
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

Josephides and Swain generate a novel computational approach for investigating how 

tradeoffs influence adaptive dynamics. Specifically the authors use a Markov process to 

generate maps of all possible evolutionary trajectories under different environmental 

conditions. The approach differs from previous approaches by allowing larger mutational 

steps and maintenance of two genotypes. The primary findings are that 1) there are many 

possible evolutionary outcomes even in simple environments 2) evolutionary outcomes 

cannot be predicted from environmental conditions and 3) limiting mutation size tends to 

make evolutionary dynamics more repeatable, but increases the number of steps to an 

evolutionarily stable endpoint.  

 

The authors provide a large amount of data in this densely packed manuscript. The richness 

of evolutionary dynamics is interesting. My primary concern is that the author's do so little 

to connect their work to the field more broadly. For example, how do any of the 

computational results compare to wet lab observations? Further, it is important to highlight 

that the new method recapitulates previous results (i.e. Supp figures 4 and 5 should be 

discussed more). A vast array of network analysis is carried out, but this analysis is weakly 

connected to biological understanding.  

 

Minor suggestions:  

 

1) The data in figure 5C is difficult to see. Perhaps darker colors could be used?  

 

2) I found the direction of the y-axis in figure 6B confusing, but this is a personal 

preference.  

 

3) It would be nice to see some discussion of how mutational constraints might influence 

changes in phenotype over evolutionary time. I am not suggesting more analyses, just 

discussion of the fact that the phenotypic changes that are being modeled would actually be 

driven by genetic mutations. Some mutations may be more common than others, and some 

phenotypes may be mutationally inaccessible (reversions may be particularly unlikely). 

Additionally, evolvability/robustness of organisms might change as a result of adaptation.  

 

4) In the last section of the results it would be useful to see more discussion of how 

incomplete networks relate to a single adaptive trajectory. A single adaptive trajectory 

seems different than partial mapping of the complete network of all possible evolutionary 

trajectories. I suspect that one would get much less information from a single adaptive 

trajectory than is being considered in the partial networks. 

 

 

 

Reviewer #2 (Remarks to the Author):  

 



In the manuscript, authors Josephides and Swain propose a simple model on the 

competition and the accompanying adaptive evolution of microbial communities, and 

perform in silico experiments on it to shed light on its dynamics and emerging patterns. 

They hierarchically separate the evolutionary outcomes of this model into seven broad 

categories defined in terms of the phenotypes of the constituent populations, and study how 

these outcomes depend on a) environmental parameters, b) the structure of the network of 

mutational paths that represent the dynamics of the adaptation process. Taking one further 

step in the latter direction, they make the argument that in more complex models that 

involve more environmental parameters and more diverse populations, the computational 

burden might prevent the comprehensive simulation of the entire system (i.e. the 

determination of all possible mutational paths) and therefore predicting those outcomes on 

incomplete networks becomes of essence. They demonstrate that this is possible using 

simple centrality measures.  

 

In general, I found the paper well-written and the subject matter compelling.  

The suggested model is simplistic but the resulting dynamics are rich, which lends itself well 

to a system-wide treatment by the use of graph theoretical tools. Networks are increasingly 

being used to represent associations between microbial communities, and the extension of 

the same approach to networks representing temporal steps of evolution presents an 

exciting direction for researchers. That said, the paper has considerable room for 

improvement to make it more accessible to the general audience. Below are my specific and 

general comments.  

 

 

1) As a general comment, it may be a little hard at times to follow the text because some 

eco-evolutionary concepts and terms are used without much introduction. As it is now, it 

looks more like it is aimed at a topic-specific journal than the broad readership of Nature 

Communications. It could benefit from having some basic concepts, even if they’re 

completely fundamental to readers in the field, defined in one sentence in order to prevent 

it from sounding like jargon. For example, there could be a brief definition of chemostat. It’s 

simple enough a concept - just needs to be described shortly. The same goes for “import 

capacity” on line 68. Along the same lines, the Fig. 1C paragraph (lines 82-86) can be made 

much more “user-friendly”. The use of terminology like “substrate specific yield” (instead of 

mass, I guess?), etc. makes it hard to follow whereas the basic premise is quite simple. 

Cells eat u and v at rates proportional to u and v concentrations and divide once a certain 

mass is reached. I think all of the above can simply be circumvented by defining “import 

rate”, “metabolic rate”, “yield”, “growth state” etc. in simple terms once and for all, in 

Figure 1's caption.  

 

2) The waiting time between state transitions is ignored in the paper. Can the authors 

comment on whether or not the time elapsed between transitions has any implications in 

terms of the evolutionary time scale?  

 

3) Since it’s a frequently used parameter in the subsequent analyses, it would be helpful to 

the reader to include a short biological interpretation of the maximum mutation size Delta_S 

with a few words, alongside its formal definition in line 125.  



 

4) Could the authors make the explanation of truncation a little clearer? What exactly is 

meant by recursion?  

 

5) In line 146, what exactly are environmental parameter sets? I understand that it’s 

10,000 realizations with different parameters but it would be helpful to reiterate which 

environmental parameters were changed.  

 

6) In Fig. 3, four out of 10,000 environmental parameter sets are shown. How 

representative are these? The authors show the statistics of these to some extent in the 

following sections but how can one make sure that the four types are the only patterns of 

interest? Is there a way to quantify that?  

 

7) In lines 181-182, the authors say no clear pattern emerged in Fig. 4A. What was the 

hypothesis, what kind of an outcome was expected? In other words, how should eac h of 

these plots be interpreted to see any “pattern”? The first two panels are (dilution rate and 

influx) are discussed but what about the interpretation of the last three panels? Also, how 

are the dotted lines in the second panel of Fig. 4A determined? Are they a guide to the eye 

or quantified?  

 

8) Supplementary Fig. 9: How exactly is it decided that it’s poor predictive performance (not 

reliable) with the given recall rates? They look high to me. How is the mean 0.78 when the 

lowest recall is 0.83? It may be something obvious that I cannot see, but what was the 

criterion here? It would help if this were clarified.  

 

9) It’s important to note that Supp. Fig. 10 is not symmetric, i.e. distinguishes between the 

“from” state and the “to” state. The same applies to Fig. 4C. In fact, both figures can be 

made easier to understand, especially Fig. 4C, which is a main figure. It’s confusing to have 

the labels in the same order in the left and right panels. It should simply say distance from 

monomorphic specialist to other in the left, and other to monomorphic in the right.  

 

10) On a related note, it’s not entirely clear to me why Fig. 4C is not symmetric if it’s based 

on distance. Can the authors clarify the rationale behind this asymmetry? It makes sense 

that it’s much more likely to transition from a diverse population to a specialized one than 

the other way around, but how does that translate to what we see in the Euclidean distance 

distributions? A simple interpretation would help the reader a lot here.  

 

11) From Fig. 5B, it looks to me as if it’s not only dimorphic specialists but also multiple 

recurrent and monomorphic specialist that don’t increase monotonically but rather plateau 

early on and stay the same with increasing mutation size. The authors, however, say that 

entropy typically increases with mutation size. That seems to apply only to orange (one 

generalist), green (two generalists) and hybrid (to some extent).  

 

12) In my opinion, Fig. 5A does a better job at simply explaining how to read the mutational 

path networks (i.e. starts from a monomorphic state, ends at a recurrent state etc.). This 

explanation should be carried over to Fig. 3B-E as well.  



 

13) Line 247: Larger mutation size leads to fewer bottlenecks. Could the authors shortly 

explain what may be reason like they did in the same paragraph for the path lengths?  

 

14) Supplementary Fig. 11 needs a much more informative caption. The mean and variance 

of each measure for each network is given but overall the figure doesn’t convey to the 

reader how these centrality measures differ qualitatively from each other. It says, “vertices 

are scaled…” to mean the vertex size, this should be clarified. At minimum, it should be 

made clear that, simply, the larger nodes, be it round or square, have higher cent rality of 

the respective kind. Although an even better approach would be to give specific network 

instances that emphasize each centrality type, e.g. a bottleneck node for high betweenness 

centrality.  

 

15) Line 287: “Most informative centrality measures converged gradually?” What is meant 

by most informative, simply ones with the highest mutual information? In any case, the 

authors should try to explain intuitively why in-degree of HITS hub are considered more 

informative, and what it means for them to converge gradually? Does it mean they are 

more crucial as a centrality measure to predict true recurrent states? If so, this should be 

stated explicitly to help the reader understand this section better.  

 

16) As a final suggestion for a discussion point, I think the authors could recognize some 

recent efforts on network methods used in microbial evolution modeling such as:  

Faust, K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature 

Reviews Microbiology, 10(8), 538-550.  

I think it’s important to comment on the current divide between simple computational 

models and real-world microbial communities and how current methods can be improved 

specifically in this direction to align the two worlds.  

 

 

Minor issues and typos:  

 

1) Typo in Figure 2 caption, line 3: “phenotypes values”  

 

2) In Supplementary Figs. 1 and 2, m_u and m_v are not defined.  

 

3) What’s the circle next to “truncated node” in Fig. 2? I believe it means darker gray nodes 

are truncated nodes, this should either be made clear or it should be removed.  

 

4) Line 153: A (insert: single) recurrent state may be a dimorphic or…  

 

5) Fig. 4B says both “normalized Euclidean distance” on the color bar and “pairwise 

standardized parameter distance” on the right hand side. Are they not  the same? It would 

be better to standardize the notation.  

 

6) Line 182, “Using a nearest-neighbors algorithm…” The authors cite the original paper for 

this algorithm in the methods section so there should be a reference here to the Methods 



section.  

 

7) Supplementary Fig. 10: I am assuming Euclidean distances, i.e. similarities, are meant 

by “normalized shortest distances”. If so, this should be made clear so as not to confuse the 

reader since the term “shortest distance” has a clear connotation in network theory. The 

shortest distances mentioned here could be confused with the shortest paths or geodesics in 

the network.  

 

8) Figure 2 caption, line 3: “phenotypes values”  



Response to reviewers

Predicting metabolic adaptation

from networks of mutational paths

Christos Josephides, Peter S. Swain

We would like to thank both reviewers for their critical comments, which we believe have substantially
improved the paper. We have re-written the Discussion section and substantially revised the Methods
and Supporting Information sections; elsewhere in the manuscript, we have marked significant changes
in blue. The reviewers’ reports are reproduced in bold below wherein we interpose our response to
individual points as they appear.

Response to reviewer 1

Josephides and Swain generate a novel computational approach for investigating how
tradeoffs influence adaptive dynamics. Specifically the authors use a Markov process
to generate maps of all possible evolutionary trajectories under different environmental
conditions. The approach differs from previous approaches by allowing larger mutational
steps and maintenance of two genotypes. The primary findings are that 1) there are many
possible evolutionary outcomes even in simple environments 2) evolutionary outcomes
cannot be predicted from environmental conditions and 3) limiting mutation size tends
to make evolutionary dynamics more repeatable, but increases the number of steps to
an evolutionarily stable endpoint.

The authors provide a large amount of data in this densely packed manuscript. The
richness of evolutionary dynamics is interesting. My primary concern is that the author’s
do so little to connect their work to the field more broadly. For example, how do any of
the computational results compare to wet lab observations?

We have made substantial changes to better connect our work to existing knowledge, including state-
ments about the relevant laboratory and field context for the applicable computational results as they
appear in the text. In addition, we have entirely re-written and extended the Discussion to emphasise
how our results and predictions are relevant to real microbial communities, experimental observations,
and to the field’s current state with regards to theory.

More specifically, we have included comments and the appropriate references at:

(i) Lines 103 & 518: for the premise for the phenomenological trade-offs we investigate, which is
founded on realistic experimental observations;

(ii) Lines 128 & 441: for frequency-dependent effects, such as the reversal of the invasibility relation-
ship between a pair of phenotypes in the presence of co-residents, which have been verified both
in laboratory evolution experiments and in experimental models of the human gastrointestinal
tract, where they are pervasive;

(iii) Lines 219 & 452: showing that the multi-stationary evolutionary outcomes we observe are con-
nected to the alternative community states detected in planktonic ecosystems and in the gas-
trointestinal tract;
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(iv) Lines 226 & 454: remarking that our evolutionary cycling outcomes are similar to the ecological
cycling demonstrated in a microbial food web, although we note that the two phenomena have
an important difference in timescales, and are related to results on evolutionary chaos;

(v) Line 479: noting the similarity between the topological features that we extract from networks of
mutational paths to the statistical indicators of predictive early-warning systems and highlighting
that a short-coming of these early-warning models is that only a single ecological transition is
considered, whereas our models predict qualitative community changes over longer time-scales
involving multiple transitions;

(vi) Lines 34 & 457: connecting the repeatability of adaptation dynamics that we study to evolution
experiments that demonstrate how replicate evolving populations have both unique and com-
mon adaptive changes and further predicting that repeatability in adaptation can be controlled
through choosing the experimental conditions in chemostats;

(vii) Lines 482 & 489: framing our methodology in a broader theoretical context, including a new
paragraph to connect our network models to instances where networks have been used previously
in ecology and evolution;

(viii) Line 512: describing an evolution experiment to validate our theoretical results.

Further, it is important to highlight that the new method recapitulates previous results
(i.e. supplementary figures 4 and 5 should be discussed more).

In the paragraph starting on line 151, we now draw attention to Supplementary Figures 4 & 5 to
indicate that as well as extending existing theory we recover previous theoretical results. We also
include a discussion of the effects of frequency-dependent invasion fitness described in Supplementary
Figure 4 in a new paragraph starting on line 142 and in Fig. 3B.

A vast array of network analysis is carried out, but this analysis is weakly connected to
biological understanding.

We find this statement too harsh and, indeed, reviewer 2 refers to the same analysis as ‘an exciting
direction for researchers’.

In particular:

(i) In the section now entitled ‘Mutational path properties identify evolutionary outcomes’, we
discuss properties of the mutational paths that all have a direct biological interpretation in
terms of the number of successful mutations required to reach the long-term outcome. A more
complex example is the minimum cut size, which is a measure of the extent of evolutionary
bottle-necks in the mutational process.

(ii) Our analysis of predicting the evolutionary outcome from the environment (Figure 4) is clearly
a biologically important question and, as we show, has relevance for both the complexity and
stability of microbial communities.

(iii) Figure 5 uses network analysis to demonstrate that different evolutionary outcomes have char-
acteristic dynamics of adaptation, potentially a fundamental property of evolution.

(iv) Figure 6 addresses predicting evolutionary outcomes from the partially sampled networks of mu-
tational paths found in experiments. The network centralities used may be abstract quantities,
but we argue that their biological relevance is not important here where the focus is instead
to find indicators that work. Such indicators are still useful even if they themselves are not
biologically interpretable.

Minor suggestions:

1) The data in figure 5C is difficult to see. Perhaps darker colors could be used?
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We apologize and have now fixed a bug in our figure-generating code that did not correctly render
some lines. The panels in Figure 6 are also easier to see now.

2) I found the direction of the y-axis in figure 6B confusing, but this is a personal
preference.

We transposed the horizontal and vertical axes in Figure 6B and 6C to make all horizontal axes in
Figure 6 represent the degree of network completion.

3) It would be nice to see some discussion of how mutational constraints might influence
changes in phenotype over evolutionary time. I am not suggesting more analyses, just
discussion of the fact that the phenotypic changes that are being modeled would actually
be driven by genetic mutations. Some mutations may be more common than others,
and some phenotypes may be mutationally inaccessible (reversions may be particularly
unlikely). Additionally, evolvability/robustness of organisms might change as a result of
adaptation.

We thank the reviewer for pointing out this implicit assumption in our model, and we have now added
some sentences to the discussion highlighting how we include such constraints and the changes we
expect if the constraints are altered (lines 504-511).

4) In the last section of the results it would be useful to see more discussion of how
incomplete networks relate to a single adaptive trajectory. A single adaptive trajectory
seems different than partial mapping of the complete network of all possible evolutionary
trajectories. I suspect that one would get much less information from a single adaptive
trajectory than is being considered in the partial networks.

We agree that this point is important and have now added a comment in line 378 to indicate that a
single incomplete trajectory is unlikely to contain enough information to enable reliable prediction.
Nevertheless, the experimental scenario we describe in line 369 is a common one — multiple replicate
evolution experiments running in parallel where each reveals an incomplete adaptive trajectory — and
is closer to how we envisioned networks of mutational path networks might be constructed.

Response to reviewer 2

In the manuscript, authors Josephides and Swain propose a simple model on the compe-
tition and the accompanying adaptive evolution of microbial communities, and perform
in silico experiments on it to shed light on its dynamics and emerging patterns. They
hierarchically separate the evolutionary outcomes of this model into seven broad cate-
gories defined in terms of the phenotypes of the constituent populations, and study how
these outcomes depend on a) environmental parameters, b) the structure of the net-
work of mutational paths that represent the dynamics of the adaptation process. Taking
one further step in the latter direction, they make the argument that in more complex
models that involve more environmental parameters and more diverse populations, the
computational burden might prevent the comprehensive simulation of the entire system
(i.e. the determination of all possible mutational paths) and therefore predicting those
outcomes on incomplete networks becomes of essence. They demonstrate that this is
possible using simple centrality measures.

In general, I found the paper well-written and the subject matter compelling. The
suggested model is simplistic but the resulting dynamics are rich, which lends itself
well to a system-wide treatment by the use of graph theoretical tools. Networks are
increasingly being used to represent associations between microbial communities, and
the extension of the same approach to networks representing temporal steps of evolution
presents an exciting direction for researchers. That said, the paper has considerable
room for improvement to make it more accessible to the general audience. Below are
my specific and general comments.
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1) As a general comment, it may be a little hard at times to follow the text because
some eco-evolutionary concepts and terms are used without much introduction. As it is
now, it looks more like it is aimed at a topic-specific journal than the broad readership
of Nature Communications. It could benefit from having some basic concepts, even if
they’re completely fundamental to readers in the field, defined in one sentence in order
to prevent it from sounding like jargon. For example, there could be a brief definition
of chemostat. It’s simple enough a concept — just needs to be described shortly. The
same goes for “import capacity” on line 68.

We now explain concepts and keywords that may be unfamiliar to a general audience, such as the
chemostat (line 63), the weak-mutation limit (line 116), and frequency-dependent fitness (line 142).

Along the same lines, the Fig. 1C paragraph (lines 82-86) can be made much more
“user-friendly”. The use of terminology like “substrate specific yield” (instead of mass,
I guess?), etc. makes it hard to follow whereas the basic premise is quite simple. Cells
eat u and v at rates proportional to u and v concentrations and divide once a certain
mass is reached. I think all of the above can simply be circumvented by defining “import
rate”, “metabolic rate”, “yield”, “growth state” etc. in simple terms once and for all,
in Figure 1’s caption.

To improve readability of this section, we divided the section describing ecology into two subsections:
the first describes the chemostat growth environment (line 62); the second describes only the metabolic
specialization trade-off (line 90). In the first subsection, we simplified our description of the microbial
growth cycle, particularly with regard to progression through the space of growth states and to sub-
strate import, metabolism, and yield. A new paragraph (line 85) summarizes the nine environmental
parameters that describe the chemostat model. To reduce the amount of information required to
understand the relevant aspects of ecology, we moved the paragraph describing mutant invasion to
the next section (line 111), since it is more appropriately read as an introduction to mutation-limited
adaptation.

2) The waiting time between state transitions is ignored in the paper. Can the authors
comment on whether or not the time elapsed between transitions has any implications
in terms of the evolutionary time scale?

We omit time between state transitions in our models because the assumption that ecological and evo-
lutionary timescales are perfectly separated complicates the calculation and interpretation of waiting
times. Our models therefore do not quantify the evolutionary time scale but rather only work with
the sequence of mutations. We add a comment to clarify this point in line 166 and explain in the
Discussion (line 497) that relaxing the separation of the two timescales requires the development of a
general stochastic theory of birth, death, and mutation.

3) Since it’s a frequently used parameter in the subsequent analyses, it would be helpful
to the reader to include a short biological interpretation of the maximum mutation size
∆Smax with a few words, alongside its formal definition in line 125.

We give a biological interpretation for maximum mutation size with a simple example, showing how
one specialist phenotype, but not the other, can be generated from a generalist phenotype, in line 178.

4) Could the authors make the explanation of truncation a little clearer? What exactly
is meant by recursion?

We re-worded the description of the dynamic programming algorithm in line 133. We explain that sub-
trees below two identical nodes in the invasion tree are the same; therefore, we terminate simulations
when we encounter a node that has been handled elsewhere in the tree to avoid repeating the same
computations. As a corollary, when the sub-tree below a parent node contains the parent node again,
extending the sub-tree would infinitely repeat the sub-tree — that is what we mean by recursion,
which we avoid by terminating the simulation paths.

5) In line 146, what exactly are environmental parameter sets? I understand that it’s
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10,000 realizations with different parameters but it would be helpful to reiterate which
environmental parameters were changed.

We address this ambiguity with the new paragraph that collects and summarizes the nine environ-
mental parameters (see point 2) and we change the wording in line 201.

6) In Fig. 3, four out of 10,000 environmental parameter sets are shown. How represen-
tative are these? The authors show the statistics of these to some extent in the following
sections but how can one make sure that the four types are the only patterns of interest?
Is there a way to quantify that?

The example networks in Figure 3 show a sample of interesting properties of adaptation that can
be visualized graphically. They are not meant to be representative of all possible patterns that we
observed. Indeed, we are unsure about how to appropriately define a network pattern in this context
and instead the statistical analyses we undertake in Figure 5 addresses this need to quantify and
compare networks. We added a relevant statement in line 236.

7) In lines 181-182, the authors say no clear pattern emerged in Fig. 4A. What was the
hypothesis, what kind of an outcome was expected? In other words, how should each
of these plots be interpreted to see any “pattern”? The first two panels are (dilution
rate and influx) are discussed but what about the interpretation of the last three panels?
Also, how are the dotted lines in the second panel of Fig. 4A determined? Are they a
guide to the eye or quantified?

We re-wrote and re-structured the section on association of environmental parameters to evolutionary
outcomes. The section is now split into two subsections: one for univariate and one for multivariate
analysis.

Starting with the univariate analysis, we were hoping that certain types of evolutionary outcome
would correspond with certain ranges of the values of the parameter. We now explain how the map
from parameters to outcomes is not robust because, with one exception, we did not find parameter
values that exclusively led to a single outcome. We extend our discussion to describe how one of the
outcomes (multi-stationary) can only be found at certain combinations of substrate yields (although
other evolutionary outcomes can be found at these yields too). We also explain how substrate metabolic
rates and maximal import rates did not have a large effect, by themselves, on the probabilities with
which outcomes emerge. We noted that the dotted lines in the first and second panel are drawn as
guides.

The new second subsection describes our multi-variate analysis, the predictive model, and shortest-
distance calculations. The lack of robustness in the map from environmental conditions to evolutionary
outcomes remains even when multiple (all) parameters are taken into account.

8) Supplementary Fig. 9: How exactly is it decided that it’s poor predictive performance
(not reliable) with the given recall rates? They look high to me. How is the mean 0.78
when the lowest recall is 0.83? It may be something obvious that I cannot see, but what
was the criterion here? It would help if this were clarified.

We explain in the caption of Supplementary Figure 9 that the hierarchical model’s performance at
predicting an outcome is the product of the individual classifiers (nodes) in the hierarchy. While the
individual classifiers’ performance appears strong, taking the product of many imperfect classifiers
ultimately reduces the overall performance.

9) It’s important to note that Supp. Fig. 10 is not symmetric, i.e. distinguishes between
the “from” state and the “to” state. The same applies to Fig. 4C. In fact, both figures can
be made easier to understand, especially Fig. 4C, which is a main figure. It’s confusing
to have the labels in the same order in the left and right panels. It should simply say
distance from monomorphic specialist to other in the left, and other to monomorphic in
the right.

We appreciate the subtlety in interpreting these figure. We added a note in the caption of Supple-
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mentary Figure 10 to emphasize the asymmetry to the reader, and also emphasized the asymmetry in
the text (see point 11 below). We removed the possibly confusing text labels in Figure 4C.

10) On a related note, it’s not entirely clear to me why Fig. 4C is not symmetric if
it’s based on distance. Can the authors clarify the rationale behind this asymmetry?
It makes sense that it’s much more likely to transition from a diverse population to a
specialized one than the other way around, but how does that translate to what we see
in the Euclidean distance distributions? A simple interpretation would help the reader
a lot here.

The asymmetry is important and arises due to differences in cluster size and shape. We give a simple
analogy (line 288) of two dimensional clusters where, even for clusters of the same size, differences in
shape can lead to asymmetries in the distribution of shortest distances required to change one outcome
to the other.

11) From Fig. 5B, it looks to me as if it’s not only dimorphic specialists but also
multiple recurrent and monomorphic specialist that don’t increase monotonically but
rather plateau early on and stay the same with increasing mutation size. The authors,
however, say that entropy typically increases with mutation size. That seems to apply
only to orange (one generalist), green (two generalists) and hybrid (to some extent).

We amended our wording to be more clear that the monotonicity in path entropy is not strict: i.e.
entropy can increase or not change, but it does not usually decrease (paragraph starting on line 318).
We expanded on the differences in the ‘rate’ of plateauing, writing that these might be explained by
differences in the probability that mutational paths with large-effect mutations are followed, which
might in turn be explained through variation in the importance of frequency-dependent effects on
invasion fitness (lines 326-331).

12) In my opinion, Fig. 5A does a better job at simply explaining how to read the
mutational path networks (i.e. starts from a monomorphic state, ends at a recurrent
state etc.). This explanation should be carried over to Fig. 3B-E as well.

Thank you for this suggestion. We now show a couple of example mutational paths for each network
in Figure 3B-E and label the resident populations in selected vertices to highlight notable aspects of
adaptation, such as the reversal of invasibility relationships as a consequence of frequency-dependent
effects (figure caption).

13) Line 247: Larger mutation size leads to fewer bottlenecks. Could the authors shortly
explain what may be reason like they did in the same paragraph for the path lengths?

We now describe one way in which bottle-necks can decrease when the maximum mutation size in-
creases in line 347, which we explain in terms of the increasing number of outgoing edges (possible
community transitions) in the network.

14) Supplementary Fig. 11 needs a much more informative caption. The mean and
variance of each measure for each network is given but overall the figure doesn’t convey
to the reader how these centrality measures differ qualitatively from each other. It says,
“vertices are scaled. . . ” to mean the vertex size, this should be clarified. At minimum,
it should be made clear that, simply, the larger nodes, be it round or square, have higher
centrality of the respective kind. Although an even better approach would be to give
specific network instances that emphasize each centrality type, e.g. a bottleneck node
for high betweenness centrality.

We extended our discussion of network centralities in the supplementary material and clarified what
we mean by ‘scaling’ vertices in the figure caption. We include a new Supplementary Table to describe
the six network centralities that we use and added appropriate references. In this table, we also refer
to examples from the networks in Supplementary Figure 11 to explain why some vertices have high
or low centrality values.

15) Line 287: “Most informative centrality measures converged gradually?” What is
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meant by most informative, simply ones with the highest mutual information? In any
case, the authors should try to explain intuitively why in-degree of HITS hub are con-
sidered more informative, and what it means for them to converge gradually? Does it
mean they are more crucial as a centrality measure to predict true recurrent states? If
so, this should be stated explicitly to help the reader understand this section better.

We re-wrote the paragraph (line 395) on characterizing centrality features in terms of their mutual
information and error (convergence). We clarify what we mean by informative measures: those with
higher mutual information. We also clarified what we mean by measures that converge early: those
with a small error in the value of the centrality statistic between incomplete and complete forms of
the network.

Interpreting why some centrality measures are more informative than others with regards to evolu-
tionary outcomes is challenging. Unlike properties of the mutational paths, which do have biological
interpretations, network centrality measures are abstract properties and their mappings to ecology or
evolution are not (yet) clear. We added a statement to discuss this difficulty in line 388. We note
though that a straightforward interpretation is not necessary to enable accurate prediction.

16) As a final suggestion for a discussion point, I think the authors could recognize some
recent efforts on network methods used in microbial evolution modeling such as: Faust,
K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews
Microbiology, 10(8), 538-550. I think it’s important to comment on the current divide
between simple computational models and real-world microbial communities and how
current methods can be improved specifically in this direction to align the two worlds.

We extensively re-wrote our Discussion section to address this and other comments. We now acknowl-
edge other uses of network models in ecology and evolution and explain how our approach differs from
those studies (line 482). We address the divide between theory and real microbial communities by
discussing: first, the necessary theoretical improvements to our and similar models (paragraph starting
on line 499) toward biological realism; and second, suggesting a set of experiments that could validate
our theoretical predictions (paragraph starting on line 512).

Minor issues and typos:

• 1) Typo in Figure 2 caption, line 3: “phenotypes values”.

• 2) In Supplementary Figs. 1 and 2, mu and mv are not defined.

• 3) What’s the circle next to “truncated node” in Fig. 2? I believe it means darker
gray nodes are truncated nodes, this should either be made clear or it should be
removed.

• 4) Line 153: A (insert: single) recurrent state may be a dimorphic or. . .

• 5) Fig. 4B says both “normalized Euclidean distance” on the color bar and “pairwise
standardized parameter distance” on the right hand side. Are they not the same?
It would be better to standardize the notation.

• 6) Line 182, “Using a nearest-neighbors algorithm. . . ” The authors cite the original
paper for this algorithm in the methods section so there should be a reference here
to the Methods section.

• 7) Supplementary Fig. 10: I am assuming Euclidean distances, i.e. similarities, are
meant by “normalized shortest distances”. If so, this should be made clear so as
not to confuse the reader since the term “shortest distance” has a clear connotation
in network theory. The shortest distances mentioned here could be confused with
the shortest paths or geodesics in the network.

• 8) Figure 2 caption, line 3: “phenotypes values”.
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We thank the reviewer for pointing out these errors and have corrected all as well as improving the
labels in Figure 2A & 4B, citing a reference for the nearest-neighbor algorithm in Methods, and
clarifying the meaning of ‘shortest distance’ in Supplementary Figure 10 (caption).

8



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have adequately addressed my concerns.  

In line 302 "evolutionarily" should be "evolutionary".  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have diligently addressed all concerns I raised in the first review in a satisfying 

manner and have thus made the text clearer to the reader. The presentation of the 

manuscript is now significantly improved.  
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