Supplementary Figure 1. Image of the fabricated hologram. The hologram, obtained using an energy filtered transmission electron
microscope, is used to generate an electron beam of £ = 200.
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Supplementary Figure 2. Example of the diffraction orders of the twisted electron beam with the magnetic pillar. By defining the
singular vortex core as the region where the intensity drops below 5% of its maximum, this area is enclosed in a radius that is 10-15% smaller
than the beam radius p,,.
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Supplementary Figure 3. Interference pattern. Interference pattern with (a) and without (b) the presence of the first magnetic pillar sample.

Supplementary Figure 4. Interference pattern. Interference pattern with (a) and without (b) the presence of the second magnetic pillar
sample.
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Supplementary Figure 5. Experimentally observed phase shift of twisted electron beams upon interaction with the second sample
containing a magnetic pillar. a and b show the digitally reconstructed phase-shift for beams carrying OAM values of +200 and —200,
respectively. ¢ The points indicate the experimental data for measured relative phase changes. Red and blue colours are the measured phases
for beams carrying positive ®* and negative ®~ OAM value of 200, i.e. £ = +200. The relative phase A® is illustrated by the beige shaded
area. This data was evaluated for regions close to p,, = 0.16 um radius. Semi-transparent zones indicate regions where the probability of
finding electrons is zero. The solid lines are obtained by interpolation.

Supplementary Figure 6. Extracting the magnetic field. a Interference pattern of signal and reference beam. b Fourier transform of the
interference. ¢ Zoomed-in view of the first-order reconstructed signal beam in the Fourier transform of the interference.

SUPPLEMENTARY NOTE 1: DERIVATION OF RELATIVE PHASE BETWEEN POSITIVE AND NEGATIVE OAM
COMPONENTS

Electron beams carrying OAM, i.e. twisted electron beams, possess a propagation dependent global phase which scales with
the magnitude of its OAM value. This phase is known as the Gouy phase, and is given by the following expression:

OGouy = (If] + 1) arctan (z/zg) , ey

where ¢ is the OAM value of the electron, z is the propagation distance, zg = ﬂ'Wé /Aqp is the Rayleigh range and wy is a beam
parameter given by the beam radius at the waist. Here, we consider that these twisted electrons pass around a magnetic dipole,
as shown in Fig. 3, which we mathematically describe here as two magnetic monopoles separated by a distance d with opposite
magnetic charge. Indeed, it has been shown that by passing through the first magnetic monopole, the twisted electron beam
will see its OAM value, ¢ increase to £ + v, where v is the topological charge due to the Aharonov-Bohm phase. Subsequently
passing through the second monopole, the twisted electron beam’s OAM value is decreased from ¢ + v back to £. It is our goal
to calculate the relative phase between a twisted electron beam with an OAM value of £ and —¢ due to the difference in Gouy
phase between two monopoles (upon interaction with a magnetic dipole).
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Supplementary Figure 7. Interference fringes. Comparison of a small cut-out of interference fringes using a+200% signal beam. a Signal
beam on the first pillar described in the main text. b Signal beam far from the pillar. ¢ A superposition image of the fringes after the alignment
procedure where the red corresponds to a and green corresponds to b.

We consider a propagation distance of z = d that is much smaller than the Rayleigh range (d/zg ~ 107> for our experimental
parameters). For a Bessel-Gauss beam, the Rayleigh range, zg, may be expressed in terms of the radius of maximum intensity,
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Assuming the above relation, for a short range propagation distance of d, i.e. d < zg, the Gouy phase is given by the following
expression

d
OGouy(0) = ({1 + 1)—, (3)
ZR
da
~ —2 . (4)
e

We can now evaluate the Gouy phase for twisted electron beams with positive and negative OAM values £ and —¢,
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Thus, the relative phase between two beams carrying opposite values of OAM upon interacting with the magnetic dipole is

da
AG ~ ( dzB)4£’v. (7)
T,
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SUPPLEMENTARY NOTE 2: ALTERNATIVE DERIVATION.

The induced Gouy phase can be derived upon certain approximations without invoking the action of magnetic monopole.
Since the magnetic pillar is spatially localised, d/zzr ~ 107> and the propagation of the twisted electrons can be examined in
three different regions: (i) free-space propagation before the pillar, (ii) during interaction with the pillar, and (iii) free-space
propagation after the pillar. For cases (i) and (iii), i.e. before and after the pillar, the magnetic field and magnetic flux seen by the
twisted electrons vanish quickly, while the twisted electrons see a fairly constant magnetic flux in the second region. Therefore,
the dynamics of the electron wavefunction for distances far from the pillar, ¢;(r) and ;;i(r), and close to the pillar ¢;(r) can be



described by the following equations

(20,00 8,) + 02 — 2ikd.) yi(r) = 0 1< —d)2
(2050 3p) + 5@y = iv)? - 2ikd.)yi(t) =0 el sd/2 8)
(16,00 8,) + 0% = 2ikd.) gri(r) = 0 2> d)2

where v = e®/(2n7) is the dimensionless magnetic flux seeing by the twisted electrons, k = V2m, &/ is the electron wavenum-
ber, and p, ¢ and z are the cylindrical coordinates. Neglecting higher-order radial modes and keeping the p = 0 mode, the
generated twisted electrons in the first region can be expressed by the following expression in the Laguerre-Gauss basis:

Wi(r) = Ae(p, 2) £il¥ i1+ 1) arctan (Z/ZR)’ o)

where A(p, z) is the amplitude of the Laguerre-Gauss mode [1]. Upon interaction with the pillar, a constant magnetic flux, only
the radial probability density distribution of the electron beam will be altered (the azimuthal index does not change). Thus,

lﬂii(r) — Bf—v(p’ Z) ei&pei(\f—vlﬂ)arctan (Z/ZR)’ (10)

where B;_,(p, z) is the new electron amplitude function. Since the B,_,(p,z) is not an eigenfunction of the free-space radial
operator, the beam amplitude changes back to the conventional form after the pillar, that is

wiii(r) — C[(p, Z) ei{‘gaei(lé’\+l)arclan (z/zR). (1 1)

Continuity of the electron wavefunction in space (region (i), (ii) and (iii)) dictates the relation between A, and B;_,, and B,_,
and C;. The twisted electrons gain a phase of (£ — v| + 1) arctan (z/zr) = (/€ — v| + 1) (d/zr) upon interacting with the pillar.
Substituting the Rayleigh range zg by the beam radius (see Eq. (2))) results in the same phase shift as that previously derived in
Supplementary Note 1.

SUPPLEMENTARY NOTE 3: EXTERNAL MAGNETIC OR ELECTRIC FIELD

An external in-plane magnetic field may induce a phase to the electron beam, which is typically constant across the electron
beam transverse plane. The implemented differential phase technique removes these effects because they do not depend on the
OAM value of the signal beam. As for the vertical magnetic field, the main contribution comes from the magnetic objective
lens. In our experimental apparatus, the magnetic objective lens is almost turned off (LOW MAG configuration). Nevertheless,
a small field for a long propagation distance can induce a rotation, and therefore a global OAM-dependent phase term, to the
electron wavefunction. Since the induced phase is proportional to B and increases linearly, differential measurements can be
used to remove such effects. In fact, the total relative phase difference is given by the expression

AO = %T ([r+ (Bext + Bpillar) -I (Bext)] - [F_ (Bext + Bpilla.r) -1~ (Bexl)]) d()D, (12)

where I'* and I'™ are the phase of the twisted electrons carrying OAM values of +¢ and —¢, respectively, Bpiiar is the magnetic
field of the pillar, and Bey is the external magnetic field. I'* and I~ are assumed to form the following topological structures

I =+lp+T75, (13)

where I'j are constant global phases. The induced phase is a linear function of magnetic field. Thus, we can write

It (Bext + Bpmm) =Tt (Bey) +I'* (Bpmar). Therefore, the contribution from I't (Bey) will be omitted from (12) and does not
play a role in our analysis. This means that the measurement should equally work even when the objective lens is turned on.

SUPPLEMENTARY NOTE 4: EXTRACTING THE MAGNETIC FIELD

The process of extracting the induced phase due to the longitudinal magnetic field is complicated, because any effect inde-
pendent on/from the shape of the twisted electron beam needs to be removed. For example, lensing effects from the pillar field
acting as a magnetic lens should be nearly independent on OAM. A typical image of the two beam interference pattern is shown



in Supplementary Figure 6-a. The Fourier transform of the interference pattern produces a complex phase image of the beam
at the level of the sample. Supplementary Figure 6-b shows a typical Fourier transform, while Supplementary Figure 6-c is the
phase image of a single diffraction order. In Supplementary Figure 6-c the phase is indicated by a colour scale, as in the main
text, while the image brightness is proportional to the Fourier intensity.

The phase is clearly dominated by the azimuthal ramp typical of a vortex beam. The global phase term acquired by the vortex
beam upon interaction with the longitudinal magnetic field, which is theoretically constant over the vortex ring, can only be
extracted as a difference from a reference vortex Fourier transform. In fact, the process was applied to four experimental images;
+¢ OAM-carrying twisted electron beams with and without interacting with the magnetic pillar, and —¢ OAM-carrying twisted
electron beams with and without interacting with the magnetic pillar. Specifically, the ‘without’ data was recorded after moving
the magnetic pillar specimen far (microns) away from the reference and signal beam. The relative phase between ‘with’ and
‘without’ pillar images was separately calculated for both electron beams. The alignment was carried out using an interactive
graphical procedure of STEMCELL [2]] that permits to adjust the relative shift between interferometric images while looking
at the Fourier phase difference, and looking for a nearly constant phase difference. Since the phase difference is nearly flat, no
phase unwrapping is required. The phase difference is averaged over all azimuthal angles, obtaining data that are independent
of small pillar shifts.

In this process, it is possible to remove physical linear phases. For example, in order to switch from the +200% to —200%
signal beam, the reference beam switches from one side of the pillar to the other. If the interaction of the reference beam with
the long-ranged in-plane component of the magnetic field is slightly different on each side, one could expect small and unequal
distortions in the interference fringes due to the difference in the perturbed reference wave [3]. We assume such distortions are
small in this work, as the pillar’s magnetic field is highly cylindrically symmetric and the transverse momentum (beam tilt) of
the reference beam that might allow for some sensitivity of the reference beam to the longitudinal field is small.

We are developing more robust alignment techniques to deal with this problem. In particular, averaging of the phase with some
weighting by the intensity or amplitude allows for more robust averaging of phase distributions. A reference phase image formed
with a straight diffraction grating can independently quantify phase variations due to electrostatic and in-plane magnetic fields
even in the case of imperfect alignment [4]. Although these additional steps are outside the scope of this work, we note that the
azimuthal average of the phase as a function of radius (see Fig. [5)) washes out the effect of astigmatism or small misalignments
and avoids some of the problems that can arise with an unweighted average of phase in low-amplitude regions.

To simplify the phase representation, in the main text we represented the relative phase with a Hue colour scale. The brightness
of the colours is proportional to that of one of the two electron vortices. The phase was explicitly calculated in the two cases and
subtracted as described in the main text. The magnetic field in the pillar was calculated using the equation given in the main text
(and Supplementary Note 1) for the flux, assuming that the magnetic field inside the pillar is constant.
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