Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient *Escherichia coli*

Sabine Oesterle¹, Daniel Gerngross¹, Steven Schmitt¹, Tania Michelle Roberts¹, and Sven Panke^{1*}

Supplementary material

Supplementary Table 1: Possible sources of bias leading to non-uniform distribution of library members. Occurrence of biases depends on genetic configuration of the host strain (MMR⁻ or MMR⁺) and the design strategy (N₆-RedLibs or GLOS-RedLibs) for the supplied oligonucleotide pool during CRMAGE.

	N₀-Reo (0-6 bp mi	dLibs smatch)	GLOS-RedLibs (6 bp mismatch)	
	MMR ⁻	MMR ⁺	MMR ⁺	
DNA synthesis-derived bias in oligonucleotide pool	yes	yes	yes	
AR efficiency bias due to				
 different length of the mismatch 	yes	yes	no	
 folding energy of the oligonucleotide 	yes	yes	yes	
- generation at which the oligonucleotide is integrated	yes	yes	yes	
CRISPR/Cas9 counterselection				
 inactivation due to mutation of the components 	yes	no	no	
 bias in escape rate due to length and position of the 	yes	yes	no	
mismatch between gRNA and target				
MMR bias due to length or type of mismatch	no	yes	no	
Survival rate bias due to essentiality or metabolic burden	yes	yes	yes	

Supplementary Table 2: Strains and Plasmids used in this study.

Strains	Relevant genotype	Source/reference	
BW23474	<i>E.</i> coli Δ(argF-lac)169, ΔuidA4::pir-116, recA1, rpoS396(Am), endA9(del-ins)::FRT, rph-1, hsdR514, rob-1, creC510	1	
Top10	<i>E. coli F</i> - mcrA Δ (mrr-hsdRMS-mcrBC) φ80lacZ Δ M15 Δ lacX74 nupG recA1 araD139 Δ (ara-leu)7697 galE15 galK16 rpsL(Str ^R) endA1 λ ⁻	Invitrogen	
MG1655	E. coli F-, lambda-, rph-1	Coli Genetic Stock Center (CGSC)	
EcNR1	E. coli MG1655 Δ(ybhB-bioAB)::[λcl857 N(cro-ea59)::tetR-bla]	Addgene #26930 ²	
Ec ⁻	EcNR1 translational knockout of mutS	this study	
Ec⁺LacZ_Red	EcNR1 with a RBS variant (DDKGAG) for <i>lacZ</i>	this study	
Ec LacZ_Red	Ec- with a RBS variant (DDKGAG) for <i>lacZ</i>	this study	
Ec ⁺ LacZ_GLOS	EcNR1 with a RBS variant (BDGGGW) for <i>lacZ</i>	this study	
Ec⁺ribA	EcNR1 with a RBS variant (VABRGA) for ribA	this study	
Ec⁺ribB	EcNR1 with a RBS variant (AGRAVV) for <i>ribB</i> and deletion of the riboregulator of <i>ribB</i>	this study	
Ec ⁺ ribAB _{exp}	EcNR1 with RBS variant (AACAGA) for <i>ribA</i> and (AGGACA) for <i>ribB</i> and deletion of the riboregulator of <i>ribB</i>	this study	
Ec ⁺ ribAB _{pred}	EcNR1 with RBS variant (GAGGGA) for <i>ribA</i> and (AGGAAC) for <i>ribB</i> and deletion of the riboregulator of <i>ribB</i>	this study	
Ec⁻ribAB	Ec with a RBS variant (AAGAGA) for <i>ribA</i> and (AGGACA) for <i>ribB</i> and deletion of the riboregulator of <i>ribB</i>	this study	
Plasmids			
pCas9	Bacterial expression of Cas9 nuclease, chloramphenicol resistance, p15A ori	Addgene #42876 ³	
pCRISPR	A crRNA expression plasmid for targeting a specific sequence of choice, kanamycin resistance, pBR322 ori	Addgene #42875 ³	
pCRISPR_lacZ	pCRISPR with gRNA targeting the RBS of <i>lacZ</i>	this study	
pCRISPR_ribA	pCRISPR with gRNA targeting the RBS of ribA	this study	
pCRISPR_ribB	pCRISPR with gRNA targeting the RBS of <i>ribB</i>	this study	
pSEVA261	p15A ori and kanamycin resistance	pSEVA collection ⁴	
pAB92	pBR322 ori, ampicillin resistance gene, Ptet, TetR	5	
pSEVA261_P _{tet}	pSEVA261 with Ptet and TetR	this study	
pSEVA261_mKate	pSEVA261_P _{tet} plasmid with <i>mKate2</i> under control of a P _{tet}	this study	
pSEVA261_ribA	pSEVA261_P _{tet} plasmid with <i>ribA</i> (EcoGene accession number: EG11331) and <i>mKate2</i> under control of a P _{tet}	this study	
pSEVA261_ribB	pSEVA261_P _{tet} plasmid with <i>ribB</i> (EcoGene accession number: EG10465) and <i>mKate2</i> under control of a P _{tet}	this study	
pSEVA261_ribC	pSEVA261_P _{tet} plasmid with <i>ribC</i> (EcoGene accession number: EG11406) and <i>mKate2</i> under control of a P _{tet}	this study	
pSEVA261_ribD	pSEVA261_P _{tet} plasmid with <i>ribD</i> (EcoGene accession number: EG11321) and <i>mKate2</i> under control of a P _{tet}	this study	
pSEVA261_ribE	pSEVA261_P _{tet} plasmid with <i>ribE</i> (EcoGene accession number: EG11322) and <i>mKate2</i> under control of a P _{tet}	this study	
pKO3	Plasmid with B. subtilis gene sacB under control of a Proset	6	
pSEVA431	pBR322 ori, streptomycin resistance	pSEVA collection ⁴	
pSEVA431 SacB	pSEVA431 plasmid with sacB under control of a P _{const}	this study	

ID	Name	Sequence (5' to 3') ^a
1	lacZ_RBS	T*G*C*T*TCCGGCTCGTATGTTGTGTGGGAATTGTGAGCGGATAACAATTT CDDKGAGGAAACAGCTATGACCATGATTACGGATTCACTGGCC
2	lacZ_RBS_GLOS	T*G*C*T*TCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTT
		CBDGGGWGAAACAGCTATGACCATGATTACGGATTCACTGGCC
3	ribA_RBS_GLOS	C*C*C*T*TCTCGTTATGGCAAAATAAGCCAATACAGAACCAGCAVABRGA
		GGAGAATTTCATGCAGCTTAAACGTGTGGCAGAAGCCAAACTG
4	ribB_RBS_GLOS	
5		
5	ADDDAD_Adit	
6	ribA GAGAGA	
Ŭ		GGAGAATTTCATGCAGCTTAAACGTGTGGCAGAAGCCAAACTG
7	ribA_CATAGA	C*C*C*T*TCTCGTTATGGCAAAATAAGCCAATACAGAACCAGCACATGGA
		GGAGAATTTCATGCAGCTTAAACGTGTGGCAGAAGCCAAACTG
8	ribA_ AACAGA	C*C*C*T*TCTCGTTATGGCAAAATAAGCCAATACAGAACCAGCAAACAGA
		GGAGAATTTCATGCAGCTTAAACGTGTGGCAGAAGCCAAACTG
9	pCRISPR_lacZ _fw	[PHOS]AAACTGGAATTGTGAGCGGATAACAATTTCACACG
10	pCRISPR_lacZ _rv	[PHOS]AAAAC GTGTGAAATTGTTATCCGCTCACAATTCCA
11	pCRISPR_ribA_fw	[PHOS]AAACAAAATAAGCCAATACAGAACCAGCATTATCG
12	pCRISPR_ribA_rv	[PHOS]AAAAC GATAATGCTGGTTCTGTATTGGCTTATTTT
13	pCRISPR_ribB_fw	[PHOS]AAACATCAACTCAGTTGAAAGCCCGCGAGCGCTTG
14	pCRISPR_ribB_rv	[PHOS]AAAACAAGCGCTCGCGGGCTTTCAACTGAGTTGAT
15	lacZ_RBS_rv	TCATAGCTGTTTCCTGTGT
16	ribA_RBS_rv	GCTGCATGAAATTCTCCAGATAA
17	ribB_rv	ACACGTTCGAAAGGCGTAC
18	lacZ_RBS_fw	GTTGGCCGATTCATTAATG
19	ribA_RBS_fw	ACTGCGGTACGTCTGG
20	ribB_fw	TTGCTCAATTTTTTCGGG
21	lacZ_RBS_seq_rv	GGACGACGACAGTATC
22	ribA_RBS_seq_rv	GCTTCGAGCTGGAAGC
23	SacB_fw	ATATATAAGCTTCACATATACCTGCCGTTCAC
24	SacB_rv	ATATATGAATTCTTATTTGTTAACTGTTAATT
25	Fill_up_lacZ	GGCCAGTGAATCC
26	Fill_up_RibA	CAGTTTGGCTTCTGC
27	Fill_up_RibB	

a Phosphorothioated bases are indicated with an asterisk after the base.

Supplementary Table 4: Different sequences of each RBS library and their predicted TIR and ΔG of the secondary structure formed by the chemically synthesized oligonucleotide. TIRs are predicted by the Salis RBS Calculator version 1.0 in the "Predict: RBS Library" mode ⁷. No value for the TIR of RibB wt is given since the riboregulator affects the TIR. Folding energies (ΔG) of all oligonucleotides were calculated on the mFold web server ⁸.

LacZ N ₆ -RedLibs		LacZ GLOS-RedLibs		RibA GLOS-RedLibs			RibB GLOS-RedLibs				
Sequence	TIR (AU)	∆G (kcal mol ⁻¹)	Sequence	TIR (AU)	ΔG (kcal mol ⁻¹)	Sequence	TIR (AU)	ΔG (kcal mol ⁻¹)	Sequence	TIR (AU)	∆G (kcal mol ⁻¹)
wt	731		wt	732		wt	3		wt	-	
GGTGAG	916	-4.33	GTGGGT	69	-5.47	CATGGA	2358	-10.54	AGAACG	2376	-8.27
ATGGAG	1104	-7.03	GTGGGA	325	-5.1	AATGGA	5544	-9.95	AGGACG	2845	-9.18
GTTGAG	1147	-5.02	TGGGGT	340	-5.47	GATGGA	7263	-9.95	AGAAGC	4265	-9.79
TGTGAG	1256	-5.41	CGGGGT	348	-5.47	CATAGA	10743	-8.49	AGAAGG	5845	-8.20
GTGGAG	1321	-5.1	CTGGGT	359	-5.47	AAGAGA	11915	-8.47	AGAAAG	6997	-8.30
AGTGAG	1510	-6.05	CAGGGT	470	-5.92	CAGAGA	11915	-8.67	AGGAGG	10030	-8.81
ATTGAG	3379	-4.68	TAGGGT	800	-5.47	GAGAGA	13037	-8.57	AGGAAG	13139	-9.53
GATGAG	3379	-4.33	TTGGGT	821	-5.47	GACAGA	13454	-8.27	AGGAGC	15731	-10.50
TGGGAG	3868	-4.69	GAGGGT	881	-5.47	AACGGA	14265	-8.37	AGAAGA	19701	-8.20
TTTGAG	4046	-4.33	CGGGGA	1448	-4.68	CACGGA	16327	-8.27	AGAAAA	23586	-8.20
AATGAG	4046	-4.57	TTGGGA	1880	-4.75	GACGGA	18437	-8.27	AGAAAC	23586	-8.20
TATGAG	7048	-4.33	CTGGGA	1880	-4.33	GATAGA	19285	-8.27	AGAACA	23586	-8.20
TTGGAG	10955	-4.33	GGGGGT	2441	-5.47	CACAGA	22073	-8.27	AGAACC	23586	-8.20
TAGGAG	11563	-4.33	GGGGGA	3227	-4.33	AAGGGA	22407	-8.46	AGGAGA	25808	-8.81
AGGGAG	14351	-4.65	GAGGGA	3375	-4.33	AACAGA	25264	-9.67	AGGAAA	27610	-9.75
GGGGAG	18800	-4.33	CAGGGA	3898	-5.38	AATAGA	31639	-8.37	AGGACA	36992	-8.81
AAGGAG	19843	-4.57	TGGGGA	4227	-4.33	CAGGGA	38975	-8.33	AGGACC	36992	-8.81
GAGGAG	28442	-5.94	TAGGGA	9167	-4.65	GAGGGA	40769	-8.33	AGGAAC	42340	-8.81

Supplementary Table 5: List of all off-target mutations in Ec⁺ribAB and Ec⁻ribAB after four CRMAGE cycles and four CRMAGE and two MAGE cycles for deactivation of *mutS*, respectively. Three mutations (*) occurred in the *mutS* deactivation step. Genome sequencing data were analyzed by breseq ⁹, arrows indicate the orientation of the gene on the genome (\rightarrow plus strand and \leftarrow minus strand). If the mutation is between two genes (intergenic), both flanking genes are reported. If the gene does not code for a protein the entry in "aa change" is "noncoding". Gene descriptions are taken from input GenBank files by breseq (Deatherage and Barrick).

Г

Ec⁺ribAB							
Position	Mutation	aa change	Gene	Description			
158,933	A→G	V54A	$pcnB \leftarrow$	poly(A) polymerase I			
1 599 170		intorgonia	61505, /, 615.06	putative outer membrane protein,			
1,566,170	C→I	intergenic		hypothetical protein			
3,636,556	G→A	A298T	$pitA \rightarrow$	low-affinity phosphate transport			
4,164,808	G→T	noncoding	rrsB→	16S ribosomal RNA			
Position	Mutation	aa change	Gono	Description			
53 484		S407P	sur∆ ←	survival protein			
		04071	Sunt	putative transport system permease			
74,110	C→T	G138S	yabK ←	protein			
119.651	A→C	D124A	$ampE \rightarrow$	regulates ampC			
100,001	0 F	04050		pyruvate dehydrogenase (decarboxylase			
123,331	C→I	G105G	ace $E \rightarrow$	component)			
				putative fimbrial-like protein/			
157,118	T→C	intergenic	yadN←/←folK	7,8-dihydro-6-hydroxymethylpterin-pyroph			
				osphokinase			
158,672	C→T	G141D	pcnB ←	poly(A) polymerase I			
166 050	A→G	T441A	$mrcB \rightarrow$	peptidoglycan synthetase;			
100,000		1111/		penicillin-binding protein 1B			
182.555	C→T	A37A	$cdaR \rightarrow$	regulator of D-galactarate, D-glucarate and			
				D-glycerate metabolism			
204,986	A→G	Y165C	$rnhB \rightarrow$	RNAse HII, degrades RNA of DNA-RNA			
070 110	T		vldf C	NyDrids			
273,119		V 345A	ykiC →	hypothetical protein			
200,733	G→A	K159C	yayA ←				
320,783	G→A	intergenic	ykgD→/→ykgE	protein/putative debydrogenase subunit			
347 141	A→G	1176T	nrnR ←	regulator for <i>prp</i> operon			
				putative amino acid/amine transport			
512,101	C→T	T101M	ybaT→	protein			
543,006	A→G	S89P	ylbA ←	hypothetical protein			
664,168	C→T	L82L	rlpA ←	a minor lipoprotein			
702 266		DETC	nagE	PTS system, N-acetylglucosamine-specific			
703,300	A→G	Dorg	nage→	enzyme IIABC			
834,779	T→C	11031	ybi $B \rightarrow$	putative enzyme			
900,961	C→T	V171V	artQ ←	arginine 3 rd transport system permease			
,							
1,113,039*	A→G	D123D	msyB ←	acidic protein suppresses mutants lacking			
1 126 622	T	S105	fla				
1,130,023		100 H30D		hayenal Diosynthesis			
1,191,700	1→0	HOUR	yuu ←	nitrato/nitrato.sonsor.bistidino.protoin			
1,275,414	A→G	F476F	narX ←	kinase acts on NarL regulator			

1,333,276	G→A	intergenic	cysB→/→acnA	positive transcriptional regulator for cysteine regulon/aconitate hydrase 1		
1.346.830	A→G	L36P	rnb ←	RNase II. mRNA degradation		
1,374,703	A→G	S219G	vciR →	hypothetical protein		
1,416,937*	A→G	L122L	$sieB \rightarrow$	phage superinfection exclusion protein		
1,536,890	T→C	Q1242R	narZ←	cryptic nitrate reductase 2 alpha subunit		
1.554.862	G→A	G72R	$osmC \rightarrow$	osmotically inducible protein		
1,620,820	G→A	intergenic	ydeE→/←ydeH	putative transport protein/orf, hypothetical protein		
1,894,197	G→A	E2K	$veaB \rightarrow$	hypothetical protein		
1,898,742	T→C	N290D	yoaE ←	putative transport protein		
1,906,040	(A) _{7→8}	intergenic	yobF←/←yebO	hypothetical protein/hypothetical protein		
2,086,286	C→T	A6A	yeeY←	putative transcriptional regulator LYSR-type		
2,102,024	repeat region +9 bp	coding	wbbK ←	putative glucose transferase		
2,503,109	A→G	V154A	ypdE ←	hypothetical protein		
2,602,988	C→T	A52A	$hyfD \rightarrow$	hydrogenase 4 membrane subunit		
2,757,357	(A) _{8→9}	coding	yfjl →	hypothetical protein		
2,768,789	A→G	K112K	yfjS →	hypothetical protein		
2,770,160	A→G	I6T	yfjU ←	hypothetical protein		
2,816,972	A→G	intergenic	serV←/←csrA	tRNA-Ser/carbon storage regulator		
3,076,675	A→G	G69G	$cmtA \leftarrow$	PTS system, mannitol-specific enzyme II component, cryptic		
3,081,206	T→C	N205S	speB ←	agmatinase		
3,165,071	T→C	T224A	ygiS ←	putative transport periplasmic protein		
3,204,250	T→C	D10G	ygiP ←	putative transcriptional regulator LYSR-type		
3,303,854	A→G	intergenic	mtr←/ ←deaD	tryptophan-specific transport protein/inducible ATP-independent RNA helicase		
3,359,337	T→C	V47A	$gltF \rightarrow$	regulator of <i>gltBDF</i> operon, induction of Ntr enzymes		
3,441,036	T→C	T362A	$prIA \leftarrow$	putative ATPase subunit of translocase		
3,823,370	T→A	D46E	$recG \rightarrow$	DNA helicase, resolution of Holliday junctions, branch migration		
4,047,248	C→T	R754C	polA $ ightarrow$	DNA polymerase I		
4,047,374	C→T	P796S	polA $ ightarrow$	DNA polymerase I		
4,317,108	C→T	P174P	phnJ ←	phosphonate metabolism		
4,380,567	(T) _{7→6}	intergenic	frdA←/→yjeA	fumarate reductase, anaerobic, flavoprotein subunit/putative lysyl-tRNA synthetase		
4,455,398	G→A	P164L	yjgA ←	putative alpha helix protein		
4,548,135	A→G	G395G	gntP ←	gluconate transport system permease 3		
4,581,282*	T→C	E1186G	hsdR \leftarrow	host restriction; endonuclease R		
4,637,628	A→G	G234G	$arcA \leftarrow$	negative response regulator of genes in aerobic pathways, (sensors, ArcB and CpxA)		

Supplementary Figures:

Supplementary Figure 1: **Genomic off-target mutations introduced by MAGE** observed in different MAGE projects taken from literature: 1: ¹⁰; 2: ¹¹; 3: ¹² and 4: ¹³ in MMR⁻ (black) and MMR⁺ (grey), each MAGE cycle is counted as one transformation step. For our work transformation steps are either plasmid or oligonucleotide transformation for Ec⁻ribAB or Ec⁺ribAB (four oligonucleotide and four plasmid transformation or six and four, respectively. For Ec⁻ribAB two additional step were required to deactivate *mutS* by introduction of an early STOP codon).

Supplementary Figure 2. **Riboflavin production** (**a**) Pathway of riboflavin synthesis in *E. coli* and involved enzymes. GTP: Guanosine 5'-triphosphate; DARPP: 2,5-Diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one; ARPP: 5-Amino-6-(5'-phosphoribosylamino)uracil; ARP: 5-amino-6-(5'-phospho-D-ribitylamino)uracil; DHPB: L-3,4-dihydroxybutan-2-one 4-phosphate DRL: 6,7-dimethyl-8-(D-ribityl)lumazine. (**b**) Riboflavin production after 24 h at 30°C in the wildtype strain *E. coli* BW23474 carrying an empty expression plasmid (wt) and after plasmid-based overexpression of single riboflavin genes after induction with 0 (white) or 10 ng mL⁻¹ (black) of anhydrotetracyclin (aTc). Note that in this setup all *rib* genes are also present and functional at their endogenous chromosomal locus. Values are mean (n = 3) \pm standard deviation.

a N₆-RedLibs *lacZ* libraries

Supplementary Figure 3. Indels found within the oligonucleotide-covered sequences after genome editing. Fraction of all library members which have an insertion (grey) or deletion (black) on the genome within the 90 bp oligonucleotide sequence. (a) Comparison of the N₆-RedLiba *lacZ* library in an MMR⁻ and MMR⁺ strain. (b) Analysis of the GLOS-RedLibs libraries. Frequencies were determined by Sanger sequencing. Numbers indicate absolute numbers, mutants with indels/total. Wild type sequences were excluded from the analysis.

Supplementary Figure 4. Folding energies (Δ G) of all chemically synthesized oligonucleotides present in RBS libraries and their occurrence after genome editing. Folding energies were calculated (mFold web server⁸) for each of the 18 members of each library and are plotted against the frequency with which a strain was found that had acquired the corresponding change in RBS. Note that those library members for which no corresponding strain could be identified have the count "0". (a) Data for the *lacZ* (N₆-RedLibs) library, two experiments in MMR⁺ and two experiments in MMR⁻ strains. Different shades of grey refer to the four different experiments. Compare also Fig. 2a (b) Data for the *lacZ* (GLOS-RedLibs) library, two experiments in MMR⁺ strain. Different shades indicate the different libraries displayed in Fig. 2abd. (c) Data for the *ribA* (GLOS-RedLibs) library, see Fig. 3b. (d) Data for *ribB* (GLOS-RedLibs) library see Fig. 4b.

• lacZ (N_e-RedLibs) • lacZ (GLOS-RedLibs) • ribA (GLOS-RedLibs) • ribB (GLOS-RedLibs)

Supplementary Figure 5. Aspects of sequence distribution. Relation between the deviation of the abundance a specific oligonucleotide after chemical synthesis from uniform distribution and a) the folding energy (Δ G) of the corresponding chemically synthesized oligonucleotide and (b) the occurrence of the corresponding sequence after genome editing.

Additional references

- 1. Haldimann, A. & Wanner, B. L. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. *J. Bacteriol.* **183**, 6384–6393 (2001).
- 2. Wang, H. H. *et al.* Programming cells by multiplex genome engineering and accelerated evolution. *Nature* **460**, 894–898 (2009).
- 3. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. *Nat. Biotechnol.* **31**, 233–239 (2013).
- 4. Silva-Rocha, R. *et al.* The Standard European Vector Architecture (SEVA): A coherent platform for the analysis and deployment of complex prokaryotic phenotypes. *Nucleic Acids Res.* **41**, 666–675 (2013).
- 5. Bosshart, A., Hee, C. S., Bechtold, M., Schirmer, T. & Panke, S. Directed divergent evolution of a thermostable D -tagatose epimerase towards improved activity for two hexose substrates. *ChemBioChem* **16**, 592–601 (2015).
- 6. Link, A. J. & Phillips, D. Methods for generating precise deletions and insertions in the genome of wildtype *Escherichia coli*: application to open reading frame characterization. **179**, 6228–6237 (1997).
- 7. Salis, H. M. The ribosome binding site calculator. *Methods Enzymol.* **498**, 19–42 (2011).
- 8. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res.* **31**, 3406–3415 (2003).
- 9. Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from nextgeneration sequencing data using breseq. *Methods Protoc. Methods Mol. Biol.* **1151**, 165–188 (2014).
- 10. Isaacs, F. J. *et al.* Precise manipulation of chromosomes *in vivo* enables genome-wide codon replacement. *Science* **333**, 348–353 (2011).
- 11. Nyerges, Á. *et al.* A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. *Proc. Natl. Acad. Sci.* **113**, 2502–2507 (2016).
- 12. Nyerges, Á. *et al.* Conditional DNA repair mutants enable highly precise genome engineering. *Nucleic Acids Res.* **42**, e62 (2014).
- 13. Lennen, R. M. *et al.* Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects. *Nucleic Acids Res.* **44**, e36–e36 (2016).