Supporting Information

Signaling-Related Mobility Changes in Bacterial Chemotaxis Receptors Revealed

by Solid-State NMR

Maryam Kashefi and Lynmarie K. Thompson*

Department of Chemistry, University of Massachusetts Amherst, 710 N Pleasant St, Amherst, Massachusetts, 01003, USA

*Department of Chemistry, 122 LGRT, 710 North Pleasant St, University of Massachusetts Amherst, Amherst, MA, 01003, USA. E-mail: <u>Thompson@chem.umass.edu</u>, Telephone: (413) 545-0827

Figure S1. ¹H-¹³C INEPT spectra of (A) U-¹³C, ¹⁵N-CF4Q and (B) U-¹³C, ¹⁵N-CF4Q Δ 34 in PEGmediated functional arrays with Che A and CheW. Spectra are shown at comparable contour levels. CF4Q spectrum has more intensity for most of the peaks except for residues which are not found in the tail (cyan arrows, His, Tyr, Gly, and Met). same NMR condition as Figure 6.

Figure S2. ¹H-¹⁵N INEPT spectra of (A) U-¹³C, ¹⁵N-CF4Q and (B) U-¹³C, ¹⁵N-CF4Q Δ 34 in PEGmediated functional arrays with Che A and CheW. Assigned residue types are based on average chemical shifts tabulated in the BMRB. (A) CF4Q spectra contain the expected resonances for the mobile of C-terminal tail, but also contain resonances for Gly which is not in the tail. (B) CF4Q Δ 34 spectra demonstrate there is another mobile region besides the tail. Same NMR conditions as Figure S1.

 Table S1. PCR Primers used for plasmid construction.

Construct	PCR Primers
HisTev-CheY	F:5'CATCATCACCACCATCACGAAAACCTGTATTTTCAGGGAGCGGA
	TAAAGAACTTAAATTTTTGG 3'
	R:5'GTGGCGGCCGCTCTATTACATGCCCAGTTTCTCAAAGAT 3'
His-Tev-CheA	F:5'
	CATCATCACCACCATCACGAAAACCTGTATTTTCAGGGAAGCATGGATATA
	AGCG 3'
	R:5' GGCCGCTCTATTAGGCGGCGGTGTTCGCCATACG 3'
His-Tev-CheW	F:5'CATCATCACCACCATCACGAAAACCTGTATTTTCAGGGAACCGGT
	ATG ACGAATGTAAC 3'
	R:5'GGCGGCCGCTCTATTACGCCACTTCTGACG C 3'
CF4Q∆34	F: 5'-TGACGAGTATTTACTAACGCG -3'
	R: 5'- GTTAGTAAATACTCGTCATGGGCTGGCTGCCAGACG -3'
CF4Q.A411V	F: 5'- GTCGCAGCGCCCAGGTGGCAAAAG -3'
	R: 5'- CTTTGATCTCTTTTGCCACCTGGGCGC -3'

Residue/s	$\omega_1/{}^1H$	$\omega_2/^{13}C$	CF4Q	CF4Q∆34	Mobile	<i>CF4Q</i> –	$\Delta 34$
			volume ^b	volume ^b	region	<i>CF4Q∆34</i>	residues
					residues	$= \Delta 34$	
						volume	
Total Ca			86.1	53.9	51	32.2	34
Arg Νε	7.3	84.9	6.3	3.1	3	3.2	3
Asn Cβ +	2.6	39.1	3.9	2	1 Asn,	1.9	2 Asn
Tyr Cβ					1 Tyr		
Glu Cy	2.2	36.3	8.1	4.3	5	3.7	3
Gly Ca	4.0	45.4	2.5	2.8	3	-0.3	0
Gly N	8.6,	110.4,	3.5	3.5	3	0	0
	8.3	107.8					
His Cβ	3.1	29.7	5.6	5.4	1	0.2	0
His Cɛ1	7.8	138.4	4.8	4.6	1	0.2	0
Ile Cβ	1.8	38.7	3	1.7	2	1.3	1
Ile Cδ1	0.8	13.0	3.7	3.0	2	0.7	1
Leu Cβ	1.6	42.2	3.6	1.7	3	1.9	2
Met C _β	2.0	17.1	1.6	2.2	1	-0.6	0
Phe*	7.2	131.8	1.3	0	0	1.3	1
Pro Cδ	3.7	50.7	1.6	0	0	1.6	7
Thr Cβ	4.2	69.8	8.2	4.5	6	3.7	3
Trp Nε	10.0	129.1	1.0	0	0	1.0	1.0
Tyr Cδ*	7.1	133.4	1.2	1.0	1	0.2	0

Table S2. Peak volumes in 2D 1 H- 13 C INEPT of 13 C 15 NCF4Q and 13 C 15 NCF4Q Δ 34 assembled with CheA and CheW into functional native-like arrays with PEG.^a

^aBold columns compare peak volumes to residues of the most probable 50-residue mobile region; italicized columns compare difference volumes to residues of the deleted 34-residue tail.

^bAll peak volumes are corrected for differences in nmol of CF in the sample. HC peak volumes are then calibrated based on Tyr $C\delta = 2$ in the CF4Q Δ 34 PEG sample, and then normalized to the number of unresolved correlations contributing to the peak (5 for Phe and 2 for Tyr C δ) so that the reported volume should correspond to the number of residues. HN peak volumes are calibrated based on Trp N ϵ = 1 in the CF4Q PEG sample.