
Hines et al. Supporting Information – CcsCal

SI-CcsCal-I

Supporting Information – CcsCal

Large-scale Structural Characterization of Drug and Drug-Like Compounds by

High-Throughput Ion Mobility-Mass Spectrometry

Kelly M. Hines,1 Dylan H. Ross,1 Kimberly L. Davidson,2 Matthew F. Bush,2 Libin Xu1

1Department of Medicinal Chemistry, University of Washington, Seattle, WA

2Department of Chemistry, University of Washington, Seattle, WA

Address correspondence to:

Libin Xu, Ph.D.

Department of Medicinal Chemistry

University of Washington

Tel: (206) 543-1080

Fax: (206) 685-3252

Email: libinxu@uw.edu

mailto:libinxu@uw.edu

Hines et al. Supporting Information – CcsCal

SI-CcsCal-II

OVERVIEW

 CcsCal is a program written primarily in python that automates extraction of drift times from raw IM-MS

data, and construction and application of a CCS calibration curve. The program is organized into a single python

package containing sub-modules for performing the various steps in the data analysis protocol. The module may

be run as a single program, or its components may be used in isolation by importing them from separate python

scripts. Additionally, a convenient API for processing data from external sources is provided in the form of the

CcsCalibrationExt class, available in the CcsCal.processing.CcsCalibration module. Extensive documentation

of all modules is available in the form of linked HTML documents (see section: DOCUMENTATION). CcsCal is

available upon request.

PREREQUISITES

• Windows 7 or newer (also works on Linux/MacOS, see section: RUNNING ON LINUX/MACOS)

• Python 2.7 (not compatible with Python 3.x)

• Python libraries:

o numpy

o scipy

o matplotlib

• CDCReader.exe and cdt.dll (from UniDec)

SETUP

 Before running analysis with CcsCal all IM-MS data files must be converted from Waters .raw to a usable

plain-text format, and collected into a single directory. This conversion can be performed using CDCReader.exe

and cdt.dll (from UniDec). Provided with CcsCal is a python script RawToTxt.py that will perform a batch

conversion of all .raw data files in a specified directory into a plain-text format using these tools. An example of

this conversion using RawToTxt.py is shown below:

Hines et al. Supporting Information – CcsCal

SI-CcsCal-III

 A single configuration file is used to

provide all of the input parameters required for

analysis. An example configuration file is

shown to the right. All lines beginning with a

semicolon are treated as comments and

ignored, with the exception of lines containing

a semicolon and a three-letter identifier

followed by a number or string. These identifier

parameters are required. The edc and tpi

identifiers are instrumental parameters that can

be obtained for a given data file by going into

the .raw directory and looking at _etern.inf.

The edc parameter is denoted by “EDC Delay

Coefficient” and the tpi parameter is denoted

by “ADC Pusher Frequency (µs)”. The rest of

the identifiers specify paths to various

input/output files and some parameters for data

manipulation. Importantly, the mwn identifier

must be set to a value larger than that used for

the --im-bin parameter during the data

conversion with CDCReader.exe, not doing so

may lead to missing or shifted peaks.

Additionally, there are two sets of listed

parameters: masses and reference CCS values

for the CCS calibrants, and masses and data

filenames for the compounds to be analyzed.

An example configuration file is provided with

CcsCal and may be used as a template for other

runs.

RUNNING

The primary means of running CcsCal is by directly calling the module, invoking its __main__ method.

This will go through the full data analysis protocol: parsing the configuration file, pre-processing the plain-text

data files, extracting drift times for all analytes, and constructing and applying a CCS calibration curve. Passing

the -h or --help flag when calling

CcsCal will cause the program to

produce a descriptive help message

with the expected parameters and

exit. An example of this help

message is included below. The

syntax for calling CcsCal is

important to take note of,

specifically the -m flag after the

python interpreter that signals

CcsCal should be interpreted as a

module.

Hines et al. Supporting Information – CcsCal

SI-CcsCal-IV

 To perform the actual data

analysis only the --input flag must be

provided, along with the path to the

configuration file input. An example

command is shown to the right. As

CcsCal runs verbose output is produced

to the console indicating what step the

program is on. An example of this

verbose output is included below.

RESULTS

 During execution CcsCal produces several

files. For each data file-mass pair, a pre-processed

plain-text data file is produced with the same

name as the parent data file but with “.pp-mass”

appended to the file name (e.g. IM_0881H13.txt 

IM_0881H13.pp-611.1607.txt). Additionally, for

each pair a .png image is generated containing a

plot of the raw data as well as a gaussian function

fit to that data. An example plot is included to the

right.

Hines et al. Supporting Information – CcsCal

SI-CcsCal-V

For each analysis, a .png

image is generated containing a

plot of the CCS calibration

curve and fit residuals for all of

the CCS calibrants. An Example

plot is included above. A report

file summarizing all of the

extracted drift times, CCS

calibration curve fit parameters,

and calibrated CCS values for

all compounds is also generated.

An example report file is

included to the left.

Hines et al. Supporting Information – CcsCal

SI-CcsCal-VI

CCSCALIBRATIONEXT API

 A simple API is included in CcsCal for users who would like to perform CCS calibration and obtain

calibrated CCS for compounds using drift time data from external sources. The following example shows how to

construct a calibration curve from an external list of masses, drift times, and reference CCS values contained in a

file: external_data.csv.

The calibration curve may then be applied to a list of masses and drift times to obtain calibrated CCS.

from CcsCal.processing.CcsCalibration import CcsCalibrationExt

import numpy

use numpy to load the data from a .csv file into a 2D array:

[[mass1, mass2, ...], [dt1, dt2, ...], [ccs1, ccs2, ...]]

ext_data = numpy.genfromtxt("external_data.csv", delimiter=",", unpack=True)

initialize the CcsCalibrationExt object with the external data

unpack the array into mass, dt, and ccs arrays with the * operator

cce = CcsCalibrationExt(*ext_data)

save a figure with the calibration curve and residuals

cce.saveCalCurveFig(figure_file_name="calibration_curve_20170622.png")

simple list of masses and drift times

[[mass1, dt1], [mass2, dt2]]

masses_and_dts = [[406.2337, 4.68], [611.1607, 7.61]]

loop through the list, get calibrated CCS for each mass/dt pair and print it

for pair in masses_and_dts:

 # unpack each pair into mass and dt with the * operator

 ccs = cce.getCalibratedCcs(*pair)

 # print with nice formatting

print “m/z: {: 9.4f} dt: {: 4.2f} CCS: {: 6.2f}”.format(pair[0], pair[1], ccs)

Hines et al. Supporting Information – CcsCal

SI-CcsCal-VII

TESTING

 CcsCal comes packaged with a small test suite to ensure key portions of the program function properly.

To run the tests, simply issue the --test flag when calling CcsCal. The tests will run and verbose output will be

produced reporting on the success of the tests. The test suite is especially useful if making any changes to the

program. A brief example of running the test suite is included below.

DOCUMENTATION

 CcsCal comes packaged with module-level documentation automatically produced by python’s built in

pydoc module. This documentation comes in the form of several linked HTML files, with CcsCal.html serving as

the root index for the package. Shown below is CcsCal.html and a page containing an example of documentation

for the CcsCalibrationExt submodule.

Hines et al. Supporting Information – CcsCal

SI-CcsCal-VIII

RUNNING ON LINUX/MACOS

 The majority of the code in CcsCal is cross-platform compatible by virtue of the python interpreter,

however, the portion of the code that interfaces with the C++ text pre-processing extension (and the extension

itself) can cause problems with running this program on a Linux or MacOS machine. The process for porting this

program to be run on Linux or MacOS is essentially identical and involves recompiling the C++ extension,

changing the executable path, and (possibly) modifying how the extension is called by CcsCal.

• Recompile the executable using a C++ compiler. Make sure the compiler uses the C++11 standard (with

g++ the --std=c++11 flag should be included in the compile command)

• Check in CcsCal/globals.py and make sure the PP_EXE_PATH variable is set to the absolute path of the

newly compiled executable.

• CcsCal uses subprocess.call to call the text pre-processing extension executable. If the after the above

steps are completed there are still errors trying to call the executable, try removing the shell=True

parameter from the call function in the definition of RawData.callPreProcessTxt in

CcsCal/input/RawData.py.

