1 Primers and Plasmids

Primer name	Primer sequence
255	TGCTTAATCAGTGAGGCACC
432	AGTAGATGCCGACCGGGA
560	ccggtcggcatctactgtttaaacttaGAGCTTGGACTTGCCGCCCT
632	GGCTCCGGCGCCACCAACTTCTCCCTCCTGAAGCAGGCCGGTGAC
633	GGGGCCGGGGTTCTCCTCGACGTCACCGGCCTGCTTCAGGAGGGA
635	ATGGAAAAGCCTGTGGCCTCA
636	TAATGTCCTCCTAGCCAACTCATCC
637	ATGTCACTCCACACCCCAAG
638	CAAAGCCTCGTTCAAACCATTG
639	ATGGAGGACGCCAAGAACA
640	GAGCTTGGACTTGCCGCC
641	ggcggcaagtccaagctcGGCTCCGGCGCCACC
642	gttcttggcgtcctccatGGGGCCGGGGTTCTCC
643	ttggctaggaggacattaGGCTCCGGCGCCACC
644	ggccacaggcttttccatGGGGCCGGGGTTCTCC
645	ggccacaggcttttccatGGCGCCGGGGTTCTCC
646	ggtttgaacgaggctttgGGCTCCGGCGCCACC
647	tggggtgtggagtgacatGGGGCCGGGGTTCTCC
648	tggggtgtggagtgacatGGCGCCGGGGTTCTCC
649	ttgagcagacatcaccgtttaaacaccATGGAAAAGCCTGTGGCCTCA
652	ccggtcggcatctactgtttaaacttaCAAAGCCTCGTTCAAACCATTG
720	tgaggttttgaacaaGGATGAGTTGGCTAGGAGGAC
762	cgcaggttggatctgctggaAATCAAGAGGACTAACTACC
763	GGTAGTTAGTCCTCTTGATTTCCAG
764	cagatcgctgagataGGTGCCTCACTGATTAAGCA
778	TACAGCTGCGTTTGCG
779	CATCGACAAGGACGGC

Table 1: Primers used in this study, linker sequences are indicated in lower case

 ${\rm Table}\ 2:$ Plasmids used in this study, * refers to a mutated P2A

Plasmid name	Description	Reference
pXM1.1	$P_{gpdA} ::: rtTA2^S \cdot M2 ::: T_{cgrA} ::: \textit{tetO7} ::: P_{min} ::: \textit{luc} ::: T_{trpC}$	Wanka <i>et al.</i> 2016
pÖV7.3	$P_{gpdA} ::: rtTA2^S \cdot M2 ::: T_{cgrA} ::: \textit{tetO7} ::: P_{min} ::: \textit{ekivR} ::: T_{trpC}$	not published
pDS4.2	$P_{gpdA} ::: rtTA2^{S} - M2 ::: T_{cgrA} ::: \textit{tetO7} ::: P_{min} ::: \textit{esyn1} ::: T_{trpC}$	Richter et al. 2014
pVG2.2	P_{gpdA} ::rtTA2 ^S -M2::T _{cgrA} :: <i>tetO7</i> :: P_{min} ::T _{trpC}	Meyer <i>et al.</i> 2011
pTS32.372	pVG2.2 with <i>luc-P2A-ekivR-P2A-esyn1</i>	this study
pTS35.41	pVG2.2 with <i>luc-P2A-ekivR</i>	this study
pTS36.6	pVG2.2 with <i>luc-P2A*-ekivR-P2A*-esyn1</i>	this study
pTS37.13	pVG2.2 with ekivR-P2A-luc-P2A-esyn1	this study
pTS38.3	pVG2.2 with ekivR-P2A-esyn1-P2A-luc	this study

2 Plasmid assembly

The P2A peptide was generated by fusing primer 632 and 633.

P2A sequence: GGCTCCGGCGCCACCAACTTCTCCCTCCTGAAGCAGGCCGGTGACGTCGAGGAGAAC-CCCGGCCCC. The corresponding overlapping base pairs needed for Gibson assembly were introduced by primers. All PCRs for the genes and P2A fragments with the corresponding linkers are shown in Table 3. All genes were expressed from the Tet-On system. The plasmid pVG2.2 linearised with Pmel was used as

a backbone. Assembly of a plasmid containing the *esyn1* gene when building pTS32.* failed. Therefore, the *esyn1* gene was divided in two fragments.

PCR #	Primer pair used	5' overlap	3'overlap	Template for PCR	Short description
1	635&636			pÖV7.3	ekivR ORF no stop
2	637&638			pDS4.2	<i>esyn1</i> ORF no stop
3	639&640			pXM1.1	<i>luc</i> ORF no stop
4	641&644	luc	ekivR	P2A	functional P2A with overlap to <i>luc</i> and <i>ekivR</i>
5	643&647	ekivR	esyn1	P2A	functional P2A with overlap to ekivR and esyn1
6	641&645	luc	ekivR	P2A	non-functional P2A with overlap to luc and <i>ekivR</i>
7	635&648	ekivR	esyn1	P2A	non-functional P2A with overlap to ekivR and esyn1
8	641&647	luc	esyn1	P2A	functional P2A with overlap to <i>luc</i> and esyn1
9	646&644	esyn1	ekivR	P2A	functional P2A with overlap to esyn1 and ekivR
10	643&642	ekivR	luc	P2A	functional P2A with overlap to ekivR and luc
11	646&642	esyn1	luc	P2A	functional P2A with overlap to esyn1 and luc
12	764&640	ampR		pTS35.41	fragment from ampR to luc including Tet-On

m 11 9			£	بم منا ما الدينا	مارم
Table 3:	PCR	reactions	IOI	building	DIOCKS

Table 4: Assembly of pTS32.372

PCR #	Primer pair used	5' overlap	3'overlap	Template for PCR	Short description
13	432&255	T_{trpC}	ampR	pVG2.2	fragment from T_{trpC} to ampR including pyrG*
14	764&636	ampR	ekivR	pTS35.41	fragment from ampR to ekivR, including Tet-On, luc
15	720&763	ekivR	esyn1/2	fusion of #5 and pDS4.2	first half of esyn1
16	762&652	esyn1/2	T_{trpC}	pDS4.2	second half esyn1

Table 5: Assembly of pTS36.6

PCR #	Primer pair used	5' overlap	3'overlap	Template for PCR	Short description
17	432&255	T_{trpC}	ampR	pVG2.2	fragment from T_{trpC} to ampR including <i>pyrG</i> *
18	764&645	ampR	ekivR	fusion of #12 and #6	fragment from ampR to luc including Tet-On
19	635&763	ekivR	esyn1/2	fusion of #6 & pDS4.2	fragment from ekivR to half esyn1
			with non-functional P2A		
20	762&652	esyn1/2	T_{trpC}	pDS4.2	second half of esyn1

Table 6: Assembly of pTS37.13

PCR #	Primer pair used	5' overlap	3'overlap	Template for PCR	Short description
21	432&255	T_{trpC}	ampR	pVG2.2	fragment from T_{trpC} to $ampR$ including $pyrG^*$
22	764&642	ampR	luc	pTS38.3	fragment from ampR to ekivR
23	639&647	luc	esyn	pTS35.41	<i>luc</i> gene with linkers
24	637&763	esyn	esyn1/2	pDS4.2	first half of <i>esyn1</i>
25	762&652	esyn1/2	T_{trpC}	pDS4.2	second half of esyn1

${\rm Table \ 7:} \ \textbf{Assembly of pTS38.3}$

PCR #	Primer pair used	5' overlap	3'overlap	Template for PCR	Short description
26	649&763	P_{min}	esyn1/2	pTS32.372	first half of esyn1
27	762&642	esyn1/2	luc	fusion of #2 and #11	second half of esyn1
28	639&560	luc	T_{trpC}	pXM1.1	luc gene with linkers

3 Plasmid maps

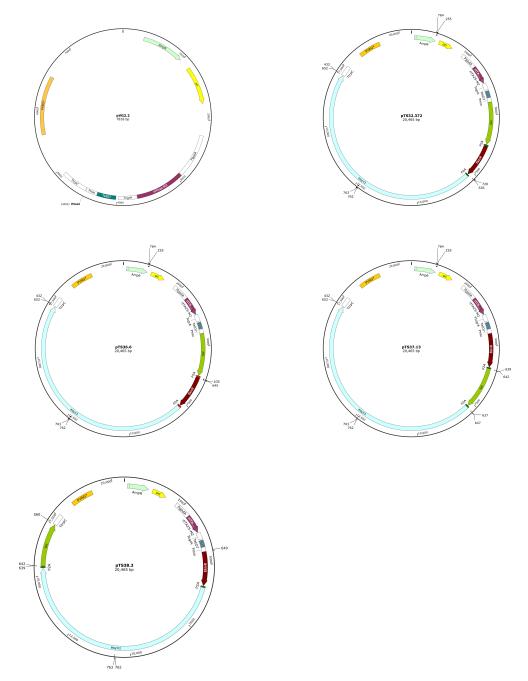


Figure 1: Plasmid maps of assembled plasmids and the entry vector pVG2.2 highlighting the restriction site Pmel. The primers used for the final assembly of the building blocks are shown. Plasmid maps were generated using SnapGene Viewer and modified with Inkscape.

4 Southern Analyses

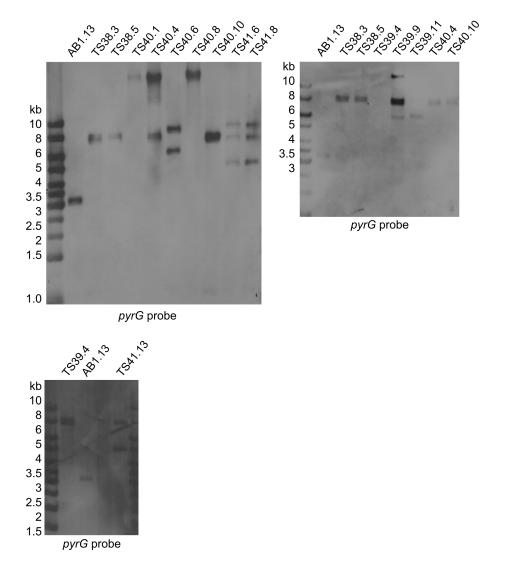


Figure 2: Southern analysis of strains polycistronically expressing luciferase, ketoisovalerate reductase and enniatin synthetase. Using the *pyrG* probe and Ncol for restriction, the recipient strain will give a signal at 3.1 kb. The strains TS38, TS39, and TS40 will give a signal at 7.7 and 8.1 kb in case of single integration, for tandem integration an additional 12.7 kb signal. For strain TS41 a signal at 7.7 and 5 kb is expected in case of single integration, for tandem integration an additional signal at 9.6 kb.