1	Supporting Information
2	
3	Comparison of Structural and Functional Properties of Wheat Starch Under Different
4	Soil Drought Conditions
5	Weiyang Zhang ^a , Junfei Gu ^a , Zhiqin Wang ^a , Cunxu Wei ^a , Jianchang Yang ^a *, Jianhua
6	Zhang ^b
7	^a Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern
8	Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
9	^b School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese
10	University of Hong Kong, Hong Kong, China
11	
12	* Corresponding Author
13	Jianchang Yang. Address: College of Agriculture, Yangzhou University, Yangzhou 225009,
14	China. Telephone/Fax: +86 514 8797 9317. E-mail: jcyang@yzu.edu.cn; jsyzyjc@126.com
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26

Supplementary Fig. S1. Temperatures during the grain-filling stage (April-May) in 2014
and 2015. HT, LT and AT indicate the highest temperatures, lowest temperatures and
average temperatures in a day, respectively. Arrows indicate the flowering date of the two
cultivars in two years. YF and ZF indicate the Yangmai 16 flowered and Zhenmai 9 flowered,
respectively.

Supplementary Table S1. Correlation analysis between fine structure and crystallinity, swelling power, thermal properties, and hydrolysis
properties of starches.^a

	. 11	Swelling	Tl	nermal prope	erties ^d	Нус	Hydrolysis properties ^e			
Correlated with	crystallinity	power	ΔH_{gel}	ΔH_{ret}	R (%)	HCL	PPA	AAG		
Amylose content ^b	-0.968**	-0.898**	-0.971***	0.901**	0.943**	-0.973***	-0.985**	-0.992**		
Branching degree of amylopectin ^b	0.916**	0.850^{**}	0.918^{**}	-0.920^{**}	-0.939**	0.949**	0.932**	0.937**		
Proportion of DP \leq 24 in amylopectin ^c	0.939**	0.919**	0.962^{**}	-0.925**	-0.956**	0.931**	0.979^{**}	0.984^{**}		
Proportion of $DP \ge 37$ in amylopectin ^c	-0.896**	-0.899**	-0.961**	0.923**	0.959**	-0.921**	-0.959**	-0.970^{**}		
Average chain length of amylopectin ^c	-0.969**	-0.898**	-0.961**	0.893**	0.932**	-0.976^{**}	-0.979^{**}	-0.990**		
Proportion of large granules (d > 10 μ m)	-0.576^{*}	-0.227	-0.411	0.245	0.338	-0.555	-0.475	-0.458		
Proportion of small granules (d < 10 μ m)	0.576^{*}	0.227	0.411	-0.245	-0.338	0.555	0.475	0.458		

41 ^a * and ** indicate the significance at p < 0.05 and p < 0.01 level (n=12), respectively.

⁴² ^b Molecular weight distribution of isoamylase-debranched starch is determined by gel-permeation chromatography.

⁴³ ^c Chain length distribution of amylopectin is determined by high-performance anion-exchange chromatography.

44 ^d H_{gel} , gelatinization enthalpy; ΔH_{ret} , retrogradation enthalpy; %R, retrogradation percentage.

⁴⁵ ^e Starch is hydrolyzed using hydrochloric acid (HCl), porcine pancreatic a-amylase (PPA) or Aspergillus niger amyloglucosidase (AAG).

46

	Native starch			Gelatinized starch				Retrograded starch			
Correlated with	RDS (%)	SDS (%)	RS (%)		RDS (%)	SDS (%)	RS (%)		RDS (%)	SDS (%)	RS (%)
Apparent amylose content	-0.886**	-0.920**	0.942**		-0.946**	0.819**	0.952^{**}		-0.872**	0.776^{**}	0.868^{**}
Amylopectin short branch-chain content ^b	0.904**	0.941**	-0.963**		0.954**	-0.836**	-0.958**		0.900**	-0.793**	-0.898**
Amylopectin long branch-chain content ^b	-0.780^{**}	-0.805**	0.828^{**}		-0.750**	0.685^{*}	0.752^{**}		-0.727**	0.584^*	0.752**
Amylose content ^b	-0.902**	-0.941**	0.962^{**}		-0.969**	0.846^{**}	0.974**		-0.910**	0.815**	0.902**
Branching degree of amylopectin ^b	0.879**	0.910**	-0.933**		0.890**	-0.795**	-0.893**		0.850^{**}	-0.735***	-0.856**
Proportion of DP 6-12 in amylopectin ^c	0.869**	0.897^{**}	-0.920**		0.951**	-0.785**	-0.962**		0.882^{**}	-0.704**	-0.951**
Proportion of DP 13-24 in amylopectin ^c	0.813**	0.836**	-0.860**		0.891**	-0.738**	-0.903**		0.807^{**}	-0.713**	-0.807^{**}
Proportion of DP 25-36 in amylopectin ^c	-0.761**	-0.877^{**}	0.862^{**}		-0.887^{**}	0.814^{**}	0.885^{**}		-0.839**	0.825***	0.796**
Proportion of $DP \ge 37$ in amylopectin ^c	-0.855**	-0.836**	0.878^{**}		-0.905**	0.715**	0.923**		-0.816 ^{**}	0.651*	0.850^{**}
Average chain length of amylopectin ^c	-0.906**	-0.926**	0.955**		-0.968**	0.823**	0.977^{**}		-0.904**	0.808^{**}	0.898**
Relative crystallinity	0.848^{**}	0.910**	-0.920***		0.925***	-0.814**	-0.929**		0.873**	-0.850**	-0.832**
Proportion of large granules (d > 10 μ m)	-0.622*	-0.692*	0.689^{*}		-0.552	0.696*	0.519		-0.260	0.773**	0.634*
Proportion of small granules (d < 10 μ m)	0.622^{*}	0.692^{*}	-0.689*		0.552	-0.696*	-0.519		0.260	-0.773**	-0.634*

Supplementary Table S2. Correlation analysis between molecular structure and *in vitro* digestion of starches.^a

47

48 ^a * and** indicate the significance at p < 0.05 and p < 0.01 level (n=12), respectively.

⁴⁹ ^b Molecular weight distribution of isoamylase-debranched starch is determined by gel-permeation chromatography.

⁵⁰ ^c Chain length distribution of amylopectin is determined by high-performance anion-exchange chromatography.