SUPPLEMENTAL MATERIAL

Supplementary Figure 1. Generation of iPSCs from three patients with ATS

Immunofluorescence staining for stem cell markers (Tra1-81, NANOG, OCT3/4, and SSEA3) in independent iPSC clones of each ATS case. Nuclei were counterstained with DAPI.

Supplementary Figure 2. Teratoma formation by ATS-iPSCs

Microscopic observation of teratoma sections, showing tissue structures resembling gut (endoderm), cartilage (mesoderm), adipose (mesoderm), and neural tissue (ectoderm).

Supplementary Figure 3. Cardiomyocyte differentiation from iPSCs

Immunofluorescence staining for cardiomyocyte markers (a-actinin, ANP, cardiac troponin T (cTnT), and GATA4) in control- and ATS-iPSC-derived cardiomyocytes. Nuclei were counterstained with DAPI.

Supplementary Figure 4. Isoproterenol responses of ATS-iPSC-derived cardiomyocytes

a. The rates of EBs with arrhythmic events in MEA analyses (control, n = 8; R218W, n = 10; R67W, n=3; R218Q, n=13, Fisher's exact probability test). **b.** Representative MEA recordings after isoproterenol and flecainide administration in ATS-iPSC-derived beating EBs(R67W, R218Q). **c.** The incidences of EBs with arrhythmic events after isoproterenol (1000 nM) and flecainide (5 μ M) administration by MEA analysis (control, n = 9; R218W, n = 11; R67W, n=19; R218Q, n=8, Fisher's exact probability test). **d.** Representative MEA recordings after flecainide (5 μ M) and isoproterenol (1000 nM) in ATS-iPSC-derived cardiomyocytes.

Supplementary Figure 5. Ca^{2+} transients in ATS-iPSC-derived cardiomyocytes and irregular Ca^{2+} release caused by diastolic Ca^{2+} overload

a. Representative line scan images of spontaneous Ca²⁺ transients in control- and ATS-iPSC-derived single cardiomyocytes (R67W, R218Q). Arrowhead indicates the irregular Ca²⁺ release. **b**. Representative line scan images of Ca²⁺ transients paced at 1 Hz in control- and ATS-iPSC-derived single cardiomyocytes (R67W, R218Q). **c**. The rates of cardiomyocytes with irregular Ca²⁺ release after CPA administration in control- (n = 52) and ATS-iPSC-derived cardiomyocytes (n = 48) (control, 25.0% increase in incidence, ***P* < 0.01 vs. control by Fisher's exact probability test; ATS, 6.3% increase in incidence) **d**. Representative line scan images of spontaneous Ca²⁺ transients in control-iPSC-derived single cardiomyocytes after caffeine administration. Arrow indicates the timing of caffeine administration. **e**. SR Ca²⁺ content after flecainide administration in control- and ATS-iPSC-derived cardiomyocytes, determined by caffeine-induced Δ F/F0 (control; baseline, n = 6, 1.27 ± 0.16, flecainide, n = 7, 1.27 ± 0.28, ATS; baseline, n = 14, 1.31 ± 0.11, flecainide, n = 18, 1.42 ± 0.12, Data are mean ± SEM.). **f**, **h**. Representative line scan images of spontaneous Ca²⁺ transients at baseline in ATS-iPSC-derived single cardiomyocytes (R67W, R218Q). **g**, **i**. Representative line scan images of spontaneous Ca²⁺ transients in the scan images of spontaneous Ca²⁺ transients at baseline in ATS-iPSC-derived single cardiomyocytes (R67W, R218Q). **g**, **i**. Representative line scan images of spontaneous Ca²⁺ transients after flecainide (500 nM) administration in

Supplementary Figure 6. Drug effects on ATS-iPSC-derived cardiomyocytes

a. The incidences of cardiomyocytes with irregular Ca^{2+} release after SEA0400 administration (*P < 0.05 vs. baseline by Fisher's exact probability test. n = 17). **b.** The incidences of cardiomyocytes with irregular Ca²⁺ release after JTV519 administration (vs. baseline by Fisher's exact probability test. n = 13).

Forward	Reverse
5'-GAACATTCAAAACTGTTTCTCCAA-3'	5'-AGAGCTATCAACCAAAACACACAG-3'
5'-GTGGATGCTGGTTATCTTCTGC-3'	5'-GCATTGTGACTGAAGACAAGAGTC-3'
5'-CATCATCGATGCTTTCATCATT-3'	5'-ATTTCAAAGTCTGCGTTGTCAAT-3'
5'-CCATGAAATAGATGAAGACAGTCC-3'	5'-CTAGTGCTTTCTGGAACTCCATTT-3'
5'-CTATGAAAATGAAGTTGCCCTCAC-3'	5'-TGGAGACATGGTTAGTGCTTTATG-3'

Supplementary Table 1. Primer sets for genomic PCR of KCNJ2

Supplementary Table 2. The clinical characteristics of the patients

	Patient 1	Patient 2	Patient 3
KCNJ2 mutation	R218W	R67W	R218Q
	652C>T	199C>T	653G>A
Frequent PVCs	+	-	-
Periodic paralysis	-	+	+

Supplementary Table 3. Drug responses in ATS-iPSC-derived cardiomyocytes

		ATS
Anti-arrhythmic drugs	Flecainide	effective
	Pilsicainide	non-effective
	KB-R7943	effective
	SEA0400	effective
	JVT519	non-effective

	Control 1				
	500 μm	Tra-1-81	NANOG	OCT 3/4	SSEA 3
		DAPI	MERGE	DAPI	MERGE
			4 <u>00 μ</u> m		4 <u>00 μ</u> m
	Control 2				
	500 µm	Tra-1-81	NÁNOG	OCT 3/4	CSSEA 3
		DAPI	MERGE	DAPI	MERGE
		•	4 <u>00 μm</u>		4 <u>00 μm</u>
	R218W	1			
Clone 2	500 µm	Tra-1-81	NANOG	OCT 3/4	SSEA 3
		DAPI	MERGE	DAPI	MERGE
			400 μm	0	400 μm
	R67W				
.		Tra-1-81	NANOG	OCT 3/4	SSEA 3
lone	500	ALC: NO			-
0	<u>500 μ</u> η	DAPI	MERGE	DAPI	MERGE
		Contraction of the second			
		ald	4 <u>00 μm</u>		4 <u>00 μm</u>
2		Tra-1-81	NANOG	OCT 3/4	SSEA 3
lone				Sec. 1	Sec.
0	500 µm	DAPI	MERGE	DAPI	MERGE
			4 <u>00 μm</u>		4 <u>00 μ</u> m
	R218Q				
Clone 1	500 μm	Tra-1-81	NANOG	OCT 3/4	SSEA 3
U	and the second second	DAPI	MERGE	DAPI	MERGE
			4 <u>00 µ</u> т		4 <u>00 μ</u> m
2	3. S. 1. 2. 7	Tra-1-81	NANOG	OCT 3/4	SSEA 3
Clone	500 µm				
		DAPI	MERGE	DAPI	MERGE
		14.19	400 μm		400 μm

Control 1 cTnT	GATA4	DAPI	MERGE
Ø.	1	1	50 μm
Control 2 cTnT	GATA4	DAPI	MERGE
*		•	50 μm
R218W cTnT	GATA4	DAPI	MERGE
clone 2	•	 	50 μm
R67W cTnT	GATA4	DAPI	MERGE
clone 1	•	•	50 μm
clone 2	•		<mark>60_µт</mark>
R218Q			
crone 7	GATA4	DAPI	MERGE
clone 2	* •	1.	<mark>бо _{шт}</mark>

b

е

С

а

h

i

f

а

b

Cells with irregular Ca2+ release (%)