2.4-difluoro-phenol	Ň		-3.85	-2.13		-3.35(0.15)	-1.01(0.48)
benzyl mercaptan	Y		-2.98	-1.39		-4.75(0.14)	-0.95(0.48)
3 5-dichloroanisole	Ň		-0.82	0.34		-8.51(0.69)	-0.92(0.86)
azulene	N		-2.74	-1.65		-6.06(0.33)	-0.91(0.65)
o-xvlene	Y	-1.35	-0.10	1.46	-4.60	-6.15(0.21)	-0.89(0.54)
β -chlorophenetole	Ŷ	1.00	-3.22	-1.44	1.00	-6.59(0.19)	-0.75(0.70)
2-ethoxyphenol	Ŷ		-4.40	-2.83		-5.90(0.24)	-0.65(0.70)
2.6-difluorophenvl	Ň		-1.52	-0.46		-6.39(0.21)	-0.62(0.52)
azide							(0.0 -)
2-(thienylthio)-	Y		-5.75	-3.34		-5.68(0.34)	-0.58(0.57)
acetone							

p-cresol	Ν	-5.22	-4.30		-4.11(0.11)	-0.56(0.88)
4-iodotoluene	Υ	-0.71	-3.69		-9.41(0.12)	-0.51(1.00)
mesitylene	Ν	0.76	2.73		-6.35(0.66)	-0.5(1.28)
3-methylyrrole	Ν	-4.04	-3.33		-2.09(0.10)	-0.43(0.35)
aniline	Ν	-6.01	-4.80		-1.35(0.12)	-0.22(0.52)
quinoline	Ν	-4.92	-3.94		-6.16(0.23)	-0.15(0.50)
3,5-difluoro-aniline	Ν	-4.95	-3.10		-2.81(0.21)	-0.15(0.61)
furan	Ν	-1.31	-0.44		-2.08(0.11)	-0.13(0.32)
phenol	Ν	-5.89	-5.13		-2.21(0.11)	-0.02(0.54)
2,6-difluorobenzyl bromide	Y	-1.49	-1.45		-7.52(0.20)	0.02(0.33)
methyl chlorodifluo- roacetate	N	-4.81	-1.49		-0.61(0.21)	0.09(0.22)
pyridine	Ν	-4.65	-3.79		-1.63(0.10)	0.16(0.51)
pentafluoroaniline	Ν	-3.97	-1.38		-2.83(0.40)	0.24(0.50)
2-methylbenzyl alco- hol	Ν	-4.31	-3.35		-5.04(0.18)	0.26(0.46)
3-phenyl-1-propanol	Y	-4.95	-3.05		-5.38(0.20)	0.27(0.57)
2-	Ν	-5.44	-3.13		-3.50(0.17)	0.32(0.60)
fluorobenzaldehyde	NT	0.05	0.1.4		(0,0)(0,10)	0.94(0.96)
3-fluorobenzonitrile	N	-3.95	-3.14		-6.38(0.12)	0.34(0.26)
DL-camphor	N	-2.43	1.64		-4.49(0.29)	0.45(1.35)
2-phenylpropanol	Y	-4.40	-2.40		-5.92(0.61)	0.73(0.88)
6,7-	Ν	-	- 10.99		-3.81(0.25)	0.77(0.99)
henzyl alaahal	N	10.01 5.19	10.55		9.95(0.12)	0.77(0.57)
penzyl-alconol		-0.12	-4.50	4 70	-2.80(0.13)	0.77(0.37) 0.70(0.42)
n-metnylamme	I N	-4.02	-5.00	-4.70	-5.49(0.12)	0.79(0.42)
5-chlorophenol		-0.10	-4.07		-4.40(0.17) 6 70(0.58)	0.8(0.37)
in-nexymenzene indepentefluerebenze	n N	1.17	1.00	4.45	-0.79(0.38)	0.80(0.00)
4 vinulpuridino	N	0.04	-1.20 2.51	-4.40	-7.02(0.44) 2 72(0.14)	0.88(0.90)
n n' dimethylaniline	N	-4.49	-3.31		-3.72(0.14)	1.05(0.30)
D comphor	IN N	-2.37	-2.04 1.67		-4.30(0.17)	1.03(0.71) 1.12(1.76)
D-campion 1	IN N	-2.40	0.40		-4.27(0.41) 7 11(0 50)	1.13(1.70) 1.10(0.78)
1- methylnaphthalene	IN	-1.07	-0.40		-7.11(0.59)	1.19(0.78)
2-iodotoluene	Y	-0 79	-3 54		-8.37(0.20)	1.24(0.48)
iodobenzene	Ŷ	-1.30	-4 62	-5 95	-7.56(0.17)	1.21(0.16) 1.45(0.56)
3-iodotoluene	Ý	-0.64	-3 55	0.00	-8.61(0.22)	1.49(0.65)
2-phenoxyethanol	Ň	-5.72	-4.28		-4.60(0.24)	1.10(0.00) 1.5(0.63)
bromoethane	Y	-0.16	-1 74		-2.96(0.10)	1.5(0.00) 1.59(0.22)
benzaldehvde	Ň	-6.51	-4 62		-2.74(0.11)	1.60(0.22)
1.6-naphthyridine	N	-8.05	-7.56		-3.83(0.15)	1.85(0.67)
1-propanol	N	-3.61	-2.46		-4.86(1.09)	2.01(0.19)
3-	N	-5.16	-4.68		-7.64(0.52)	2.57(0.64)
methoxymethylindole	9	0.10	1.00			2.01(0.01)
5-bromopyrimidine	Ν	-5.77	-7.71		-2.75(0.09)	2.84(0.45)
2-iodopropane	Υ	-2.27	-4.85		-3.67(0.20)	3.25(0.26)
ethanol	Ν	-4.09	-3.32		1.05(0.10)	3.3(0.22)
N-heptylbenzene	Ν	1.46	5.80		-12.50(1.64)	3.5(0.95)
8-aminoquinoline	Ν	-8.80	-7.50		-3.50(0.33)	3.54(0.52)
		-				. ,

	2-benzylpyridine	N	-5	.05	-2.70	-8.84(1.37)	3.62(0.93)
	allyl ethyl sulfoxide	Y	-		-8.19	0.94(0.26)	3.74(0.61)
			12	2.63			
	acenaphthylene	N	-3	.71	-2.99	-6.34(0.74)	3.83(0.83)
	trans-	N	-6	.92	-4.86	-4.13(0.45)	4.13(0.24)
	cinnamaldehyde						
	1-	N	-5	.44	-4.74	-5.84(0.70)	4.15(0.78)
	naphthalenemethanol						
	iodoethane	Y	-2	.70	-5.98	-2.50(0.10)	4.71(0.20)
	dimethyl-sulfoxide	N	-8	.62	-7.47	0.98(0.17)	4.85(0.21)
	methanol	N	-4	.78	-4.17	3.05(0.08)	4.88(0.15)
	1,2-diiodobenzene	N	-1	.27	-8.59	-9.59(0.50)	6.26(1.19)
	1,4-diiodobenzene	N	-1	.23	-9.01	-10.46(0.38)	5.48(1.05)
	2,5-diaminophenol	N	-		-	0.88(0.19)	5.09(0.91)
	, <u> </u>		14	4.48	13.75		~ /
	2-bromoethanol	N	-5	.49	-7.37	-0.87(0.10)	5.15(0.23)
	2-(methylsulfanyl)-	N	-8	.28	-8.55	-5.13(0.62)	5.35(0.78)
	4-quinazolinaminé						
	4-	N	-		-	-0.98(0.29)	6.97(0.69)
	hydrazinothieno[2,3-		13	3.00	12.70		
	D]pyrimidine						
	2-iodoethanol	N	-7	.70	-	-0.44(0.11)	8.14(0.22)
					11.25		
	benzoic-acid	N	-		-	2.87(0.65)	14.45(1.47)
			77	7.35	75.10		
	thiophenol	Y	-		-	2.32(0.76)	16.24(0.72)
			71	1.46	68.21	<i>.</i>	
	thiophene-2-thiol	Y	-		-	1.70(0.44)	16.31(0.79)
			67	7.00	64.79		
	2-amino-4-	N	-		-	-0.09(0.82)	16.45(0.87)
	hydroxypteridine		24	1.63	27.44		
	1,2-benzenedithiol	Y	-		-	18.14(0.25)	38.64(2.53)
	11 C		23	52.92 c	220.54	\cdot $c()$	\cdot $c()$
_	chloroform	N	in	1	ınt	int(nan)	inf(nan)

Table S5: AmberTools radii versus Bondi radii. A comparison of binding free energies for molecules containing chlorine, bromine, or iodine from experiment (ΔG_{exp}°) , based on radii from AmberTools (ΔG_{AT}°) , or based on Bondi radii $(\Delta G_{Bondi}^{\circ})$. (AmberTools incorrectly specifies the Bondi radii of most halogens at 1.5 Å.) The columns specify whether estimates are based on OBC2 (O) or PBSA (P) implicit solvent. The column labeled B indicates whether the ligand had thermal shift activity (Y) or not (N).

Ligand name	В	ΔG°_{exp}	ΔG	o AT	ΔG°_{Bondi}	
		E	Ο	Р	Ο	Р
1,2-dichlorobenzene	Y	-6.37	-7.78	-2.49	-7.76	-3.55
β -chlorophenetole	Y		-6.62	-0.81	-6.59	-0.75
3,5-dichloroanisole	Ν		-8.57	-0.94	-8.51	-0.92
methyl chlorodifluoroacetate	Ν		-0.64	0.75	-0.61	0.09
3-chlorophenol	Ν		-4.49	1.57	-4.48	0.8
chloroform	Ν		inf	\inf	inf	\inf
bromoethane	Y		-3.25	2.61	-2.96	1.59
2,6-difluorobenzyl bromide	Y		-7.96	-0.10	-7.52	0.02
5-bromopyrimidine	Ν		-2.88	3.89	-2.75	2.84
2-bromoethanol	Ν		-1.21	5.72	-0.87	5.15
iodoethane	Y		-3.13	5.49	-2.50	4.71
2-iodopropane	Y		-4.45	3.84	-3.67	3.25
2-iodotoluene	Y		-8.84	1.29	-8.37	1.24
3-iodotoluene	Y		-8.95	1.56	-8.61	1.49
4-iodotoluene	Y		-9.60	1.42	-9.41	-0.51
iodobenzene	Y	-5.95	-7.72	2.91	-7.56	1.45
1,4-diiodobenzene	Ν		-10.90	5.27	-10.46	5.48
1,2-diiodobenzene	Ν		-10.61	4.82	-9.59	6.26
2-iodoethanol	Ν		-1.40	7.66	-0.44	8.14

Figure S4: **Binding free energies for 24 ligands** estimated using YANK (x-axis) and AlGDock (y-axis). The AlGDock free energies were calculated using sets of receptor snapshots obtained from separate YANK simulations for ligands (i) to (vi) in complex with T4 Lysozyme.

Table S6: Comparison of measured and calculated binding free energies. Previously reported values include isothermal titration calorimetry measurements from Morton et al.², Mobley et al.³, and Liu et al.⁴ (ΔG_{exp}) and estimates from Mobley et al.³ (M), Gallicchio et al.⁵ (G), Purisima and Hogues⁶ (P), and Ucisik et al.⁷ (U). AlGDock BPMF estimates were weighted by scheme (c). All free energies are in units of kcal/mol.

Ligand name	ΔG_{exp}	М	G	Р	U	OBC2	PBSA
benzofuran	-5.46	-3.53		-6.99	-15.51	-4.85	-3.03
benzene	-5.19	-4.56	-4.01	-5.32	-10.45	-3.29	-2.85
ethylbenzene	-5.76	-6.36				-6.11	-2.77
indene	-5.13	-1.75		-5.14	-15.86	-5.97	-3.29
indole	-4.89	-0.42	-3.75	-3.47	-14.04	-4.20	-1.94
iodobenzene	-5.95					-7.56	1.45
iodopentafluorobenzene	-4.45					-7.02	0.88
isobutylbenzene	-6.51	-5.01	-5.21	-7.35	-19.90	-7.55	-4.25
N-butylbenzene	-6.70	-4.87		-7.50	-19.84	-7.52	-3.90
N-propylbenzene	-6.55	-5.88				-7.78	-6.62
o-xylene	-4.60	-1.27		-3.38	-13.68	-6.15	-0.89
p-xylene	-4.67	-3.54		-3.63	-13.98	-7.05	-3.97
toluene	-5.52	-4.58	-3.80			-4.80	-3.75
1-methylpyrrole	-4.44	-4.32				-3.01	-1.55
1,2-dichlorobenzene	-6.37	-5.66				-7.76	-3.55
N-methylaniline	-4.7	-5.37				-3.49	0.79
m-xylene	-4.75					-6.12	-2.56
2-ethyltoluene	-4.56					-7.57	-3.79
3-ethyltoluene	-5.12					-7.48	-2.44
4-ethyltoluene	-5.42					-7.80	-4.68
thian aphthene	-5.71					-6.03	-3.03

Figure S5: Comparing different free energy estimates with experiment. AlGDock free energy estimates in PBSA implicit solvent were based on BPMFs calculated with either the (a) minimum interaction energy, (b) mean interaction energy, or (c) MBAR estimator, using weighting scheme (c). A comparison of the average UCSF DOCK 6 grid score with experiment is shown in (d). Note that the y axes have different limits. In contrast to Fig. 10 of the main text, this figure includes the outlier iodobenzene.

Table S7: Comparing different free energy estimates with experiment. AlGDock calculations were based on 384 snapshots from simulations with active ligands, weighted according to scheme (c). As DOCK 6 does not have an implicit solvent, OBC2 and PBSA describe the receptor potential energies used for snapshot weights. In contrast with Table 3 of the main text, this analysis includes the outlier, iodobenzene.

Method	Implicit solvent	Spearman ρ	Kendall τ	Pearson R	RMSE
DOCK 6	OBC2	0.33(0.00)	0.22(0.01)	0.43(0.04)	11.98(0.36)
DOCK 6	PBSA	0.41(0.01)	0.30(0.01)	0.48(0.04)	12.56(0.37)
$\min\Psi$	OBC2	0.41(0.00)	0.30(0.01)	0.54(0.03)	15.42(0.59)
$\min \Psi$	PBSA	0.43(0.00)	0.33(0.01)	0.54(0.03)	13.95(0.60)
mean Ψ	OBC2	0.41(0.01)	0.32(0.01)	0.51(0.04)	9.62(0.47)
mean Ψ	PBSA	0.47(0.01)	0.36(0.01)	0.50(0.04)	7.36(0.41)
MBAR-based	OBC2	0.39(0.01)	0.27(0.02)	0.46(0.05)	1.54(0.18)
MBAR-based	PBSA	0.48(0.00)	0.38(0.01)	0.47(0.06)	3.18(0.44)

References

- (1) Weininger, D. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.
- (2) Morton, A.; Baase, W. A.; Matthews, B. W. *Biochemistry* **1995**, *34*, 8564–8575.
- (3) Mobley, D. L.; Graves, A. P.; Chodera, J. D.; McReynolds, A. C.; Shoichet, B. K.;
 Dill, K. A. J. Mol. Biol. 2007, 371, 1118–1134.
- (4) Liu, L.; Baase, W. A.; Matthews, B. W. J. Mol. Biol. 2009, 385, 595–605.
- (5) Gallicchio, E.; Lapelosa, M.; Levy, R. M. J. Chem. Theory Comput. 2010, 6, 2961–2977.
- (6) Purisima, E. O.; Hogues, H. J. Phys. Chem. B 2012, 116, 6872–9.
- (7) Ucisik, M. N.; Zheng, Z.; Faver, J. C.; Merz, K. M. J. Chem. Theory Comput. 2014, 10, 1314–1325.