Supplementary Information

TGF- β Stimulation of EMT Programs Elicits Non-genomic ER α Activity and Anti-estrogen Resistance in Breast Cancer Cells

Maozhen Tian and William P. Schiemann

Author Affiliation: Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106.

Corresponding Author:

William P. Schiemann, Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106 Phone: 216-368-5763. Fax: 216-368-1166. E-mail: <u>william.schiemann@case.edu</u>

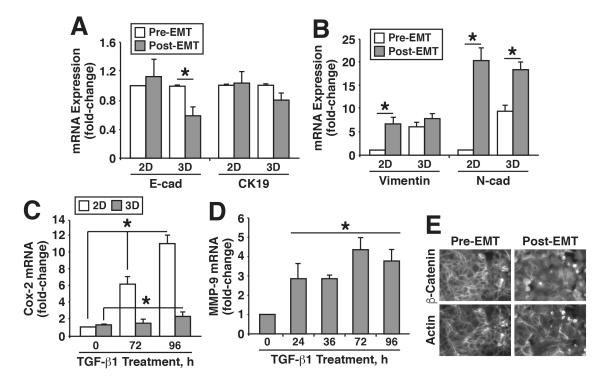
Running Title: EMT Drives Anti-estrogen Resistance in Breast Cancer

Name	Target	Concentration	Supplier (USA)
Human TGF-β1	TGF- β Rec.	5 ng/ml	R&D Systems
TβR-I Inh II	ΤβR-Ι	100 ng/ml	Calbiochem
U0126	MEK1/2	10 μM	Promega
PP2	Src	5-10 μM	Calbiochem
17-β-estradiol	ER-α	0.1-1 nM	Sigma
Tamoxifen	ER-α	0.1 μM	Sigma
4-OH-tamoxifen	ER-α	0.1 μM	Sigma
Fulvestrant	ER-α	0.1 μM	Sigma
AG1024	IGFR	1 μM	Calbiochem
AG1478	EGFR	1 μM	Cayman Chemicals

Supplementary Table 1: Pharmacological agonists and inhibitors

Shown are the pharmacological antagonists and final concentrations used inhibit the indicated protein targets. Also provided are the vendors where these reagents were obtained. *Rec.,* receptors.

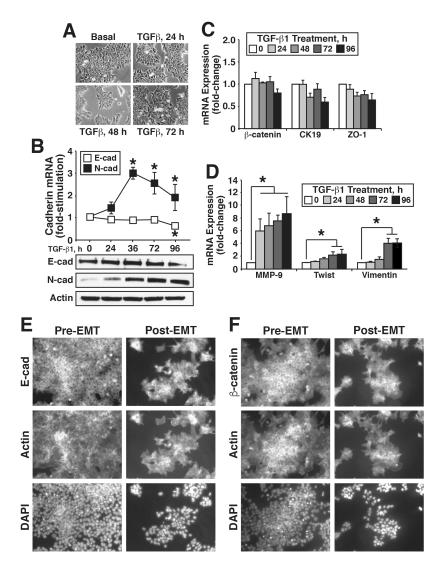
Gene	Genbank Access #	Forward Primer (5' to 3')	Reverse Primer (5' to 3')
ZO-1	NM_003257	5'-TCTAAGGGAGCACATGGTGA	5'-ATCTTCTCGGTTTGGTGGTC
Twist	NM_000474	5'-CCTTCTCGGTCTGGAGGAT	5-TTCTCCTTCTCTGGAAACAATG
Snail1	NM_005985	5'-CTAGGCCCTGGCTGCTAC	5'-GACATCTGAGTGGGTCTGGA
Zeb1	NM_030751	5'-TTTCCCATTCTGGCTCCTAT	5'-GATGCTGAAAGAGACGGTGA
Zeb2	NM_014795	5'-GCCCTTTAGGAGTTCATCCA	5'-GGCTTCCATCCCTACACCTA
E-cad	NM_004360	5'-CATCTTTGTGCCTCCTGAAA	5'-TGGGCAGTGTAGGATGTGAT
N-cad	NM_001792	5'-CCTGCTTATCCTTGTGCTGA	5'-CCTGGTCTTCTTCTCCTCCA
Vimentin	NM_003380	5'-CAAAGCAGGAGTCCACTGAG	TAAGGGCATCCACTTCACAG
CK19	NM_002276	5'-GATAGTGAGCGGCAGAATCA	5'-GACCTTGGAGGCAGACAAAT
EGFR	NM_005228	5'-TTCTTGCAGCGATACAGCTC	5'-GGGAACGGACTGGTTTATGT
IGF1R	NM_000875	5'-CAATGCTTCAGTTCCTTCCA	5'-GAGGGTTCCACTTCACGATT
MMP9	NM_004994	5'-CCACCACAACATCACCTATTG	5'-CTGTACACGCGAGTGAAGGT
ER-α	NM_000125	5'-TCCAAAGAGAAGACCCTATCAATGTA	5'-AGTAAGTCCCTTATTTGTTCAGC
ER-β	NM_001437	5'-TCGCTAGAACACACCTTACC	5'-TTCACACGACCAGACTCCATA
Cox2	NM_000963	5'-CCTTCCTCCTGTGCCTGATG	5'-ACAATCTCATTTGAATCAGGAAGCT
β-Catenin	NM_001904	5'-TGCTAAATGACGAGGACCAG	5'-TGAGGAGAACGCATGATAGC
GAPDH	NM_002046	5'-TCCATGACAACTTTGGTATTCGT	5'-AGTAGAGGCAGGGATGATGTT


Supplementary Table 2: Real-time PCR primer pairs

Shown are the sense and antisense primers used to amplify the indicated target gene.

Antibody	Dilution	Supplier (catalog #)
Phospho-Smad2	1:1000	Cell Signaling (#3101)
Total Smad2/3	1:1000	Cell Signaling (#3102)
β-catenin	1:1000	BD Biosciences (#610154)
Phospho-IGF1R	1:1000	Cell Signaling (#3024)
Total IGF1R	1:1000	Santa Cruz (#sc-713)
Total EGFR	1:1000	Cell Signaling (#2646)
Phospho-Erk1/2	1:1000	Cell Signaling (#9101)
Total Erk1/2	1:1000	Cell Signaling (#4695)
Phospho-p38 MAPK	1:500	Cell Signaling (#4060)
Total p38 MAPK	1:1000	Santa Cruz (#sc-728)
Phospho-Src	1:500	Cell Signaling (#2113)
Total Src	1:1000	Cell Signaling (#2108)
E-Cadherin	1:5000	BD Biosciences (#610182)
N-Cadherin	1:1000	Cell Signaling (#4061)
HDAC1	1:1000	Santa Cruz (#sc-8410)
β-Actin	1:1000	Santa Cruz (#sc-1616)

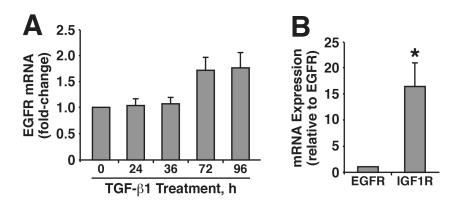
Supplemental Table 5: Immunoblotting antibodies


Shown are the antibodies and dilutions used to visualize the indicated proteins. Also provided are the vendors where these reagents were obtained.

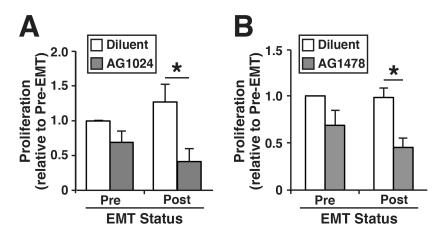
Supplementary Figure S1: Tian & Schiemann

Supplementary Figure S1: TGF- β induces EMT phenotypes in MCF-7 cells in both 2D- and 3Dcultures. (A-C) MCF-7 cells were propagated in either2D- or 3D-culture systems and treated with TGF- β 1 (5 ng/ml) for either 72 h (A and B) or 96 h (C) in 2D-cultures, or for either 8 days (A and B) or 96 h (C) as indicated. Afterward, total RNA has harvested and subjected to real-time PCR analyses to monitor the expression of the epithelial markers E-cad and CK19 (A), of the mesenchymal markers vimentin and N-cad (B), or of Cox-2 (C). (D) MCF-7 cells were stimulated with TGF- β 1 for 0-96 h as indicated, at which point the levels of MMP-9 were monitored by realtime PCR. Data are the mean fold-changes (±S.E.; n=3; **P*<0.05; Student's *t*-test). (E) MCF-7 cells were stimulated with TGF- β 1 (5 ng/ml) for 96 h, and subsequently were fixed in paraformaldehyde and processed for indirect immunofluorescence of β -catenin, as well as for direct immunofluorescence of actin. Images are representative of 2-independent experiments (X 400).

Supplementary Figure S2: Tian & Schiemann


Supplementary Figure S2: TGF- β induces EMT phenotypes in BT474 cells. (A) BT474 cells were treated with TGF- β 1 (5 ng/ml) for 0-72 h to induce an EMT program. Photomicrographs depict accompanying alterations in cell morphology (X 400). (B) BT474 cells were stimulated with TGF- β 1 (5 ng/ml) for 0-96 h as indicated, at which point differences in the expression of E-cad and N-cad mRNA (*top*) and protein (*bottom*) were determined. mRNA data are the mean fold-changes (±S.E.; n=3; **P*<0.05; Student's *t*-test), while protein data are representative images from 3-independent experiments. (C and D) BT474 cells were treated with TGF- β 1 (5 ng/ml) for 0-96 h, at which point the expression of β -catenin, CK19, and ZO-1 (C) or of MMP-9, Twist-1, and vimentin (D) were monitored by real-time PCR. Data are the mean fold-changes (±S.E.; n=3;**P*<0.05; Student's *t*-test). (E and F) BT474 cells were stimulated with TGF- β 1 (5 ng/ml) for 72 h, and subsequently were fixed in paraformaldehyde and processed for indirect immunofluorescence of either E-cad (E) or β -catenin (F), as well as for direct immunofluorescence of actin (E and F). Nuclei were visualized by DAPI staining. Images are representative from 3-independent experiments (X 400).

Supplementary Figure S3: Tian & Schiemann


Supplementary Figure S3: TGF- β regulates estrogen signaling and EGFR expression in BT474 cells. **(A)** Differential mRNA expression of ER- α and ER- β in quiescent BT474 cells. **(B)** BT474 cells were stimulated with TGF- β 1 (5 ng/ml) for 0-96 h as indicated. Afterward, total RNA was harvested and subjected to real-time PCR to monitor differences in ER- α expression. **(C)** BT474 cells were transiently transfected overnight with p3TP-, pSBE-, or pERE-luciferase and pCMV- β -gal cDNAs prior to their stimulation for 24 h with TGF- β 1 (5 ng/ml). Afterward, luciferase and β -gal activities contained in detergent-solubilized cell extracts were measured. Data are the mean fold-changes (±S.E.; n=3;**P*<0.05; Student's *t*-test).

Supplementary Figure S4: Tian & Schiemann

Supplementary Figure S4: TGF- β regulates EGFR and IGF-1R expression in BT474 cells. (A) BT474 cells were stimulated with TGF- β 1 (5 ng/ml) for 0-96 h as indicated, at which point differences in EGFR expression were monitored by real-time PCR. (B) Differential mRNA expression of EGFR and IGF-1R in quiescent BT474 cells. Data are the mean fold-changes (±S.E.; n=3; **P*<0.05; Student's *t*-test).

Supplementary Figure S5: Tian & Schiemann

Supplementary Figure S5: Post-EMT cells are sensitized to inhibitors against IGF-1R and EGFR. Pre- and post-EMT MCF-7 cells were cultured in the absence (diluent) or presence of AG1024 (10 μ M; **A**) or AG1478 (10 μ M; **B**) for 5 days prior to analyzing differences in cell growth and survival by MTS assays. Data are the mean growth (±S.E.; n=3; **P*<0.05; Student's *t*-test).