
Supplementary Note 1. Schematics of the model when a cell’s phenotype is
interpreted as the density of cellular permeases
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For the phenotype indexed by x, we parametrize the abundance of u-permeases by αx, the
abundance of v-permeases by βx, and assume that the total abundance of permeases is fixed. Here
ni,x is the abundance of cells with phenotype x in growth state i; ñi,x is the abundance of cells in
state i bound to a substrate; and n(u)

i,x is the abundance of cells that are actively metabolizing u and
n

(u)
i,x is the equivalent for v. Substrate u is encountered by cells at a rate proportional to ku, and

the probability that a u substrate binds a u-permease is proportional to the density of u-permeases
on the cell: sx = αx/(αx + βx). Once a substrate is encountered, we assume that the substrate
is either imported or lost quickly so that ñi,x is at quasi steady-state. When imported, a unit of
substrate is metabolized at substrate-specific rate, mu for u and mv for v, and we assume that a
cell cannot import more substrate until the previous unit is fully metabolized. Substrates u and v
enter the chemostat at rates u(0) and v(0), and cells and substrates are washed out at a rate D.
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Supplementary Note 2. Schematics of the model when a cell’s phenotype is
interpreted as the probability of stochastic switching between metabolic states
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A cell is in a state that can use u substrate or a state that can use v substrate or is transitioning
between states. Here ni,x,u is the abundance of cells with phenotype x in growth state i and
in metabolic state u; ni,x,v is the abundance of cells with phenotype x in growth state i and in
metabolic state v; ñi,x is the abundance of cells transitioning from one state to another; and n(u)

i,x

is the abundance of cells that are actively metabolizing u and n
(u)
i,x is the equivalent for v. The

phenotype value, sx = αx/(αx+βx), is the probability that a cell switches to the u-metabolic state,
and (1 − sx) is the probability that the cell switches to the v-metabolic state. We assume that
transitions are independent and that the switching probabilities are not affected by the environment.
A cell can, however, transition state by encountering the other substrate. Cells that have imported
a substrate cannot import more substrates until the current substrate has been metabolized, at
rate mu for u and mv for v. Substrates u and v enter the chemostat at rates u(0) and v(0), and cells
and substrates are washed out at a rate D.
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Supplementary Note 3. Algorithm for constructing the invasion map

The algorithm exhaustively simulates all invasion models by dynamically identifying which invasion
scenarios are relevant (an example is shown in Fig. 2). To reduce the number of equations during
numerical integration, we also dynamically re-generated the chemostat model to include only the
equations for populations with non-zero initial abundances. The algorithm accepts a set of nine
environmental parameters as arguments and returns: 1. A dictionary (an associative array) of
dynamically-stable resident phenotype composition states, C, arbitrarily indexed by order of dis-
covery. 2. An identically-keyed dictionary holding the abundances for the phenotype populations
and substrates at steady-state, N . 3. An array of state transitions, T , where each element has the
form (i, y, j) to indicate that composition state i is transformed to state j as a result of invasion
by mutant phenotype y with phenotype value sy. Pseudocode for the algorithm is shown below.
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Initialize data structures (with phenotype-null state, indexed as 0)
C ← (0 : C0 = [0, 0, . . . , 0]) . dictionary of unique resident phenotype compositions
N ← (0 : N0 = [0, 0, . . . , 0, u∗, v∗]) . dictionary of chemostat steady states
T ← ∅ . array of transition tuples, initially empty
Q← 0 . FIFO queue, initialized with state 0
$counter = 0 . integer to keep track of number of unique composition states
Main loop constructs invasion map (tree) in breadth-first manner
while Q is not empty do

i← dequeue (Q) . state index from front of queue
Ci ← C[i]
Ni ← N [i]

Challenge state with all novel phenotype mutants
for (y = 0; y ≤ 10; y + +) do

if Ci,y == 1 then
continue . phenotype already exists in resident composition

end if
if (i, y, ·) ∈ T then

continue . mutation/invasion event simulated elsewhere
end if

Must simulate mutation/invasion event
construct model equations, M
ε = δ ·minNi,x>0{Ni,x} . size of nascent mutant population and extinction threshold
perturb resident steady state to get initial conditions: Ni,y = Ni,y + ε
integrate M numerically, with perturbed initial conditions, to steady state, Nk

Inspect steady state and remove extinct phenotypes:

Ck,x =
{

1 Nk,x > ε

0 otherwise

Nk,x =
{
Nk,x Ck,x == 1
0 otherwise

if Ck /∈ C then . discovered a new state?
j = + + $counter . increment index counter for new state
C ← (j : Ck)
N ← (j : Nk)
Q← enqueue(j) . enqueue the new state for future inspection at the back of the

queue
else

j = k′ s.t. C[k′] = Ck . reverse look-up to get index of already discovered state
end if
T ← (i, y, j) . append state transition (from i to j as a result of invasion by mutant y)

end for
end while
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Supplementary Figure 1. Pairwise invasibility plots (PIPs) are not sufficient to de-
scribe the full repertoire of adaptation dynamics. We illustrate this insufficiency with an
example that includes a branching event. (a) A sample mutational path in continuous phenotype
space passes through a branching point where the monomorphic population becomes a dimorphic
community. At each time point (representing a mutation), the black dot denotes the current res-
idents’ phenotypes and the red dot denotes the mutant’s phenotype. If a mutant invades, the red
dot becomes a black dot at the following time point. (b) The PIP shows the branching point and
adequately describes monomorphic adaptation dynamics leading there. After branching, however,
ecological dynamics are no longer pairwise (since there are two residents and one mutant) and the
PIP cannot describe the subsequent trajectory seen in A that leads to the establishment of a spe-
cialist and a generalist. (c) The network of mutational paths reproduces the information contained
in the pairwise invasibility plot (monomorphic adaptation dynamics in the network’s tail), but also
describes the fate of all possible transient communities after the branching point. To highlight
the PIPs’ insufficiency, we note two examples where the fate of a phenotypic mutant cannot be
explained by pairwise interactions. A s = 0.30 mutant can invade a s = 0.25 resident but the con-
verse is not possible. When the community consists of two resident phenotypes, {s1 = 1, s2 = 0.3},
however, a s = 0.25 mutant phenotype can invade and drive the s = 0.30 resident to extinction in
disagreement with the competition outcomes predicted by the PIP. A similar reversal of invasibility
occurs between s = 0.80 and s = 0.85, where the former can invade and drive the latter to extinc-
tion in the monomorphic setting, but the resident community {s1 = X, s2 = 0.80} (blue highlight)
can by invaded by a s = 0.85 mutant (red highlight) in the presence of certain other co-residents.
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Supplementary Figure 2. Standard (local) adaptive dynamics theory is not sufficient
for describing adaptation dynamics with large mutations. We illustrate this insufficiency
with an example that includes large-effect mutations that induce population diversification and co-
existence. (a) A sample mutational path in continuous phenotype space undergoes diversification
via a large-effect mutation (monomorphic population with s ≈ 0.6 resident becomes dimorphic after
invasion by s ≈ 0.3 mutant) after 4 mutations. The two co-residents then diverge to the evolution-
arily stable community with two metabolic specialists. (b) The PIP shows that the branching point
around s ≈ 0.3 is convergence-stable in the limit of infinitesimally-small mutations: monomorphic
populations where s < 0.3 or s > 0.3 will converge to the branching point. A local invasion anal-
ysis of the branching point will suggest that it is not an ESS because nearby mutants can invade.
However, the fate of the dimorphic community after branching cannot be understood from the PIP
— in fact, subsequent divergence proceeds contrary to the information in the PIP. In addition,
when mutations have large-effect, there are many possible mutation and invasion events that lead
to diversification, as indicated by the grey bands, and a local analysis of the branching point is
insufficient. (c) The network of mutational paths (for intermediate-size mutations) visualizes both
monomorphic and dimorphic adaptation dynamics. We highlight the existence of many diversifica-
tion mutation and invasion events (edges crossing the red curve), most of which involve large-effect
mutations. The resulting transient resident-mutant communities cannot be analyzed by standard
adaptive dynamics theory, which assumes a continuum of infinitesimally-small mutations.
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Supplementary Figure 3. Comparing stochastic simulations in continuous phenotype
space with simulations using a discrete phenotype space. We illustrate agreement between
the two simulation regimes for an example process that exhibits cycling and quasi-periodicity. (a)
When the maximum mutation size is small (∆Smax < 1/10), the process has a single periodic cycle
of diversification and extinction. (b) For large mutations, the closed communication class in the
Markov process is aperiodic.
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Supplementary Figure 4. Stochastic simulations can cause dimorphic communities to
converge to a monomorphic population. Two co-existing populations can converge to a sin-
gle monomorphic population if infinitesimally small mutations are permitted; discrete phenotype
spaces, therefore, can in some cases allow dimorphic communities to be maintained. (a) In this
process, the recurrent dimorphic community of generalists is not evolutionarily stable in the contin-
uous case: the two phenotypes converge to a single generalist population. (b) In a different process,
however, the recurrent dimorphic community of generalists is maintained in the continuous case.
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Supplementary Figure 5. Stochastic simulations in continuous phenotype space for a
multi-stationary process. Stochastic simulations are in agreement with our usual determinis-
tic simulations in a discrete phenotype space. (a) The network for the multi-stationary process
with both a monomorphic and a dimorphic generalist as the recurrent states. The stationary
probability for the monomorphic state is 0.84; the probability for the dimorphic state is 0.16. (b)
Distribution of the end-points of 550 stochastic simulations in continuous phenotype space. Approx-
imately 80% of mutational paths terminate around the monomorphic generalist state (phenotypes
around {0.6, 0.6}); the remaining paths terminate at a hybrid state (phenotypes around {0.6, 1.0}
or {1.0, 0.6}).
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Supplementary Figure 6. A hierarchical classification model poorly predicts evolution-
ary outcomes from environmental parameters. The hierarchy of the classification model
follows the hierarchical outcome scheme in Fig. 3a. Edges are labeled to indicate the node classifier
recall (the fraction of relevant samples that were recovered) in a 10-fold cross-validation setting
(reporting mean ± standard deviation). The hierarchical classifier’s overall recall for each of the
eight evolutionary outcomes is the product of the edges in the path from the root of the tree
(‘all’ outcomes) to each of the eight leaves. For example, the recall for dimorphic generalists is
0.95× 0.92× 0.93× 0.92 = 0.75. The average recall over the eight outcomes is 0.78, which suggests
that predicting long-term outcomes from environmental conditions alone is likely to be difficult.
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Supplementary Figure 7. Shortest distance distributions between all pairs of evolu-
tionary outcomes. To construct the distributions, we determined for each point in a standardized
parameter space the smallest Euclidean distance to another point of each of the eight evolutionary
outcome classes (Methods). The i, j panel (counting from the top-left corner) shows the shortest
distance distribution from the i’th outcome to the j’th outcome (and also, as a reference, to itself).
The distributions are asymmetric, and the asymmetry arises because of differences between the
shapes of the outcome clusters in parameter space (Fig. 4b).
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Supplementary Figure 8. Illustration of the six network centrality measures. To show
how network vertices rank in terms of each centrality measure, we scaled the size of each vertex
in proportion to its centrality value on a per-network basis. Brief descriptions of the centrality
measures are given in Supplementary Table 1. The reported mean and variance, which we ultimately
use to reduce the dimensionality of feature space for predictive models, is taken over the vertices
in each network.
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Supplementary Figure 9. Mutual information and (convergence) error for the mean
and variance of six centrality measures. We show both mutual information and convergence
error as a function of the fraction of network completion and the maximum mutation size (Fig. 6b).
High mutual information implies that the centrality statistic can be used to make reliable predictions
of the long-term evolutionary outcome because networks with different outcomes have distinct
distributions of that centrality statistic. The convergence error is the difference between the statistic
value of an incomplete network and its the statistic value for the same network’s complete form
(Methods). A low error implies that the incomplete network has centrality values similar to its
complete network, which in turn implies that the incomplete network’s topological properties have
converged to those of its (ultimate) complete network. (a) Figure legend. Note that the network
completion and maximum mutation size axes are transposed relative to Fig. 6. (b) The twelve
centrality statistics characterized by both their mutual information with the evolutionary outcome
and their convergence error.
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Supplementary Figure 10. Effect of marginalizing over the maximum mutation size
and network completion during prediction. We assessed classifier performance via the mean
unweighted F1 score taken over the seven evolutionary outcomes and report the mean test set
performance in ten-fold cross-validation.
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In both (a) and (b): Top and right line plots show average performance with the standard deviation
in shaded regions taken over either the columns (network completion) or rows (maximum mutation
size) of the central panel. The red line is the benchmark performance of a naive classifier that pre-
dicts following the empirical frequencies of the outcome classes. The 20 small insets show averaged
confusion matrices for the seven evolutionary outcomes. (a) Network completion and maximum
mutation size are known features during testing. (b) Network completion and maximum mutation
size are ‘missing’ features during testing, and we marginalize over both to obtain prediction prob-
abilities. This figure is a reproduction of Fig. 6c, with horizontal and vertical axes transposed, to
allow easier comparison with Supplementary Fig. 10a.

Supplementary Table 1. Descriptions of the six centrality measures calculated for
complete and incomplete networks.

In-degree The number of edges arriving at a vertex. This number generally in-
creases with increasing maximum mutation size so the variance between
the vertices’ in-degree is usually a better measure for comparing net-
works. From a biological point of view, a vertex’s in-degree is the num-
ber of community states that can be transformed to the target state
through a single mutation and invasion event.

Out-degree The number of edges leaving a vertex. As with in-degree, the variance is
a better measure for comparison. Biologically, it is the number of mutant
phenotypes that can successfully invade the microbial community.

Betweenness A measure of the number of shortest paths that pass through a vertex.
That is, for a vertex v, its betweenness is

∑
s 6=v 6=t σst(v)/σst, where σst

is the number of all shortest paths between vertices t and s, and σst(v)
is the number of those shortest paths that pass through v. For example,
in the Supplementary Fig. 11 (‘betweenness’ panel, right-hand network)
the cluster of pink (dimorphic hybrid) vertices have high betweenness
because all paths, including shortest paths, must pass through these
vertices to reach the recurrent state. A high betweenness indicates po-
tential bottleneck points in the adaptation process, particularly when
mutations can only be small, because many mutational paths must pass
through the vertex with high betweenness.

Closeness The reciprocal of the average geodesic (shortest) distance from a vertex
to all other vertices. Vertices that have a large closeness can reach
other vertices in fewer steps compared to vertices with low closeness.
Potentially, vertices with high closeness indicate points in the adaptation
process with high potential for diversification because they can transition
to many other community states after a few mutation events.

HITS-
authority &
HITS-hub

The HITS algorithm assigns a high hub value for vertices that connect
to other vertices with high authority value, and a high authority value
to vertices that are connected to by vertices with a high hub value. Be-
cause of the cyclical nature of these definitions, the algorithm iteratively
updates hub and authority values to determine each vertex’s final val-
ues. Extending the definition to adaptation process, vertices with high
authority values represent microbial communities that can be jointly
reached by many other communities (the hubs) through mutation. The
hub communities themselves can be invaded by many mutant popula-
tions to establish those communities (the authorities) that act as states
commonly observed in parallel evolutionary experiments.
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