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1 Materials and methods

The models used in this work are stochastic spatially-explicit individual-based models of influenza
transmission for England adapted from previous models developed for Europe [1, 2, 3]. Each
model is the combination of two different layers: i) a model of the socio-demographic structure,
and ii) an infection transmission model. All models share the same socio-demographic model,
while differ in some details of the infection transmission process as detailed in the next sections.
(Note that all the five models are nested in a more general model, as detailed in Sec. 1.2).

1.1 Socio-demographic model

The socio-demographic structure of the model is the same as in [4] and we refer to this work for
all technical details.

Briefly, socio-demographic data on the age structure of the population of England are used to
generate about 47 millions individuals, which are distributed on a grid of 3894 cells proportionally
to the population density derived from the Gridded Population of the World, version 3 (GPW
v3). Each individual is characterized by an age and belongs to a household. Students are also
assigned to a specific school (see below). Each household and school has specific geographic
coordinates within the cell.

Household members are determined using a heuristic model previously proposed in [4], which
reproduces data on household size, composition and age of household members by size specific
for the United Kingdom, as provided by the Statistical Office of the European Commission
(http://ec.europa.eu/eurostat), preserving realistic age difference between members of the
same household. As shown in [4], age distribution of the population, household size, household
composition by size and age distribution of household members by size simulated by using this
model match the observed ones.

Schools are allocated proportionally to population density and their size is determined using
data on school size by level specific for England [5]. School age children (5-18 years) are as-
signed to a school of the corresponding education level using the resource competition algorithm
introduced in [6], which accounts for the population density of the considered geographic area.
The mean home-to-school distance obtained by using this algorithm results 4 km, in excellent
agreement with the value reported to the Department of Transport, namely 4.3 km [7].

1.2 Infection transmission model

The transmission of influenza infection follows a discrete-time individual-based SLIR (susceptible
- latent - infectious - removed) model with time step ∆t = 1 day. The model explicitly considers
transmission in households, schools, and ‘other settings’ (which accounts for contacts occurring
in all settings other than households and schools – e.g., contacts in the general community,
workplaces, means of transport, free-time activities).

Simulations are initialized by including age-specific pre-pandemic immunity, as measured in
[8]. In particular, for each individual i aged ai, we determine whether he/she is initially immune
by sampling from a Bernoulli distribution of probability given by the age-specific pre-pandemic
immunity reported in [8].
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At any time step of the simulation each susceptible individual i has a probability pi(t) =
1−e−∆tλi(t) of becoming infected. The probability of infection, which is re-computed at each time
step, depends on the individual risk of infection λi(t) that takes into account the contribution
of infection sources in each of the considered settings:

• contacts with infectious members of his/her household;

• contacts with infectious schoolmates, if individual i is a student;

• contacts with infectious people in ‘other settings’.

Similarly to [2, 9], transmission in ‘other settings’ explicitly depends on the geographic distance,
which is modeled by a kernel distance function K (the definition of K is given below).

The generalized formulation of the risk of infection (and thus also of the transmission model)
is defined by the following equation:

λi(t) = ρ(ai)

 ∑
{k=1,...,N |Hk=Hi}

χ̃(t)βhIk
(ni − 1)ω

+
∑

{k=1,...,N |Sk=Si}

µ(t)
χ̃(t)βsIk
mi

+
∑

{k=1,...,N}

τ̃(t)
χ̃(t)βrIkK(dik)∑
{j=1,...,N}K(djk)


where

• N is the population of England.

• Hi is the index of the household of individual i, ni is the number of members of the
household and ω = 1.63, as estimated in [10], in order to take into account of contact
heterogeneity in the household network.

• Si is the index of the school where individual i studies and mi is the school size, if individual
i is a student.

• Ik = 1 if individual k is infected, 0 otherwise.

• ai is the age of individual i.

• ρ(ai) is the age-dependent susceptibility to infection. For the sake of simplicity, we divide
the population into two groups: children (ai < 15 years), for which ρ(ai) = 1, and adults
(ai ≥ 15 years), for which ρ(ai) = σ ∈ [0, 1]. In the manuscript we refer to σ as the relative
susceptibility to infection of adults with respect to children.

• βh is the transmission rate within households (day−1).

• βs is the transmission rate within schools (day−1).
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• βr is the transmission rate in ‘other settings’ (day−1).

• K(dij) is a decreasing function of the geographic distance dij between the households of
individuals i and j, modeling human mobility patterns. In particular, we assume that
function K has the following form:

K(dij) =


1

1+
(
dij
a

)α1 up to week 33, 2009 (i.e., during the first pandemic wave)

1

1+
(
dij
a

)α2 from week 34, 2009 (i.e., during the second pandemic wave)
(1)

i.e. function K is shaped by the parameters a, α1 and α2. Intuitively, parameter a mainly
regulates the shape of the function at short distances, whereas parameters α1 and α2,
mainly shape the exponential decay at medium/long distances in the two considered time
windows.

• µ(t) accounts for the school calendar, not allowing transmission at school when schools are
closed. In particular,

µ(t) =


0 if t ∈ {July 20, 2009 - September 1, 2009 (summer break)}
0 if t ∈ {October 26, 2009 - October 31, 2009 (fall break)}
0 if t ∈ {December 19 - January 3, 2010 (winter break)}
1 otherwise

• τ̃(t) shapes influenza transmissibility in ‘other settings’ during school closures, accounting
for the fact that students might be more active in ‘other settings’ during those periods
[11]. In particular,

τ̃(t) =


τ ∈ [0,+∞) if t ∈ {July 20, 2009 - September 1, 2009 (summer break)}
τ ∈ [0,+∞) if t ∈ {October 26, 2009 - October 31, 2009 (fall break)}
τ ∈ [0,+∞) if t ∈ {December 19 - January 3, 2010 (winter break)}
1 otherwise

• χ̃(t) regulates possible changes in virus transmissibility between the two waves. In partic-
ular,

χ̃(t) =

{
χ = 1 if t < week 33, 2009 (first wave)

χ ∈ [0,+∞) if t ≥ week 34, 2009 (second wave)

At any time step ∆t of the simulation latent individuals become infectious at a rate ∆t/TL, where
TL is the latent period - assumed equal to the incubation period - that lasts on average 1.5 days
[12]. Infectious individuals recover (and are assumed to be fully protected) at a rate ∆t/TI , where
TI is the infectious period, which lasts on average 1.6 days in such a way to obtain a generation
time of 3.1 days, in agreement with the scientific literature on the 2009 H1N1 pandemic [2, 13].
The distributions of the latent and infectious period obtained by assuming a time-step of 1 day
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Figure S1: Latent and infectious period distributions. a Probability distribution of the length
of the latent period as obtained by using a time-step of 1 day. b Probability distribution of the length
of the infectious period as obtained by using a time-step of 1 day.

are shown in Figure S1. Note that the actual distributions of latent and infectious periods are
presumably far from exponential: for instance, Cori et al. [14] using viral excretion data from
volunteers challenged with different influenza strains, estimated for the latent period a mean of
1.63 days with a standard deviation of 0.26, and for the infectious period a mean of 0.99 days
with a standard deviation of 0.96. In this sense, the standard deviation of the generation time
arising from simulating the model with a time-step of 1 day may be closer to the actual one
than the standard deviation obtained under the assumption of exponential distributions (see
Table S1). Moreover, using a shorter time-step would pose serious computational challenges.

Table S1: Mean and standard deviation (SD) of exponentially distributed length of the latent and
infectious period distributions for different values of the time-step.
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1.3 Seeding of infection

The daily number of imported cases in the first wave is based on the actual time-series of travel-
related cases reported in [16]. Previous studies on the 2009 H1N1 pandemic influenza have
highlighted that H1N1 importations in the early phase of the 2009 pandemic were strongly cor-
related with air passenger flows [17, 18]. We thus determine the geographic location of imported
cases by randomly distributing cases among all English regions (i.e. NUTS1) proportionally to
air passenger arrivals. In particular, we use data on incoming air passenger flows during the
period April-June 2009 provided by the Civil Aviation Authority [15] to determine the fraction
of incoming passengers specific for each region of England. As shown in Figure S2, the fraction
of incoming passengers is not proportional to population density, with Greater London account-
ing for about 70% of the total volume. For each time step, the number of imported cases is
distributed among regions proportionally to the corresponding fraction of incoming passengers
and, within each region, cases are assigned to a cell proportionally to population density.

The daily number of cases imported during the second wave is sampled at each time-step from
a Poisson distribution with parameter λ = 10δ-1, where δ ∈ [0,+∞]. The geographic location
of cases imported in the second wave is determined by using the same procedure described for
the first wave.

We tested an alternative method for determining the destination of imported cases. Specifi-
cally, we assume to randomly distribute imported cases proportionally to the population density
of each cell (Figure S2b). Specifically, we calibrated a new model, which is exactly as model
M2 (see main text and Sec. 1.4 of this document), but differing for two details: i) the model
is calibrated on serological seroprevalence data on the first pandemic wave only [8], and ii) we
assume importation of cases proportional to population density. Our modeling results show that
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Figure S2: Incoming air passengers and population density. a Fraction of incoming air passen-
gers by region (%) based on data provided by the Civil Aviation Authority [15] on incoming air flows
by airport. b Fraction of population by region (i.e. NUTS1) of England as obtained from Eurostat.
c Mean attack rates at the end of the first wave as resulting from seroprevalence data [8] (light blue)
and as estimated by the model (blue). The model used to produce this result is as model M2 (see main
text and Sec. 1.4 of this document), but it is calibrated on the data on first pandemic wave only and
assumes importation of cases proportional to the population (i.e., as in panel b).
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the hypothesis of import of cases proportional to population density data leads to a regional dis-
tribution of cases during the first wave not compliant with the observed data [8] (see Fig. S2c).
As the model was not able to properly reproduce data on the first pandemic wave, we decided
not to consider this model for further analyses.

1.4 Description of the five models and their assumptions

The five models considered in this work test different hypotheses on the factors that might have
shaped the complex pattern of spread observed during the 2009 influenza pandemic in England.
The models are obtained from the general formulation as follows:

M1 The parameter values regulating the kernel function (see Equation 1) are fixed at a = 4
km and α1 = α2 = 3, as estimated by Ferguson and colleagues [9] from the analysis of
commuting data for the UK. χ = 1 for both pandemic waves and δ = 0, i.e. no changes
in transmissibility of the virus are considered, nor the importation of additional cases
during the second wave is considered. Note that in this model the transmission distance
is determined by human mobility patterns as estimated from commuting data for the UK.

M2 Parameter a regulating the kernel function (K) is fixed at a = 1 km, whereas α1 = α2 =: α
is estimated, χ = 1 for both pandemic waves and δ = 0. This model tests the hypothesis
that the observed pattern of spread might be explained by an alteration in the transmission
distance with respect to that derived from commuting data.

M3 Parameter a is fixed at a = 1 km, whereas α1 = α2 =: α is estimated, χ = 1 for the
first wave, whereas it is estimated for the second wave, and δ = 0. This model tests the
hypothesis that the observed pattern of spread might be explained by an alteration in the
transmission distance during the pandemic and by an increase in the transmissibility of
the virus during the second wave.

M4 Parameter a is fixed at a = 1 km, whereas α1 = α2 =: α is estimated, χ = 1 for both waves
and δ is estimated. This model tests the hypothesis that the observed pattern of spread
might be explained by an alteration in the transmission distance during the pandemic and
by an increasing number of imported cases during the second wave.

M5 Parameter a is fixed at a = 1 km, whereas α1 and α2 are estimated separately, where α1

regulates the kernel function in the first wave and α2 in the second wave; χ = 1 for both
pandemic waves and δ = 0. This model tests the hypothesis that the observed pattern of
spread might be explained by an alteration in the transmission distance during the first
wave and by a second change occurring during the second wave (possibly coming back to
a value close to that obtained by the analysis of commuting data).

Note that model M1 assumes a = 4 km, while models M2-M5 assume a = 1 km. Model M1
assumes a = 4 km in order to be consistent with the work of Ferguson and colleagues [9] that we
decided to use as reference model. However, fixing a = 4 km in models M2-M5 would impose a
constraint on the fraction of infections within a certain distance, which is an undesired feature
for our analysis aimed at estimating the transmission distance directly from seroepidemiological

7



0

10

20

30

40

50

60

70

80

90

100

(0
,4

]

(4
,8

]

(8
,1

2]

(1
2,

20
]

(2
0,

60
]

(6
0,

12
0]

(1
20

,1
80

]

(1
80

,3
00

]

>3
00

F
ra

c
ti
o
n
 o

f 
c
a
s
e
s
 (

%
)

Distances (Km)

a=1, α=6

a=4, α=6

0

10

20

30

40

50

60

70

80

90

100

(0
,4

]

(4
,8

]

(8
,1

2]

(1
2,

20
]

(2
0,

60
]

(6
0,

12
0]

(1
20

,1
80

]

(1
80

,3
00

]

>3
00

F
ra

c
ti
o
n
 o

f 
c
a
s
e
s
 (

%
)

Distances (Km)

a=1, α=1

a=4, α=1

Figure S3: Transmission distance a Fraction of secondary infections (%) generated at a certain

distance as obtained by fixing α = 6 and setting a = 1 km (green) and a = 4 km (purple). b As a, but

fixing α = 1 and setting a = 1 km (green) and a = 4 km (purple).

data. Fig.S3a shows that, by setting a = 4 km, even by using α = 6, a value much larger than
those estimated for human mobility [9, 19, 20], a considerable fraction of secondary infections
occur at a distance larger than 4 km from the place of residence of the infector, while this is
not the case when a = 1 km. On the other hand, assuming a = 1 km does not impose any
constraint on the maximum transmission distance, provided that appropriate values of α are
used (Fig.S3b).

1.5 Model calibration

Model calibration is performed using Markov chain Monte Carlo (MCMC) sampling applied
to the product of the binomial likelihoods (L1 and L2) of the age-specific prevalence of H1N1
antibodies observed in England respectively in August 2009 [8] (after the first wave) and in
the period January-April 2010 [21] (after the second wave). Data are disaggregated into the
groupings of regions specified in Table S2.

The likelihood function L1 is defined as

L1(nA
m, r

A
m, n

B
m, r

B
m|Θ) =

∏
m∈M

nA
m!

rA
m!(nA

m − rA
m)!

(pA
m(Θ))r

A
m(1− pA

m(Θ))n
A
m−rAm

nB
m!

rB
m!(nB

m − rB
m)!

(pB
m(Θ))r

B
m(1− pB

m(Θ))n
B
m−rBm

(2)

where
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• Θ is the vector of free parameters;

• M is the set of age groups considered in [8];

• nA
m is the number of individuals in the m-th age group in Group A in the post-first wave

dataset [8];

• rA
m is the number of seropositive individuals (haemagglutination inhibition titre 1:32 or

more) in the m-th age group observed in Group A in the post-first wave dataset [8];

• pA
m(Θ) is the seroprevalence in the m-th age group simulated by the model with parameter

set Θ in Group A after the first wave;

• nB
m is the number of individuals in the m-th age group in Group B in the post-first wave

dataset [8];

• rB
m is the number of seropositive individuals (haemagglutination inhibition titre 1:32 or

more) in the m-th age group observed in Group B in the post-first wave dataset [8];

• pB
m(Θ) is the seroprevalence in the m-th age group simulated by the model with parameter

set Θ in Group B after the first wave.

L2 is defined analogously to L1, but using the post-second wave dataset [21] and the respective
grouping of regions (see Table S2).

All models share a set of five common parameters, i.e. three transmission rates (in house-
holds, βh, schools, βs, and ‘other settings’, βr), the relative susceptibility to infection of adults
(individuals aged ≥ 15 years) with respect to children (σ) and the multiplying factor for the
transmission in ‘other settings’ while schools are closed (τ). Model M3 has one further free pa-
rameter determining the (possible) increase of virus transmissibility during the second wave (χ).
Model M4 has one parameter regulating the daily number of imported cases during the second
wave (δ). Models M2-M4 have one free parameter regulating the kernel distance function K(d),
i.e. α. Finally, model M5 has one free parameter (α1) regulating the kernel function K(d) for

Table S2: Grouping of regions in the datasets used for model calibration.
Calibration dataset Group A Group B
Post-first wave [8] London

West Midlands
East Midlands
North-West
South-East
South-West

Post-second wave [21] London East Midlands
North-West
South-East
South-West
West Midlands
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the first wave and a second parameter (α2) for the second wave. The vectors of free parameters
Θ corresponding to each model are reported in Table S3.

Table S3: Set of free parameters for the different models considered.
Model Θ
M1 (βh, βs, βr, σ, τ)
M2 (βh, βs, βr, σ, τ, α)
M3 (βh, βs, βr, σ, τ, α, χ)
M4 (βh, βs, βr, σ, τ, α, δ)
M5 (βh, βs, βr, σ, τ, α1, α2)

The posterior distribution of Θ is determined using random-walk Metropolis-Hastings sam-
pling [22]. For each of the five models we run four chains, each one having a different starting
point. Each chain is based on 22,000 realizations. To perform the simulations of the calibrated
models, for each model we considered only one chain (i.e., one starting point), we discarded the
first 2,000 iterations (considered as burn-in period), and we run 20,000 realizations each one
having the parameter set estimated by MCMC. We assume non-informative prior distributions
on all model parameters (i.e., the prior distribution for βs is a flat distribution in [0, 1000]). On
the contrary, for the transmission rate in households we assume a prior uniform distribution in
[0, 3] according to the findings reported in [10]. Indeed, when assuming βh = 3, the household
secondary attack rate is more than twice the one estimated for the 2009 influenza pandemic [10],
thus providing an upper bound for the household transmission rate.

1.6 Computation of Re

The effective reproduction number Re represents the average number of infections generated by
an infectious individual in a partly immune population. We estimated its value for the first and
second wave from the corresponding epidemic growth rate [2, 9, 23, 24].

Briefly, the exponential growth rates r1 and r2 of the two epidemic waves are estimated by
fitting a linear model to the logarithm of influenza incidence over the the week of maximum
growth. r1 is computed on the basis of simulated data up to week 33, 2009, and r2 on the basis
of simulated data after week 34, 2009. The effective reproduction number is thus computed as:

Ri
e = (1 + riTL)(1 + riTI) i ∈ {1, 2}

where TL = 1.5 days and TI = 1.6 days are the average duration of the latent and infectious
period, respectively. The details on the derivation of such an equation can be found for instance
in [24].
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2 Additional results

2.1 Estimated models parameters and epidemiological indicators

Estimated values of all parameters for the five analyzed models are reported in Tab. S4. The
key epidemiological quantities obtained by each model, i.e. the effective reproduction numbers
for the first and second wave, and the fraction of cases by setting after the first and the second
wave, are summarized in Tab. S5.

Symbol	 Description	
Model	M1	

(mean	and	95%CI)	
Model	M2	

(mean	and	95%CI)	
Model	M3	

(mean	and	95%CI)	
Model	M4	

(mean	and	95%CI)	
Model	M5	

(mean	and	95%CI)	

βh	
Transmission	rate	in	households			

(days-1)	
1.72	

(95%	CI:	0.17-2.92)	
1.35	

(95%	CI:	0.07-2.9)	
1.65	

(95%	CI:	0.15-2.92)	
1.53	

(95%	CI:	0.1-2.94)	
1.75	

(95%	CI:	0.11-2.93)	

βs	
Transmission	rate	in	schools												

(days-1)	
0.62	

(95%	CI:	0.11-1.18)	
0.66	

(95%	CI:	0.11-1.23)	
0.76	

(95%	CI:	0.16-1.38)	
0.65	

(95%	CI:	0.08-1.36)	
0.72	

(95%	CI:	0.16-1.22)	

βr	
Transmission	rate	in	“other	settings”	

(days-1)	
0.56	

(95%	CI:	0.18-1.46)	
0.7	

(95%	CI:	0.24-1.88)	
0.46	

(95%	CI:	0.1-1.36)	
0.72	

(95%	CI:	0.2-1.69)	
0.57	

(95%	CI:	0.18-1.41)	

Σ	
Susceptibility	to	infection		

of	adults	(≥15	years)	as	compared		
to	children	(<15	years)	

0.59	
(95%	CI:	0.24-0.95)	

0.58	
(95%	CI:	0.22-0.95)	

0.59	
(95%	CI:	0.23-0.96)	

0.49	
(95%	CI:	0.2-0.93)	

0.61	
(95%	CI:	0.28-0.94)	

τ	
Scale	factor	for	transmission	in	“other	

settings”	during	school	holidays	
1.34	

(95%	CI:	0.64-1.96)	
1.05	

(95%	CI:	0.56-1.9)	
1.33	

(95%	CI:	0.58-1.95)	
1.27	

(95%	CI:	0.57-1.96)	
1.21	

(95%	CI:	0.61-1.94)	

α1	
Kernel	parameter		

(in	the	1st	wave	for	model	M5)	 -	
3.56	

(95%	CI:	0.08-5.89)	
3.92	

(95%	CI:	0.42-5.87)	
4.03	

(95%	CI:	0.6-5.9)	
4.06	

(95%	CI:	0.53-5.86)	

α2	 Kernel	parameter	2nd	wave	 -	 -	 -	 -	 2.18	
(95%	CI:	0.11-5.39)	

χ	
Scale	factor	of	transmission		

rates	in	the	2nd	wave	 -	 -	
1.16	

(95%	CI:	0.75-1.84)	
-	 -	

δ	
Parameter	determining	the	daily	
number	of	imported	cases	C	
in	the	2nd	wave	(C=10δ-1)	

-	 -	 -	
1.87	

(95%	CI:	0.11-4.75)	
-	

	

Table S4: Estimated values of models parameters.
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Table S5: Epidemiological indicators as estimated by models M1-M5.

2.2 Estimated transmission distance

For models M2-M5 (i.e., all models except model M1 for which the kernel parameters are kept
fixed), we estimated very narrow kernels for the first wave (see Tab. S4). This resulted in a
low average transmission distance (see Table 1 in the Main Text) and in a sharply decreasing
distribution (see Fig. S4). However, although the narrow kernel, the models estimated a ho-
mogeneous attack rate within the entire England at the end of the pandemic. For instance, if
we consider a variant of model M5, where α1 = α2 = 4.06 and not considering school closures
during holidays (all the other model parameters are those estimated for model M5 and reported
in Tab. S4), we found that the pandemic spreads in an heterogeneous way (see the different peak
times for England regions reported in Fig. S5). However, at the end of the epidemic the final
attack rate by region is very homogenous (see Fig. S6). Indeed, the pandemic is capable to reach
all regions because of the combination of contacts in the general community and because of com-
muting from the place of residence to school. This is further supported by the analysis of models
M2-M4. In fact, slight variations in the transmission distance are observed when all sources
of infections are considered (Fig. S4b), suggesting a larger importance of school transmission
later on in the epidemic (see also the fraction of cases by setting reported in Tab. S5), when the
infection started to reach a larger geographical area. On the other hand, the estimated trans-
mission distance in ‘other settings’ does not remarkably change over time according to models
M2-M4 (Fig. S4a). Another factor contributing to the homogenous final attack rate by region
is the increased transmission rate in ‘other settings’ during the summer school closure, which
both contributed to keep influenza circulating and increased the chance of generating secondary
infections outside the network of close contacts of household members and schoolmates.
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Figure S4: Estimated transmission distance for the different models. Probability distributions
for models M1-M5 of transmission distance in ‘other settings’ (panel a) and overall transmission distance
(panel b).
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Figure S5: Spatial spread of the 2009 H1N1 influenza pandemic in England estimated by a

variant of model M5. Weekly incidence of new infections by region (mean and 95%CI) as estimated

by model M5, where α1 = α2 = 4.06 and without considering holidays school closures (other model

parameters are those estimated for model M5 and reported in Tab. S4).
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Figure S6: Final attack rates by region estimated by a variant of model M5. a Estimated

attack rate (mean and 95%CI) by region of England at the end of the epidemic. Abbreviations used

are: Lon, London; WMid, West Midlands; EMid, East Midlands; NW, North West; NE, North East;

SW, South West; SE, South East; EEng, East of England; Y&H, Yorkshire & Humber. b Estimated

attack rate by age (mean and 95%CI) in London and in all other England regions at the end of the

pandemic. Both panels are obtained by simulating model M5, where α1 = α2 = 4.06 and without

considering holidays school closures (other model parameters are those estimated for model M5 and

reported in Tab. S4).
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2.3 Geographic spread of the pandemic estimated by models M1-M4

Model M1 estimates a rather homogenous spread of the pandemic in both waves (Fig. S7). In
particular only a slight difference in the prevalence between London and West Midlands, and
the other regions is estimated, especially if compared with the estimates of model M5 (compare
Fig. S7a with Fig. 4a in the main text). Influenza activity during the summer is estimated to
be rather high, which appears to be less compliant with ILI reported by the HPA than what
estimated by model M5 (compare Fig. S7c with Fig. 2c in the main text). Nonetheless, the
difference in the pandemic dynamics between London and the other regions of England is still
clearly visible (Fig.S7d,e).

The geographic spread of the pandemic estimated by model M2 is very close to that estimated
by model M5 (compare Fig. S8 with Fig. 2 and 4 in the main text). Indeed for model M2 we
estimated a very narrow kernel, similar to the one estimated for model M5 in the first wave
(see Tab. S4), supporting the finding that the transmission distance was very low at least in
the early phase of the pandemic. The epidemics simulated by model M2 then lead to a rather
homogenous attack rate across England regions, partially thanks to a larger fraction of cases
linked to contacts in ‘other settings’ (Tab. S4 and S5).

The geographic spread of the pandemic estimated by model M3 is reported in Fig. S9. Model
M3 estimates a slightly more homogenous spread during the first wave (Fig. S9a with Fig. 4a
in the main text)) than model M5 and a markedly large influenza activity during the summer,
especially in London area (Fig. S9). The final attack rate estimated by model M3 is quite
compliant with that estimated by all the other models.

The geographic spread of the pandemic estimated by model M4 is reported in Fig. S10.
Model M4 estimates a quite heterogeneous pattern across England regions during the first wave,
very similar to that estimated by model M5 (compare Fig. S10a with Fig. 4a in the main text)
and an homogenous attack rate by region at the end of the pandemic (compare Fig. S10b with
Fig. 4b in the main text). However, model M4 also estimate a remarkable influenza activity
during the summer (Fig. S10c,d,e), and an unreasonably large number of imported influenza
cases over time (see inset in Fig. S10d).
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Figure S7: Spatial spread of 2009 H1N1 influenza pandemic in England as estimated by

model M1. a Age-specific seroprevalence (mean, 95% CI) by age group and region as reported in [8, 21]

(proportion of serum samples with haemagglutination inhibition titre 1:32 or more) and as estimated

by model M1, as of August 2009 (i.e., at the end of the first epidemic wave). Regions are grouped as

in the original works [8, 21]; WMid corresponds to West Midlands. b as a, but as of January 2010

(i.e., at the end of the second wave). c Weekly incidence of new reported ILI cases in the UK [2] and

weekly incidence of new infections estimated by simulating the calibrated model M1 (mean and 95%CI)

for England. d Weekly incidence of new infections in London as estimated by model M1 (mean and

95%CI). e The same as d but for all other regions of England (grouped together).
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Figure S8: Spatial spread of 2009 H1N1 influenza pandemic in England as estimated by

model M2. a Age-specific seroprevalence (mean, 95% CI) by age group and region as reported in [8, 21]

(proportion of serum samples with haemagglutination inhibition titre 1:32 or more) and as estimated

by model M2, as of August 2009 (i.e., at the end of the first epidemic wave). Regions are grouped as

in the original works [8, 21]; WMid corresponds to West Midlands. b as a, but as of January 2010

(i.e., at the end of the second wave). c Weekly incidence of new reported ILI cases in the UK [2] and

weekly incidence of new infections estimated by simulating the calibrated model M2 (mean and 95%CI)

for England. d Weekly incidence of new infections in London as estimated by model M2 (mean and

95%CI). e The same as d but for all other regions of England (grouped together)
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Figure S9: Spatial spread of 2009 H1N1 influenza pandemic in England as estimated by

model M3. a Age-specific seroprevalence (mean, 95% CI) by age group and region as reported in [8, 21]

(proportion of serum samples with haemagglutination inhibition titre 1:32 or more) and as estimated

by model M3, as of August 2009 (i.e., at the end of the first epidemic wave). Regions are grouped as

in the original works [8, 21]; WMid corresponds to West Midlands. b as a, but as of January 2010

(i.e., at the end of the second wave). c Weekly incidence of new reported ILI cases in the UK [2] and

weekly incidence of new infections estimated by simulating the calibrated model M3 (mean and 95%CI)

for England. d Weekly incidence of new infections in London as estimated by model M3 (mean and

95%CI). e The same as d but for all other regions of England (grouped together)
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Figure S10: Spatial spread of 2009 H1N1 influenza pandemic in England as estimated

by model M4. a Age-specific seroprevalence (mean, 95% CI) by age group and region as reported

in [8, 21] (proportion of serum samples with haemagglutination inhibition titre 1:32 or more) and as

estimated by model M4, as of August 2009 (i.e., at the end of the first epidemic wave). Regions are

grouped as in the original works [8, 21]; WMid corresponds to West Midlands. b as a, but as of January

2010 (i.e., at the end of the second wave). c Weekly incidence of new reported ILI cases in the UK [2]

and weekly incidence of new infections estimated by simulating the calibrated model M4 (mean and

95%CI) for England. d Weekly incidence of new infections in London as estimated by model M4 (mean

and 95%CI). The inset shows the posterior distribution (median, 50% CI, 95% CI) of the daily number

of imported cases as obtained by Model M4 and as reported in the time-series of travel-related cases

[16]. e The same as d but for all other regions of England (grouped together)
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3 Supplementary Video S1

Supplementary Video S1 caption. Estimated spatiotemporal dynamics of the pandemic.
Spatiotemporal pattern of influenza spread. Left panel shows the simulated median incidence of
new weekly influenza cases by cell; right panel shows the simulated cumulative median incidence
of weekly cases by cell. Averages computed on 2,000 simulations performed by using model
M5. The maps were generated using Grass GIS 6.4.2 (https://grass.osgeo.org/announces/
announce_grass642.html).
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