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1. Classification	of	different	methods	for	enrichment	analysis	
Basing	on	the	model	input	(type	of	gene	list:	gene	set	only	or	full	gene	list	with	score)	and	the	
output	(evaluation	pattern	of	the	identified	GO	terms:	single	term	or	term	combination),	the	
current	functional	enrichment	analysis	methods	can	be	briefly	categorized	into	three	classes	
(Table	S1,	Class	I-III).	

Table	S1.	Classification	of	different	methods	for	enrichment	analysis.	
	 	 	 	 	 	 	 	 	 	 	 Output	 	 	 	 	 	
Input	

Single	Term	 Term	Combination	

Gene	set	only	 Class	I	 Class	III	
All	genes	with	score	 Class	II	 Class	IV*	

	 	 	 	 	 	 	 	 	 *Not	found	in	literature.	

Actually,	one	could	model	a	particular	type	of	method	that	uses	all	genes	with	scores	as	model	
input	and	outputs	one	or	more	term	combinations	(Table	S1,	Class	IV).	However,	such	kind	of	
method	has	not	been	studied	in	literature,	to	the	best	of	our	knowledge.	
	 	



2. Parameter	sensitivity	analysis	
2.1 	 Workflow	
Based	 on	 the	 original	 assumption	 of	 our	 network-based	 generative	model,	 we	 have	 𝑝" >
𝑝$ ≫ 𝑞.	However,	 the	 true	parameter	combination	 for	generating	active	gene	 list	 is	 largely	
unknown,	and	may	be	related	to	the	studied	biological	problem.	The	inappropriate	selection	
of	solving	parameters	may	affect	the	performance	of	enrichment	analysis.	Therefore,	a	param-
eter	sensitivity	analysis,	performed	on	biological	process	(BP)	domain,	was	executed	first	to	
test	the	robustness	of	each	model	parameter.	
	 For	each	model	parameter	combination	(𝑝", 𝑝$, 𝑞)	in	sensitivity	analysis,	we	used	a	preset	
generating	values	to	simulate	an	active	gene	list,	then	a	wide-range	solving	parameter	values	
were	used	to	test	the	robustness	of	method.	The	preset	generating	and	solving	values	for	each	
model	parameter	are	shown	in	Table	S2.	
	
Table	S2:	The	summary	of	model	parameter	values	selection	in	our	sensitivity	analysis.	

Model	parameter	 Generating	values	 Solving	values	
𝑝"	 0.8,	0.5	 0.1,	0.3,	0.5,	0.7,	0.9	
𝑝"	 0.3,	0.1	 0.1,	0.3,	0.5,	0.7,	0.9	
𝑞	 0.001,	0.01	 0.001,	0.005,	0.01,	0.05,	0.1,	0.2	
α	 	 0.1,	1,	3,	10,	100,	1000	

	
	 In	our	generative	model,	parameter	 𝑞	 stands	for	the	influence	of	noise	and	uncontrolla-
ble	error	in	experiment.	Since	the	number	of	human	genes	is	four	orders	of	magnitude,	we	
first	chose	 𝑞 = 0.001	 by	experience,	which	resulted	in	that	the	number	of	active	genes	se-
lected	due	to	noise	was	excusable,	and	at	most	one	order	of	magnitude.	Besides,	we	also	chose	
𝑞 = 0.01	 to	obtain	a	more	comprehensive	analysis	result.	We	test	the	performance	of	enrich-
ment	analysis	methods	for	using	 𝑞 = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2	 in	the	solving	proce-
dures.	

Parameter	 𝑝"	 is	closely	related	with	the	coverage	of	active	terms,	i.e.	the	proportion	of	
active	genes	annotated	by	the	active	terms.	We	have	 𝑝" ≥ 0.5	 in	enrichment	analysis	by	ex-
perience.	Here,	we	selected	 𝑝" = 0.8	 and	 𝑝" = 0.5	 as	preset	values	of	generating	parame-
ter,	 and	 performed	 sensitivity	 analysis	 for	 using	 𝑝" = 0.1, 0.3, 0.5, 0.7, 0.9 	 in	 the	 solving	
precedures.	

Parameter	 𝑝$	 is	the	probability	of	peripheral	gene	being	activated	via	network	propaga-
tion.	We	selected	 𝑝$ = 0.3	 and	 𝑝$ = 0.1	 as	preset	values	of	generating	parameter,	and	per-
formed	sensitivity	analysis	for	using	 𝑝$ = 0.1, 0.3, 0.5, 0.7, 0.9	 in	the	solving	procedures.	 	

Parameter	 𝛼	 is	a	positive	number	to	balance	the	log-likelihood	and	the	penalization	on	
size	of	active	term	set.	A	larger	 𝛼	 makes	the	model	prone	to	select	a	fewer	number	of	terms.	
Here,	we	set	default	value	 𝛼 = 3	 as	recommended	in	[1],	and	performed	the	parameter	sen-
sitivity	analysis	for	using	 𝛼 = 0.1, 1, 3, 10, 100, 1000	 in	the	solving	procedures.	
	 We	used	 𝑝" = 0.8,	𝑝$ = 0.3,	𝑞 = 0.001	 as	a	default	generating	parameter	combination.	
For	each	alternative	value	of	the	corresponding	parameter,	we	just	replaced	the	related	value	
and	kept	other	parameters	unchanged.	The	whole	workflow	of	parameter	sensitivity	analysis	
is	as	 follows	 (for	clarity,	we	 illustrate	 the	sensitivity	analysis	of	generating	parameter	 𝑝" =
0.5):	



1. We	restricted	the	terms	in	biological	process	domain,	with	number	of	covered	gene	be-
tween	2	and	500,	and	then	randomly	selected	500	terms	from	this	refined	term	set	to	
obtain	an	annotation	set.	

2. For	the	above	annotation	set,	we	randomly	selected	5	biological	process	terms	20	times	
as	the	target	active	term	set.	For	each	target	active	term	set,	we	generated	an	active	gene	
list	using	 𝑝" = 0.5,	𝑝$ = 0.3,	𝑞 = 0.001.	

3. The	above	20	active	gene	lists	were	the	model	input.	We	used	 𝑝" = 0.1, 0.3, 0.5, 0.7, 0.9	
as	model	solving	parameter	values,	and	kept	other	parameters	as	 	𝑝$ = 0.3,	𝑞 = 0.001,	
𝛼 = 3.	

4. For	each	value	of	parameter	 𝑝",	the	20	model	outputs	were	combined	to	obtain	a	2×2	
contingency	table.	Besides,	the	Bonferroni	corrected	hypergeometric	test	p-values	were	
used	as	the	significant	scores	for	these	output	terms.	

5. The	area	under	the	precision-recall	(AUPR)	was	computed	for	each	value	of	parameter	
𝑝".	

6. The	above	procedure	was	repeated	10	times	and	the	averaged	AUPR	was	returned	for	
each	value	of	parameter	 𝑝".	

	 In	the	sensitivity	analysis,	we	used	pr.curve	 function	provided	 in	the	R	package	PRROC	
(Version:	 1.1	 from	 https://cran.r-project.org/web/packages/PRROC/index.html)	 to	 compute	
the	AUPR.	
	
2.2 	 Results	
Follow	the	parameter	sensitivity	analysis	procedure	 introduced	 in	the	previous	section,	 the	
sensitivity	analysis	results	are	shown	in	Figure	S1-S4.	
	

	
Figure	S1:	Sensitivity	analyses	results	of	 𝒑𝟏.	(A)	 𝑝" = 0.8	 and	(B)	 𝑝" = 0.5	 were	selected	for	gener-
ating	simulated	samples.	The	performances	of	NetGen	and	GenGO	were	compared	using	the	averaged	
AUPR	plus/minus	one-fold	standard	deviation	at	different	values	of	solving	parameter	 𝑝".	The	results	
of	NetGen	and	GenGO	were	shown	in	red	and	blue	curve,	respectively.	

	



	
Figure	S2:	Sensitivity	analyses	results	of	 𝒑𝟐.	(A)	 𝑝$ = 0.3	 and	(B)	 𝑝$ = 0.1	 were	selected	for	gener-
ating	simulated	samples.	The	performances	of	NetGen	and	GenGO	were	compared	using	the	averaged	
AUPR	plus/minus	one-fold	standard	deviation	at	different	values	of	solving	parameter	 𝑝$.	The	results	
of	NetGen	and	GenGO	were	shown	in	red	and	blue	curve,	respectively.	

	

	
Figure	S3:	Sensitivity	analyses	results	of	 𝒒.	(A)	 𝑞 = 0.001	 and	(B)	 𝑞 = 0.01	 were	selected	for	gen-
erating	simulated	samples.	The	performances	of	NetGen	and	GenGO	were	compared	using	the	aver-
aged	AUPR	plus/minus	one-fold	standard	deviation	at	different	values	of	solving	parameter	 𝑞.	The	re-
sults	of	NetGen	and	GenGO	were	shown	in	red	and	blue	curve,	respectively.	

	



	
Figure	S4:	Sensitivity	analyses	results	of	 𝜶.	Both	(A)	the	average	AUPR	and	(B)	the	average	number	of	
identified	terms	were	used	to	analyze	the	effect	of	solving	parameter	 𝛼.	The	results	of	NetGen	and	
GenGO	were	shown	in	red	and	blue	curve,	respectively.	

	
	 From	the	results	we	can	see	that,	NetGen,	which	consistently	maintained	a	high-level	av-
erage	AUPR	and	had	a	lower	variance	than	that	of	GenGO,	was	not	sensitive	to	the	selection	
of	solving	parameter	 𝑝"	 (Figure	S1).	However,	the	average	AUPR	of	GenGO	declined	when	
the	solving	parameter	 𝑝"	 decreasing.	One	explicable	reason	may	be	that	the	existence	of	pe-
ripheral	genes	perturbs	the	GenGO	model,	whereas	 in	NetGen	model	the	peripheral	genes	
may	assist	to	identify	the	true	functional	terms	and	counteract	the	deviation	caused	by	uncer-
tain	 𝑝".	Therefore,	the	network	information	can	help	to	improve	the	accuracy	of	enrichment	
analysis.	The	overall	results	on	samples	generated	by	 𝑝" = 0.8	 are	better	than	that	by	 𝑝" =
0.5.	This	is	expected	since	larger	 𝑝"	 indicates	smaller	uncertainty.	
	 Parameter	 𝑝$	 is	the	probability	of	peripheral	genes	being	activated	via	network	propa-
gation,	which	distinguishes	NetGen	with	other	related	methods.	However,	overemphasizing	
the	network	information	may	counter-productive	sometimes.	Specifically,	excessive	peripheral	
genes	did	confuse	the	selection	of	 true	active	terms.	The	performance	of	NetGen	declined	
sharply	and	a	larger	variance	was	observed,	when	the	solving	parameter	was	far	away	from	
the	preset	generating	value	 (Figure	S2).	On	the	other	hand,	 the	maximal	distance	between	
solving	 parameter	 and	 the	 preset	 true	 value,	 to	 achieve	 a	 tolerable	 performance	 (average	
AUPR	>	0.95),	was	roughly	about	0.2.	This	hysteresis	can	offset	the	high	sensitivity	of	the	inap-
propriate	selection	of	 𝑝$.	The	average	AUPR	maintained	a	high-level	when	 𝑝$	 was	relatively	
small.	Therefore,	a	relatively	conserved	strategy	was	adopted	on	the	selection	of	 𝑝$	 for	real	
data	applications.	We	fixed	 𝑝$ = 0.1	 or	 𝑝$ = 0.05	 in	the	mixed	parameter	selection	strat-
egy	as	described	in	the	main	text.	The	result	of	GenGO	was	a	straight	line	since	GenGO	itself	
is	 irrelevant	with	 𝑝$.	 It	 is	also	expected	that	the	result	of	GenGO	on	samples	generated	by	
𝑝$ = 0.3	 is	much	worse	than	that	by	 𝑝$ = 0.1.	
	 Parameter	 𝑞	 stands	for	the	influence	of	noise	and	uncontrollable	error	in	experiment.	
NetGen	performed	well	when	the	solving	parameter	value	was	around	the	preset	generating	
value	of	 𝑞,	with	a	lower	variance	(Figure	S3).	Similar	to	the	situation	in	sensitivity	analysis	of	
𝑝$,	the	curve	began	to	decrease,	when	the	solving	parameter	value	exceeded	a	tolerable	lag.	
On	the	contrary,	the	performance	of	GenGO	did	not	meet	the	optimal	value	of	 𝑞	 and	had	a	



continued	growth.	One	reason	may	be	that	the	active	genes	generated	via	network	propaga-
tion	are	regarded	as	noise	in	GenGO	model,	which	also	brings	a	larger	variance.	
	 Parameter	 𝛼	 is	a	positive	number	to	balance	the	log-likelihood	and	the	size	penalization	
on	the	active	term	set.	A	larger	 𝛼	 makes	the	model	prone	to	select	a	smaller	number	of	terms.	
NetGen	was	not	sensitive	to	the	selection	of	 𝛼	 on	both	the	average	AUPR	and	the	average	
selected	term	number	(Figure	S4).	Besides,	it	seems	that	GenGO	prone	to	identify	several	re-
dundant	terms	when	𝛼 = 3.	The	inferior	performance	of	GenGO	may	partly	be	explained	by	
the	inappropriate	selection	of	hyperparameter	 𝛼.	
	 In	conclusion,	NetGen	showed	an	approximately	stable	performance	to	the	selection	of	
model	parameters.	The	performance	of	NetGen	was	preferable	when	the	model	parameters	
satisfying	 𝑝" ≫ 𝑝$ ≫ 𝑞.	According	to	the	results	of	sensitivity	analysis,	we	further	designed	a	
mixed	parameter	selection	strategy	(see	Methods	in	main	text),	to	fit	the	practical	active	gene	
list	in	real	datasets.	
	 	



3. Simulation	results	on	other	domain	
The	simulation	studies	were	executed	to	compare	the	performance	of	NetGen	with	other	ex-
isting	methods.	The	detailed	description	of	the	simulation	study	can	be	found	in	main	text.	
Here,	the	results	on	cellular	component	domain	and	molecular	function	domain	were	shown	
in	Figure	S5-S6,	and	the	result	on	biological	process	was	introduced	in	Figure	3	in	the	main	text.	
The	results	showed	that	NetGen	outperformed	other	alternative	methods	on	both	three	do-
mains.	
	

	
Figure	S5.	The	performance	of	NetGen	and	alternative	methods	on	cellular	component	(CC)	domain.	
Each	panel	 stands	 for	 a	 setting	of	 generating	parameters.	 The	performance	of	NetGen,	GenGO	and	
Fisher’s	exact	test	are	shown	in	red,	blue	and	orange	respectively.	The	active	gene	lists	were	simulated	
under	the	assumption	of	NetGen.	
	



	
Figure	S6.	The	performance	of	NetGen	and	alternative	methods	on	molecular	function	(MF)	domain.	
Each	panel	 stands	 for	 a	 setting	of	 generating	parameters.	 The	performance	of	NetGen,	GenGO	and	
Fisher’s	exact	test	are	shown	in	red,	blue	and	orange	respectively.	The	active	gene	lists	were	simulated	
under	the	assumption	of	NetGen.	
	 	



4. Alternative	simulation	results	
In	our	work,	in	addition	to	the	simulation	procedure	as	introduced	in	the	main	text,	we	also	
simulated	the	circumstance	that	the	active	gene	 lists	were	unrelated	to	the	network	 infor-
mation.	Namely,	 the	active	gene	 lists	were	simulated	under	 the	assumption	of	 the	GenGO	
model.	The	related	results	can	be	found	in	Figure	S7-S9.	
	

	
Figure	S7.	The	performance	of	NetGen	and	alternative	methods	on	biological	process	(BP)	domain.	
Each	panel	 stands	 for	 a	 setting	of	 generating	parameters.	 The	performance	of	NetGen,	GenGO	and	
Fisher’s	exact	test	are	shown	in	red,	blue	and	orange	respectively.	The	active	gene	lists	were	simulated	
under	the	assumption	of	GenGO.	
	



	
Figure	S8.	The	performance	of	NetGen	and	alternative	methods	on	cellular	component	(CC)	domain.	
Each	panel	 stands	 for	 a	 setting	of	 generating	parameters.	 The	performance	of	NetGen,	GenGO	and	
Fisher’s	exact	test	are	shown	in	red,	blue	and	orange	respectively.	The	active	gene	lists	were	simulated	
under	the	assumption	of	GenGO.	
	

	
Figure	S9.	The	performance	of	NetGen	and	alternative	methods	on	molecular	function	(MF)	domain.	



Each	panel	 stands	 for	 a	 setting	of	 generating	parameters.	 The	performance	of	NetGen,	GenGO	and	
Fisher’s	exact	test	are	shown	in	red,	blue	and	orange	respectively.	The	active	gene	lists	were	simulated	
under	the	assumption	of	GenGO.	

	
	 From	the	results	we	can	see	that	the	performance	of	NetGen	was	satisfactory	on	both	
three	domains,	when	the	network	propagation	parameter	 𝑝$	 is	set	small	enough	(Figure	S7-
S9	C).	From	a	holistic	perspective,	NetGen	achieved	a	comparable	performance	with	GenGO	
on	the	molecular	function	domain,	even	if	 𝑝$ = 0.3	 (Figure	S9	A	and	D).	This	may	be	directly	
related	with	the	structure	of	molecular	function	domain	itself.	Not	surprisingly,	the	worst	per-
formance	occurred	when	turning	down	the	proportion	of	the	active	core	genes	but	keeping	a	
large	network	propagation	parameter	 𝑝$.	This	indeed	overly	amplified	the	role	of	biological	
network	(Figure	S7-S9	B),	and	was	absolutely	not	in	conformity	with	the	assumption	of	GenGO	
model.	On	the	other	hand,	overemphasizing	both	the	effect	of	experiment	noisy	(𝑞)	and	net-
work	propagation	(𝑝$)	made	NetGen	perform	not	very	well	(Figure	S7-S8	D).	Another	notable	
result	was	that	the	lower	recall	of	NetGen,	which	was	related	to	the	small	number	of	identified	
terms.	NetGen	cautiously	predict	candidate	terms	with	a	limited	number,	in	order	to	keep	a	
higher	precision.	In	conclusion,	the	performance	of	NetGen	is	closely	related	to	its	particular	
parameter	 𝑝$.	According	to	the	sensitivity	analysis	results	(Figure	S2),	NetGen	performed	very	
well	even	with	a	 𝑝$	 smaller	than	its	true	value	for	generating	data.	Therefore,	we	suggested	
a	relatively	conserved	strategy	on	the	selection	of	 𝑝$	 in	practical	applications,	that	is,	using	a	
relative	small	value	close	to	zero,	for	example	0.05.	
	 	



5. The	description	of	microarray	expression	datasets	and	GO	annotation	data	
5.1 	 microarray	expression	datasets	
In	our	work,	four	microarray	gene	expression	datasets	of	human	complex	diseases	were	se-
lected	from	the	Gene	Expression	Omnibus	(GEO)	repository	
(http://www.ncbi.nlm.nih.gov/geo/,	accession	number	GSE4115,	GSE11223,	GSE9750,	
GSE36895,	respectively),	for	real	datasets	analyses.	The	selection	of	microarray	expression	
profiles	is	based	on	the	following	criteria:	

1) Homo	sapiens	organism	disease.	
2) Published	(submission	date)	in	recent	ten	years.	
3) Hybridized	using	Affymetrix	Human	Genome	U133A	array	or	Affymetrix	Human	Ge-

nome	U133	Plus	2.0	Array	is	preferred.	
4) A	balanced	number	of	case	and	control	samples	and	the	total	number	is	at	least	50.	
5) Described	in	or	be	used	by	at	least	one	high	quality	journal	paper.	

	 For	lung	cancer	dataset	(GSE4115),	we	combined	the	original	primary	and	prospective	
datasets,	which	made	a	total	of	97	and	90	smokers	with	and	without	lung	cancer,	respec-
tively.	For	ulcerative	colitis	dataset	(GSE11223),	we	only	used	the	uninflamed	samples	in	
each	cohort,	which	made	a	66	ulcerative	colitis	patients	and	69	healthy	control	donors.	As	for	
renal	cell	carcinoma	(GSE36895),	the	paired	expression	profiles	of	23	clear-cell	RCC	patients	
and	their	related	normal	cortex	were	used	for	further	analysis.	For	all	expression	datasets,	
we	averaged	the	expression	values	of	the	probes	mapping	on	the	same	gene.	The	summaries	
of	the	detailed	processed	datasets	are	shown	in	Table	S3.	
	
Table	S3:	The	summary	of	microarray	gene	expression	datasets	used	in	our	work.	

Dataset	 Accession	number	 #disease	 #normal	 #genes	
Lung	cancer	 GSE4115	 97	 90	 12493	

Ulcerative	colitis	 GSE11223	 66	 69	 10506	
Cervical	carcinogenesis	 GSE9750	 33	 24	 12494	
Renal	cell	carcinoma	 GSE36895	 23	 23	 20108	

	
	
5.2 	 GO	annotation	data	
The	GO	annotation	was	extracted	from	R	package	org.Hs.eg.db	in	Bioconductor	project.	The	
detailed	information	about	the	GO	annotation	data	was	summarized	in	Table	S4.	
	
Table	S4.	The	detailed	information	about	GO	annotation	data	used	in	this	study.	

Domain	 Number	of	Terms	 Number	of	annotated	genes	
Biological	process	 13226	 14614	
Cellular	component	 1510	 15505	
Molecular	function	 4090	 14237	

	 	



6. Active	gene	lists	used	in	the	real	data	applications	
To	obtain	the	active	gene	list	of	each	microarray	expression	dataset,	student’s	t-test	was	per-
formed	for	each	gene	on	the	disease	and	the	control	cases.	We	sorted	the	microarray	genes	
by	ascending	order	of	the	t-test	p-values.	The	top	100	genes	were	selected	as	the	differential	
expression	genes,	which	was	then	overlapped	with	the	annotated	genes.	The	annotated	dif-
ferential	expression	genes	were	used	as	the	final	active	gene	list	to	perform	the	functional	
enrichment	analysis.	
	 For	each	dataset,	the	annotated	differential	expression	gene	set	was	listed	as	follows:	
	
Lung	cancer	(81):	
SLC5A1	PRUNE	ATP8B1	NSUN3	HDGFRP3	STK38	AGPS	TRIM36	DCLRE1C	BTD	RPL35A	SOX9	DND1	C6	TSR1	NNT	

ZNF160	TFE3	HTRA1	ADH6	PDE8B	ZNF611	U2AF2	ECD	TMEM110	GOSR2	GTF2H3	SUGP2	MOCS2	PPP2R2D	RPL18	

P2RX4	NEDD9	SLC4A4	ADK	PGF	CRY1	EXT2	NOTCH2NL	EIF2B3	CORO2A	FGF14	DMD	DLAT	DIP2A	USP46	HAUS2	

ALPK1	MAN1A2	PPM1D	CEP57	DAPP1	PRDX2	NPFFR1	STX3	LAT	FBXO9	WWC3	TGDS	ARID5A	UBQLN4	GNPDA1	

RHOQ	TNFRSF1A	CPE	ODF2	PYGB	FUT8	ZFR	NUDT4	TXN	DNAJC6	MTPAP	RRAGB	ABHD17B	IL13RA1	MSH6	MYO1C	

UNC93B1	MFSD11	KDELR3	

	
Ulcerative	colitis	(56):	
PLCB3	ELL	MAPKAPK2	DOCK7	DOHH	STK25	TBXA2R	INPPL1	C6orf120	APOC1	CEP290	STK35	LARP1	GTF2H5	

PPP1R14B	SBF1	DIRC2	BRD4	AXIN1	INSR	SKIV2L	PRCP	B3GALT5	TAF12	VPS52	RPS29	ZNF304	C14orf2	ITGA3	GAS6	

ARF6	SPSB1	USP54	SLC2A8	GCA	CCL11	SERPINF1	FBXL12	TBC1D2B	MAN2A1	HIST1H2BN	GNB2	ACYP2	ARAF	

BLVRA	HOMER3	PUS1	ACSM1	ADAL	C3orf33	GBE1	COMP	OXSR1	MVD	MLXIP	DDX6	

	

Cervical	carcinogenesis	(94):	
PITPNA	ZDHHC3	GJA1	SYNGR1	KCTD15	ESR1	AHNAK	TRPS1	CDKN2A	KANK1	KRT13	KIF18B	SYPL1	NAGK	MCM6	

LMBRD1	UBE2E1	CHMP2B	SPRR3	USO1	GINS2	RPL10A	NEK2	MCM2	ZNF586	DNMT1	POLD1	RAD54L	GOLGA4	

CRYL1	GINS1	RPS12	SKP1	SLC24A3	UBE2C	MAP2K4	CHAF1B	PLCD1	KNTC1	PRDM2	MCM5	ZNF415	TK1	KIF4A	KIF2C	

AURKA	CAPN7	TP53AIP1	CCNF	LPAR6	SNX3	RPS6KA1	ATP6V1F	LAPTM4A	PPP2R5A	ITM2B	DUSP1	NUP62	ATP13A2	

RPL29	ATP10D	CENPF	USP46	LIG1	ARHGAP10	STX7	BBOX1	KLF4	CLCA4	SPAG5	TMEM9B	DSC2	RYR1	LANCL1	

SYNGR3	AVPR1B	TPX2	PSMC3IP	SASH1	MAPK10	CDC20	CDT1	CDC45	GIGYF2	TRIM13	TIMELESS	GALR3	SLC15A3	

IL17RC	CDC6	CLCN3	RALB	DTL	PERP	

	
Renal	cell	carcinoma	(85):	
NPHS2	SPAG4	UMOD	SFRP1	FGF1	SLC12A1	EGLN3	IGFBP3	ATP6V0D2	HK2	CALB1	GGT6	CWH43	CLDN8	HILPDA	

HEPACAM2	LPPR1	ATP6V0A4	ACSF2	ANGPTL4	SCNN1G	PTH1R	CLIC5	FAM3B	CLCNKB	ENO2	SLIT2	PPAPDC1A	PRK-

CDBP	FUT11	CRHBP	TMPRSS2	PLCXD3	SAP30	SLC47A2	PTGDS	HS6ST2	FXYD4	ATP6V1G3	TYRP1	TCEAL2	TNNC1	

DMRT2	CNTN1	HPD	SER	INA5	KNG1	GPD1L	STAP1	C5	CAV1	PDK1	PTPRO	RASL11B	SLC26A7	GAS1	CAV2	TFAP2B	

LDHA	NPHS1	TCF21	DDB2	SLC2A12	PACRG	KCNJ10	DIO1	DACH1	ARHGEF26	GPC3	BMPR1B	SEC61G	NRK	ALDOA	

VEGFA	MUC15	EIF4H	CA10	MAN1C1	COL4A6	SOSTDC1	SOST	ATP6V1C2	ATP6V1B1	ANGPTL1	FABP5	

	 	



7. Mixed	parameter	selection	strategy	on	simulation	studies	
In	real	applications,	the	mixed	parameter	selection	strategy	was	designed	to	fit	the	generat-
ing	parameters	that	derive	the	related	active	gene	list.	In	this	section,	we	want	to	test	the	ef-
fectiveness	of	the	mixed	parameter	selection	strategy	on	the	simulation	studies.	

The	workflow	of	this	test	is	similar	to	the	procedures	of	simulation	studies	as	introduced	
in	the	main	text.	To	execute	the	mixed	parameter	selection	strategy,	each	type	of	the	solving	
parameter	combinations	was	used	in	the	step3	of	the	simulation	study	procedure.	According	
to	the	parameter	sensitivity	analysis	result,	we	used	the	alternative	value	of	parameter	 𝑝$ =
0.1	 and	 𝑝$ = 0.05.	The	following	measurements	were	used	to	evaluate	the	performance	of	
different	solving	parameter	combination.	

1) The	frequency	of	the	term	combinations	with	the	lowest	Fisher’s	exact	test	p-
value;	

2) The	overall	AUPR	of	the	term	combinations.	
The	final	results	were	shown	in	Figure	S10-S11.	

	

	
Figure	S10.	The	frequency	of	the	term	combinations	with	the	lowest	p-value.	Each	panel	stands	for	a	
setting	of	generating	parameters.	The	legend	of	the	related	solving	parameters	is	shown	in	right.	

	



	
Figure	S11.	The	overall	AUPR	of	the	term	combinations.	Each	panel	stands	for	a	setting	of	generating	
parameters.	The	legend	of	the	related	solving	parameters	is	shown	in	right.	

	
First,	the	results	in	Figure	S11	indicate	that	the	generating	parameters	are	not	neces-

sarily	the	best	solving	parameters.	We	can	observe	that	the	trends	are	similar	in	each	panel	
for	different	generating	parameters.	The	parameter	setting	 𝑝" = 0.8, 𝑝$ = 0.05, 𝑞 = 0.01	
achieves	the	best	AUPR	in	all	cases.	On	the	other	hand,	the	performances	of	different	solving	
parameters	are	very	close,	which	also	confirms	that	the	parameters	of	NetGen	are	quite	ro-
bust.	

Second,	the	patterns	of	Figure	S10	and	S11	are	very	different.	Under	the	same	parame-
ter	combination	of	 𝑝"	 and	 𝑝$,	a	relatively	larger	 𝑞	 is	prone	to	decrease	the	Fisher’s	exact	
test	p	value	of	the	found	term	set.	However,	a	relatively	larger	 𝑞	 often	has	better	perfor-
mance	in	terms	of	the	overall	AUPR.	This	phenomenon	implies	the	Fisher’s	exact	test	p-value	
maybe	not	a	good	indicator	of	the	term	combination’s	quality.	

Selecting	an	appropriate	solving	parameter	in	real	application	is	very	difficult.	There	may	
not	exist	the	optimal	solving	parameter	combination.	Therefore,	we	can	use	the	mixed	pa-
rameter	selection	strategy	to	produce	multiple	solutions	in	real	applications,	which	offers	
more	information	of	the	underlying	biological	processes	for	the	downstream	analysis.	
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