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Unter den Eichen 87, D-12205 Berlin, Germany

Tatiana E. Itina†

Univ Lyon, UJM-St-Etienne, Laboratoire Hubert Curien,
CNRS UMR 5516, F-42000, Saint-Etienne, France and

ITMO University, Kronverskiy pr. 49, St. Petersburg, Russia
(Dated: June 29, 2017)

∗ jean-philippe.colombier@univ-st-etienne.fr
† tatiana.itina@univ-st-etienne.fr



2

I. MAXWELL’S EQUATIONS COUPLED WITH RATE EQUATION

The numerical model is based on the three-dimensional nonlinear Maxwell’s equations coupled with a rate equation
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where ~E is the electric field, ~H is the magnetizing field, ~Jp is the polarization current describing the electron heating

and ~Jpi is the photoionization depletion current taking account the reduction in optical pulse energy required to ionize
the medium, Ne is the time-dependent electron density, τe = 0.5 fs is the electron collision time [1], me is the electron
mass, τrec = 1 ps is the electron recombination time [2], ε∞ = 2.105 is the permittivity of the non-excited fused
silica, Na = 2 · 1022cm−3 is the saturation density [3]. The details of the numerical method are described in Ref. [4].
The electrons in the conduction band are generated by Keldysh photoionization wpi [5] and avalanche ionization Wav

mechanisms [6]. The properties of the glass are modified via heating described by a Drude model.
A focused linear polarized Gaussian beam source is used to simulate the irradiation by laser as follows
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where w0 is the beam waist radius, w(z) = w0

√
1 + ( z

zR
)2 is the depth variation of the beam radius at which the

field amplitude drops to 1/e of their axial values, zR = πw0
2n0/λ is the Rayleigh length, r = x2 + y2 is the radial

distance from the beam waist, R(z) = z[1 + ( zRz )2] is the radius of curvature of the wavefront comprising the beam,
and ς(z) = arctan( z

zR
) is the Gouy phase shift. The waist beam is taken w0 = 5 µm while investigating the electron

density distributions and LIPSS morphologies in Figs. 2-7. The numerical results for multiphysical modeling in Fig.
9(b, d) and for the multipulse simulations in Fig. 8(a, d) are obtained by considering the restricted laser-irradiated
zone of w0 = 1.5 µm. The input laser pulse energy is defined as
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√
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2

πw2
0

2
θI, (3)

where θ is the pulse duration (FWHM), I = 1
2

√
ε0ε∞
µ0

∣∣∣ ~E∣∣∣2 is the intensity [7, 8], and the peak laser fluence corresponds

to F0 = W/(πw0
2

2 ).
The avalanche ionization rate is derived from the Drude model [9–11], where the heating of free electrons is associated

with the absorption coefficient. In this case, the avalanche ionization rate is described via the Drude formalism as

Wav =
e2τeNe

∣∣∣ ~E∣∣∣2
n0cε0meEg(1 + ω2τe2)(1 +me

∗/me)

Na −Ne
Na

, (4)

where me
∗ = 0.5me is the reduced electron mass [12], Eg = 9 eV is the electron band gap, and n0 = 1.45 is the

refractive index of the non-excited fused silica [11].
The real and the imaginary parts of the dielectric permittivity ε = ε1 + i · ε2 are derived from a simple Drude model

with time-varying electron density Ne as follows
ε1(Ne) = ε∞ −

e2Ne
me(ω2 + νe2)

ε2(Ne) =
e2Neνe

meω(ω2 + νe2)
,

(5)

where νe = τe
−1 is the electron collision frequency. The permittivity of the material is directly related to the optical

properties of the medium ε = (n+ ik)2, where n is the refractive index, which dictates the phase velocity information,
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and k is the extinction coefficient, which dictates the amount of absorption loss while propagating through the

material. One can derive the expressions for them as n =

√
(
√
ε21 + ε22 + ε1)/2 and k =

√
(
√
ε21 + ε22 − ε1)/2. Finally,

the absorption coefficient is related to the extinction coefficient as αabs = 4πk/λ.
As the electron density Ne increases, the real part of the permittivity ε1 decreases and the imaginary part ε2

increases. This way, one can find a minimum value of the attained refractive index n(Ne) by finding the extremum of

the function. Thus, the extremum is defined byNe = 2n0
2 ε0meω

2τe
2

e2(1+ω2τ2
e ) and the minimum value nmin = n0

√
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2 1−ω2τe
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e

. One can find that for τe = 0.5 fs and the laser wavelength λ = 800 nm, this value

ε1 < 0, therefore, the refractive index decreases up to the minimum value, corresponding to metallic state of glass.
Note, that the transition to metallic state with ε1 < 0 takes place for n(Ne) =

√
ε2/2 = n0/

√
2ωτe > nmin, i. e. for

the electron densities lower than the one corresponding to the minimum refractive index. Therefore, the maximum
theoretical LSFL periodicity defined by the expression λ/n(Ne) is estimated to be Λmax = λ

√
2ωτe/n0.

II. ELECTRON-ION HEAT TRANSFER EQUATIONS

The ionization process locally transforms dielectric material into an absorbing plasma with metallic properties.
The electrons in the conduction band are heated by the laser, and transfer their energy to the lattice. Heating of the
dielectric can be described by the two-temperature model, and the energy conservation law as follows

Ce
∂Te
∂t

= ∇ · (κe∇Te)− γei(Te − Ti) + Iαabs

Ci
∂Ti
∂t

= ∇ · (κi∇Ti) + γei(Te − Ti)−BβT0
∂

∂t
(∇ · ~u),

(6)

where γei = Ce/τe is the electron-lattice coupling factor, Ce = 3
2kBNe and Ci(Ti) are the electron and the lattice heat

capacity respectively, κe = 2kB
2µeNeTe/e and κi(Ti) are the electron and the lattice thermal conductivities, αabs is

the bremstrahlung absorption coefficient related to the extinction coefficient (imaginary part of the optical refractive
index) as α = 4πk/λ, ~u is the displacement vector, β is the coefficient of thermal expansion, B is the bulk elastic

modulus, µe = 3 ·10−5 m2

V ·s is the electron mobility [13], and kB = 1.38 ·10−23 m2kg·s−2K−1 is the Boltzmann constant.
The last term stands for the transform of mechanical energy to thermal energy and describes heat dissipation of the
stress wave [14, 15]. The temperature dependencies of lattice heat capacity and thermal conductivities are taken from
Refs. [16, 17].

III. THERMO-ELASTOPLASTIC WAVE EQUATIONS

Thermoelastic deformation caused by nonuniform temperature distribution in glasses is determined by thermoelastic
wave equations [18–20] as

ρ
∂2~u

∂t2
= G∇2~u+

G

1− 2ν
∇(∇ · ~u)−Bβ∇Ti, (7)

where ν is Poisson coefficient, ρ is the material density, E is the longitudinal elastic modulus, B = E
3(1−2ν) is the bulk

elastic modulus, and G = E
2(1+ν) is the shear elastic modulus. The temperature dependence of elastic moduli and

Poisson coefficient is taken into account as it was proposed by Parc et al. [21] as follows
E = (97− 1200

Ti+1200 · 24)GPa

B = (60− 1200
Ti+1200 · 23.2)GPa

G = (33.5− 1173
Ti+1173 · 2.3)GPa

ν = 0.2− 1200
Ti+1200 · 0.03.

(8)

The density is calculated based on the continuity equation as follows

∂ρ

∂t
+∇ ·

(
ρ
∂~u

∂t

)
= 0. (9)
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IV. CRITERION FOR CAVITATION

To define the conditions for cavitation inside fused silica bulk, the viscoelastic energy conservation law is used.
According to the Grady’s spall criterion for liquids [22], the sum of both elastic and kinetic energies should be greater
than the surface energy, required to fracture the liquid into nanocavities of size R, plus the local viscous dissipation
during void growth and coalescence in the cavitation process as follows

S2
dyn

4B
+
ρζ2R2

120
≥ 6σ

R
+ ηζ, (10)

where Sdyn is the dynamic tensile strength required for cavitation, η(Ti) is the viscosity, σ(Ti) = σ0(1 − Ti/Tcr)α is

the surface tension, σ0 = 0.3 N/m is the surface tension constant [23], α = 1.25 is the critical index [17], ζ = − ∆ρ
ρ∆t

is the strain rate, ∆ρ < 0 is the density change, corresponding to material’s expansion and rarefaction, ∆t is the

characteristic time of the deformation, and ρ is fused silica density. The first term
S2
dyn

4B has the main contribution

and expresses the elastic energy of deformation. The second term ρζ2R2

120 is the corresponding kinetic energy. The

work against tension forces 6σ
R and dissipation forces ηζ are proportional to the surface tension σ(Ti) and the viscosity

η(Ti), which both depend on the laser-induced temperatures in glass (decrease with the increasing temperature).

V. RAYLEIGH-PLESSET EQUATION

The Rayleigh-Plesset equation is then solved to analyze the nanopores dynamics [24, 25], which is written as follows

R̈ = −3

2

(Ṙ)2

R
− 4ηṘ

ρR2
− ∆P

ρR
− 2σ

ρR2
, (11)

where R(t) is the characteristic size of nanopores, Ṙ and R̈ are the first and the second derivatives of the size function,
∆P ≈ − 3

2NakBTi is the negative pressure within the formed nanobubble. The initial conditions are set as R(0) = R0

and Ṙ(0) = 0, where R0 is the initial size of nanopores. The pressure term −∆P
ρR has a positive contribution and,

therefore, stands for the growth of the nanopores. The surface tension term − 2σ
ρR2 and the term − 3

2
(Ṙ)2

R have a

negative contribution and can result in the nanovoid collapse. Finally, the viscosity term − 4ηṘ
ρR2 can be associated

with the resistance to the material deformation, as it acts always against the direction of the nanovoid evolution Ṙ.
The thermo-mechanical properties for fused silica and borosilicate glass used for the hydrodynamic criterion of the

nanovoid growth are given in Table I.

Table I. Thermo-mechanical properties of glasses.

Physical properties Fused silica Borosilicate glass
Density ρ[g/cm3] 2.2[26–28] 2.2[26, 27]

Heat capacity Ci[J/(kgK)] 1335-1440[17](1600-2400K) 830[26, 27]
Thermal conductivity κi[W/(mK)] 1.4-3.0[16](300-2500K) 1.1-1.2[26, 27]

Softening temperature T[K] 1875[27] 1093[27]
Thermal expansion β · 10−7[1/K] 5.5[28] 32.5[27]

Bulk modulus B[GPa] 35-44[21] (200-1800K) 35
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