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Supplementary Fig 1 | Summary of features available in current analysis software tools. miCAT combines features from multiplexed cytometry
and image analysis in one user-friendly open source toolbox. Proprietary commercial software is excluded from this summary.
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Supplementary Figure 2 | Representative biaxial plots of single cell data from Figure 2. (a) All cells colored by source image, and
(b) PhenoGraph cell phenotype #7 CD68* (blue) and Fibronectin+ phenotype #26 or Cytokeratin 8/18+ and Cytokeratin 7+
phenotype #20 (red).
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Supplementary Figure 4 | Neighbors of CD68* cells. (a,b)
Visualization of the neighbors of CD68* cells on a tSNE plot of all
cells with neighbors highlighted in red or (d-j) on a tSNE plot of only
CD68* neighboring cells. (c,f) tSNE plots enable visualization of the
corresponding epithelial and stromal components. (d-j) Groups of
epithelial (a,d) or stromal (b,e) cell types neighboring CD68* cells
can be identified using specific markers (E-cadherin or Vimentin) or
spatial features within the tSNE plot. Both epithelial and stromal
neighbors of CD68* cells are identified with distinct expression of
Ki-67 (g), Carbonic Anhydrase IX (h) and phospho-S6 (i). We
highlight PhenoGraph clusters #6, #22, #23, and #24 (j) which
suggests a relationship and cellular crosstalk between CD68* cells
and these specific cell types.
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Supplementary Figure 5 | Neighborhood analysis validation using synthetic data. Four synthetic images were
created containing three synthetic, square cell types (1 = Purple, 2 = Green, 3 = Blue) that only touch at their
corners with black depicting the absence of a cell. The interactions in these four images are represented in a
single hierarchically clustered heatmap. Cell type 2 is not in any significant interactions and therefore does not
appear in the hierarchically clustered heatmap. (a) In synthetic image #1 cells do not neighbor other cells of the
same phenotype. The hierarchically clustered heatmap indicates that interactions between cells of the same type
(1<—1, 3——3) are less likely than a random distribution of cells. (b) Synthetic image #2 has a distinct, large
cluster of cell type 3 . The hierarchically clustered heatmap indicates significant interactions between cells of type
3 and a decreased number of interactions between cells of type 1 and 3 compared to a random distribution
throughout. (c) In Synthetic image #3, rare, small clusters of cells do not result in statistically significant
interactions (p<0.05) and are therefore not displayed in the hierarchically clustered heatmap. (d) Distinct pairs of
cells in synthetic image #4 result in significant interactions in both directions between cell types 1 and 3. The
distribution of cell frequencies is displayed as the quantity of each cell phenotype ordered from the most to the
least abundant for (e) all tissue samples and (f) synthetic images. Specific breast cancer image examples that
have similar relative cell frequencies as presented in the synthetic data are shown in (g)-(j). (g) Breast cancer
images with two abundant cell types akin to synthetic data image #1. (h) Breast cancer images with abundant and
rare cell types akin to synthetic data image #2. (i) Breast cancer images with extremely rare cell types akin to
synthetic data image #3. (j) Breast cancer images with small clusters of cells akin to synthetic data image #4.
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Clustered cell-to-cell interactions
1

Supplementary Figure 6 | Segmentation Comparison. (a) Visualization of single cell segmentation
masks created by five independent users alone (Left) and overlaid on top of IMC tissue image (Right,
Membrane = E-cadherin + CK8/18 + CK7 + Her2 + SMA (yellow), DNA Intercalator (blue)). Scale bar 50u
m. (b) Table of mask segmentation scores with the best score highlighted in red. No single user
provides the best score for all images and User 5 consistently performs worse than the other users. (c)
Biaxial plots of single cell data from five independent segmentations of three images colored by user.
(d) Boxplots of single cell spatial features from five independent segmentations of three images. (e)
tSNE maps of single cell data from five independent segmentations of three images colored by source
image, segmentation user, and PhenoGraph cluster. (f) Histograms of the number of cells from each
PhenoGraph cluster in each image that were identified by each user. (g) Agglomerative clustering of
all cell-to-cell interactions identified by pixel expansion (PE) of 1- 6 pixels in the three images by each
user according to the presence of significant (p < 0.01) phenotype interaction (red) or avoidance
(blue). White represents interactions that are not present or not significant. Extended, less specific
single cell mask by inexperienced User 5 results in outlier neighbor analysis.
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Supplementary Figure 7 | Neighbor Analysis of Healthy Mammary Tissue. (a) Raw Image, Image with single cell mask, and Phenograph Phenotype
- labelled high-dimension IMC images of normal mammary tissue. Cytokeratin 7 (red), SMA (Smooth Muscle Actin, green), DNA Intercelator (blue).
Scale bar 50um. (b) Biaxial plots of single cell data from segmented health mammary tissue colored by source image. (c) tSNE plot of high-dimen-
sion single cell data colored by source image. (d) tSNE plot of high-dimension single cell data with the quantification of the marker of interest
heatmapped for each cell. (e) Phenograph clustering of all cell phenotypes visualized as a distinct color on the tSNE plot. (f) Heatmap visualizing the
median marker intensity for each Phenograph defined cell phenotype. (g) Heatmap of all neighboring cell interactions between all cell phenotypes
in which square color indicates the prevalence of samples with significant interactions (permutation test: p < 0.01) in which the cell type in the row
is significantly neighbored (red) or avoided (blue) by the cell type in the column. White represents a prevalence less than 10%.



Image + Mask PhenoGraph Clusters

henotype 3

Phenotype 10

Supplementary Figure 8 | Raw Image, Image with single cell mask, and phenoGraph phenotype for visualization of
observed interactions. Scale bar 50um. (a) Highlighted directional interaction from main Fig. 3c: highly interactive
tumor cell phenotype #3 is surrounded by stromal cell phenotype #13 (main Fig. 3c row 3, column 13, red square), but
phenotype #3 is not significantly enriched in the surroundings of phenotype #13 (main Fig. 3c row 13, column 3, blue
square). Also, cluster 1 interactions depicted in Fig. 3e of self interacting phenotype #3 cells with phenotype #2 and
#13 interactions. (b) Example from Neighbor Heatmap main Fig. 3c and Network main Fig. 3e: Directional interactions
between phenotype #11 and #5. Phenotype #11 is surrounded by #5, while #11 is avoiding phenotype #5. (c) Avoidant
proliferative cell phenotype #8 and interactive proliferative cell phenotypes #10 and #19. (d) Avoidance of active
stroma phenotype #6 and hypoxic cell phenotype #14 identified in cluster #2 (main Fig. 3d,e; Supplementary Fig. 8) (e)
CD68* cell phenotype #7 which has interactions identified in the Grade 3 enriched cluster 2 (main Fig. 3d,e).
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Metal Tag Target Clone Marker Vendor Lot
Lal39 phosphoCreb J151-21 Signaling Becton Dickinson 558359
Pr141 GATA3 L50-823 Transcription Factor Becton Dickinson 558686
Nd145 Twist ABD29 Transcription Factor Millipore 2039819
Nd146 CD68 KP1 Immune E Biosciences 14-0688-82
Nd148 SMA 1A4 Stromal Abcam ab76549
Eul51 c-erbB-2, HER2 3B5 Receptor Tyrosine Kinase Becton Dickinson 2223593
Gd158 Progesterone Receptor A/B EP2 Hormone Receptor Epitomics N/A
Gd160 CD44 IM7 Adhesion Becton Dickinson 550538
Dyl61 EpCAM 9Ca Epithelial Biolegend B166689
Dy162 Vimentin D21H3 Stromal Cell Signaling 5741BF
Dy163 Fibronectin 10/Fibronectin Stromal Becton Dickinson N/A
Dyl64 Cytokeratin 7 RCK105 Epithelial Becton Dickinson 550507
Hol65 B-Catenin D13A1 Epithelial Cell Signaling 8814BF
Erl66 Carbonic Anhydrase IX AF2188 Hypoxia R&D Systems AF2188
Erl67 E-Cadherin 36/E-Cadherin Epithelial Becton Dickinson 610182
Er168 Ki-67 8D5 Proliferation Cell Signaling 2
Erl70 phosphoS6 D57.2.2E Growth, Signaling Cell Signaling 4858BF
Yb174 Cytokeratin 8/18 C51 Epithelial Cell Signaling 2
Yb176 Histone H3 D1H2 Nuclei Cell Signaling 6

Supplementary Table 1a | Antibodies and stains used to measure breast cancer samples.

Metal Tag Target Clone Marker Vendor Lot
Pri41 Cytokeratin 5 EP1601Y Basal Abcam GR233399-1
Nd143 Cytokeratin 19 Troma-lll Luminal Dev Studies Hybridoma Bank 9/28/15
Nd144 Cytokeratin 8/18 C51 Luminal Cell Signaling 2
Sm147 Cytokeratin 14 Polyclonal Basal Thermo Fischer Ql2091522
Nd148 SMA 1A4 Basal / Endothelial Abcam 033M4768
Erl67 E-Cadherin 36/E-Cadherin Epithelial Becton Dickinson 610182
Yb174 Cytokeratin 7 RCK105 Luminal Becton Dickinson 5259670
Lul75 Pan-Cytokeratin AE3 Epithelial Millipore 2607604

1r191/1r193 DNA Intercelator DNA Fluidigm

Supplementary Table 1b | Antibodies used to stain healthy breast tissue samples.




Supplementary Note 1 — miCAT Manual

miCAT — Getting started

1. Install miCAT

miCAT is automatically installed from the web when running the miCATApplinstaller.exe file.
Windows users must have Visual Studio installed for features like PhenoGraph to function. If Visual
Studio is not already installed on your computer download it from
https://www.visualstudio.com/downloads/.

2. Open miCAT

Double click the icon generated during installation to open miCAT.

3. Data requirements

In order for raw image data to be successfully loaded into miCAT, all files associated with a specific
image need to be stored in a separate, uniquely named folder (see example data set). Multiple
folders, each containing the data corresponding to one image, can be loaded simultaneously. The
different markers measured must be stored as individual (unstacked) tiff files in the image folder.
miCAT requires that the tiff files be saved as unsigned 16-bit integers (uint16). If there is single-cell
information, the image folder can also contain a mask, such as that generated after segmentation in
CellProfiler, that identifies individual cells. The mask can be saved as a mat or tiff file in uintl6 or
int32 format.

4. Load samples into miCAT

After opening the miCAT GUI, the first step is to load the image data for subsequent analysis. Click
on the “Load” button on the upper left of the interface. A drop-down menu with two options will
appear. Choose “Load Samples” in order to start a new miCAT session (Figure 1).
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You will be prompted with a folder selection box (Figure 2). Navigate to the folders containing the

images to be loaded. Click “Done” once you have added all the desired samples to the list on the
right of the window (Figure 2).
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Once miCAT has finished loading the image data, you will be asked to specify the number of pixels to
expand from each cell in order to look for neighboring cells (Figure 3). Choose an integer between
two and ten. This pixel expansion can later be set to a different value. If you would like to arcsinh



transform your data, enter a suitable cofactor in the corresponding question box, otherwise just
press cancel. It may take from a couple of seconds up to one minute per image (500x500 pixels) for
the single-cell information to be updated. Once the folder selection prompt appears, browse to
where you wish to store the “Custom Gates Folder”. This is where any files that are automatically
generated during the miCAT session will be saved. Folder names should not include any spaces or
special characters.

4| Storing neighboring cell information l;@]ﬁ

Please specify the number of pixels(eg-between 2 10 10) you want to expand per
cel the search area for finding neighbors

|

| 0K ) Cancel ‘

Visualize Samples Heat-map Channels

Figure 3

The loaded image data are displayed in two columns in the center of the interface (Figure 4). The
box on the left hand side contains the “Samples”, which at this stage in the analysis process are just
the individual images. The measured markers for the currently selected image are shown in the
“Channels” box on the right. Note that miCAT also calculates image-specific cell identifiers, cell size
and shape measurements, the percentage of a cell’s surface touching other cells, and the number of
neighboring cells. Figure 4 displays the overall arrangement of the miCAT interface.
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5. Save and reload session data

Once a miCAT analysis has been started, the full session can be saved by clicking the save icon (do
not attempt to use the save button in the drop-down menu) on the upper left of the GUI (Figure 5).
The session must be saved as a mat file in order to continue the analysis at a later time.

Trics

Load Save

"~ ERSCLVES

Tiff Images

Figure 5

To reopen a previously saved session, choose the “Load Session Data” option in the drop-down
menu of the “Load” button and navigate to the mat file containing the session of interest.

6. Visualize images

The left hand side of the GUI is dedicated to different kinds of visualizations of the selected images.
The form of visualization can be determined and changed using the “View Options” drop-down



menu on the lower left (Figure 6). Having selected one of the options, the “Visualize” button must be

pressed for changes to be applied. The following visualization options are supported:
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1. Choose “Apply RGBCMY on selected samples” in order to display the signal of the selected

markers each in a different color and overlaid into one image (Figure 7a). To select multiple
markers or images, please hold down the shift/CMD key. The tabs that appear above the
visualization represent each of the selected images. Below the image a slider along with a

checkbox for each color appears. Check a color and move the slider in order to increase the

intensity of a specific signal. When the mask checkbox on the lower left is selected, the tiff

image is overlaid with the segmentation mask, highlighting the individual cells (Figure 7b).

The “Plot sample area XY” checkbox marks the centroid of each cell on the image.
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2. The “Heatmap channels on selected samples” option displays a heatmap of the selected
channel (Figure 8a) overlaid on the single-cell mask (Figure 8b). In this case, the slider allows
you to specify a “percentile cut-off” for very high values. This can be used to prevent the
heatmap from being displayed as mostly blue if there are some extremely high values in very
few cells. If the slider is set to one, the cut-off will be at the g9t percentile, meaning that the
intensities above this value will be set to the value of the cut-off.
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3. Cells of interest can be manually gated with the “Gate an area on tiff” option. Confirm the
selection by pressing the “Visualization” button before gating. Afterwards, encircle a certain
area with the cursor directly in the tiff image (Figure 9). Hold down the mouse key while
selecting and release it when finished. These cells are then saved as a gate, which appears in
the samples column bellow the loaded images.
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4. A subset of cells (such as a Phenograph cluster or manually gated cells) can also be
highlighted on the tiff image using the “Highlight samples on tiff” option. If multiple subsets



are visualized simultaneously, they appear in different colors on the image. These colors are
automatically selected such that they are most distinguishable from the colors in the
background image (Figure 10).
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5. “Highlight excluding selected sample” leads to the exact opposite of “Highlight samples on

tiff”. All cells except for the ones in the selected gates will be marked (Figure 11).
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7. Analyze data

The right hand side of the interface is ded
“Analyze” button there are several options (

icated to data analysis
Figure 12).

and representation. Next to the



« miCAT 13 83295¢7e20eb3ed272d615d526 99 e66983eb05 =3 =8~~~

Losd  Seve

FREET

Tt mages

&

4 Plots.

LAy 10x1 18 ~ Imageld
LAYV I0X2 19 Colid
LAY 10x3 20 Cell_CD44Gd160Di
LAY 10x4 21 Cell_CDBBNd146Di
LAy 1x5 22 Cel_CarbonicAnhydraselXE
LatCAy11xT 23 Cell_CreblLa139Di
LAy 12x8 24 Coll_Cytokeratin7Dy164Di
+ Cell in§16Yb174D
Cell_EcadherinEr167i
Cell_ERaGA1560i
Cell_EpCAMDy161Di
CelFibronectinDy 163D
Cel _GATAIP141Di
Cell_Her2Eu151Di
Cell_HistoneH3Yb1760i
Coll_Ki67Er6801
Coll PRABGA1560i
Cell-SGEr70Di
(Cell_SMANd148Di
CelTwistNd1450i
Cell_VimentinDy 1620i
Coll_bcateninHo165Di
Area
Eccenticity
Solidity
Extent
EulerNumber
Perimeter
MajorAxisLength
MinorAvisLength
Orientation
Percent_Touching
Number_Neighbors

Scatter
Histogram
Boxplot
Heatmap
Run t-SNE
Run Phenograph
Gate on plot
npert Neightors - Prepare Highlight sample on Plot
Highlight area excl .+ Vausize Options -‘ I Anayze

Remove/cear

Figure 12

1.

LA 101 18

The “Scatter” option produces a scatterplot of up to three markers. If multiple images are
selected, they are displayed in different colors (Figure 13a). From the channel list either two
or three markers can be selected simultaneously to be displayed in a two- or three-
dimensional plot. A fourth channel can be visualized in terms of color. Choose this additional
channel from the “Heatmap Channels” box below the regular channels. This will overlay the
dots in the scatterplot with a heatmap of the selected marker’s intensities (Figure 13b). In
two-dimensional plots, a regression line can be added to the scatterplot by checking the
“Regression line” box. Additionally, the R-value of Pearson’s correlation will be displayed.
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2. The “Histogram” option creates one histogram for each selected channel, displaying the

lines for multiple selected images in different colors (Figure 14a). Alternatively, choose
“Boxplot” if this representation is better suited for your purpose (Figure 14b). For optimal
visualization, this option is best used with multiple images but not too many channels at the
time.
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3.

ot egnoors

Generate a heatmap of the selected gates (y-axis) and channels (x-axis) by choosing the
“Heatmap” option (Figure 15a). Checking the “b2r” checkbox will convert the regular
heatmap to a more meaningful “anomaly heatmap”, where white represents values close to
zero and blue or red represent values below or above zero, respectively (Figure 15b). By
default the heatmap displays mean values. These can be changed to medians by checking
the “median instead of mean” checkbox.
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4.

A t-SNE dimensionality reduction can be run on cells in the selected gates with the selected
channels by choosing the “Run t-SNE” option. A seed is set internally to ensure
reproducibility. The resulting cell coordinates necessary to display the t-SNE map are saved
as two additional channels at the bottom of the list. Generate a scatterplot of these two
channels with the “Scatter” option of the “Analyze Options” drop-down menu in order to
visualize the t-SNE map (Figure 16a). If no channel from the “Heatmap Channels” box is
selected, the colors on the plot simply represent the different selected images. If a channel
is selected, the t-SNE map will be overlaid with the heatmap of the marker intensities from
the selected channel. When overlaying cells with a heatmap, the “Percentile cut-off” slider



allows the intensities of the highest outliers to be set to the intensity value of a given
percentile (Figure 16b).
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5. The “Phenograph” option will cluster the cells of the selected gates into Phenograph clusters
based on the selected channels. Each resulting cluster will be saved as an individual gate and
will appear below the rest of the samples. One possibility for visualization of the Phenograph
clusters is to overlay the t-SNE map with the differently colored clusters by choosing the
Phenograph result from the “Heatmap Channels” box (Figure 17).
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6. Similar to the manual gating on the tiff image, “Gate on plot” allows you to gate on certain
cells of interest directly in the scatterplot (Figure 18). The cells in the gated area will be
saved as a new gate with a user-specified name.
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7. The “Highlight samples on plot” option outlines cells of the selected gates on the scatterplot
or t-SNE map (Figure 19).
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8. A principle component analysis can be run by selecting the “Run PCA” option. As for the t-
SNE dimensionality reduction, the resulting coordinates necessary to display the first two
components are saved as two new channels at the bottom of the list. Generate a scatterplot
of these two channels with the “Scatter” option of the “Analyze Options” drop-down menu
in order to visualize the first two principle components. If no channel from the “Heatmap
Channels” box is selected, the colors on the plot simply represent the different selected
images (Figure 20a). If a channel is selected, the scatter plot will be overlaid with the
heatmap of the marker intensities from the selected channel (Figure 20b). When overlaying
cells with a heatmap, the “Percentile cut-off” slider allows the intensities of the highest
outliers to be set to the intensity value of a given percentile.



4 - 4 -

Chamnos svoyss Aoatss
* [CelCarbonicAnhydraseiXE * * |Cell-CarbonicAnhydraselXE * .
(Cell-CrebLa139Di (Cell_CrebLa133Di 3x10° Cell_CDGBNd146Di w103
(Col_CytokeratinTDy 16401 . (Cel_Cytokeratn7Dy 1640i
(Cell_Cytokerating 18Yb174D. 3r | Cytokerating 18Yb174D.
(Cell_EcadnennEr1670i (Cell_EcadnerinEr167Di 4
Cel_ERaGU1E6D: el ERaG1560
(CeI_EpCAMDY 16101 IEQCAMDY 16101 25
(Cel_FibronectnDy 16301 25| el FibronectnDy 1630i
(Col_GATASPrATDI ol GATASPr1A1DI -
Cel_HerzEuts DI Cel Her2Euts DI
el FistoneH3Yb1760i el HistoneH3Yb 1760 JL
| Cellig7Ert6aDi of | corirErisen:
Cel_PRABGA1SED: Cel_PRABGA1SEDI
(CoI_S6ETOD: el SSErTOD: s
(el SMANG 1490 el SUANd46D:
Col_TwistNa145Di " Col_TwstNG145D: 15k
Cel_VimentnDy1620i el VimentinDy 16200
(Cel bcateninHa 16501 el bcateninHa 6501
ea m e =, 25
J ]
Ecconticiy g | ccentriy -
oty g Soidty 2
en H e z
[EulerNumber z EulerNlumber =
Perimater 8 Pen g 2
[MajorAisLength g9 MajorAisLength g ot
MinorAxisLength g IMinorAxisLength k3
(Orrtation Oriertation
Percent Touching Percent_Touching 1
Number Neighbors of Numbsr Neighbors ol
ASNEZ387600444.1 \SNEZ38T600444 1
{SNEZ37600444 2 KSNEZ3976004442
Phenograph2207453554 Phenograph2207:53664
PCAZEBIE01605_1 o PCAZBI0G0S 1 s
~ PCA28B1501605 2 - - PCAZ881501605 2 - 08|
——
] Eis Ak 0s
Cor cousacreon
X cercosmateani
] 1 2 B A | . . , .,
PCA2831501605_1 v E 2 E E B
PPCA2881501605_1 x10%
e sampes . [_popar
ersssonina [— —
a) ) egrosin Scater =l L) Scatter ] [ e

Figure 20

9. A k-means clustering can be run on any two-dimensional plot by selecting the “Run k-
means” option. You will be asked to choose an amount of clusters and a number of
iterations for the algorithm to run. The resulting cluster assignments for each cell are saved
as a new channel at the bottom of the list. Scatterplots can then be overlaid with the color
code corresponding to the k-means clusters (Figure 21).
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8. Prepare samples

Below the channel and gate selection boxes the “Sample Options” drop-down menu provides several
options to prepare the loaded sample data or custom-made gates for further analysis. Click the
“Prepare” button to apply the selected option (Figure 22).

1. “Import Neighbors” will create a new gate containing the neighbors of the cells in the
currently selected gate.



4] miCAT 13 #3205¢7€30eb3edZ72d6(5£d52699e66983¢b05.

Losd  Seve

=3 =8 =]

dRLDOE
it mages. 4 Pots
L2Cy2x3 37 + Imageld
L2CyTx1 38 Celld
1#2CyTxT 39 Cell_CD44GA160Di
1#CyTx8 40 Cell_CDBBNA146Di
Lo Cyxd 41 Cell_CarbonicAnhydraselXE
L CyEx5 42 Cell_Crebla1390i
LaZCyx6 43 Cell_Cytokeratin7Dy164Di
L CyBiT 44 Cell_Cytokerating 18Yb174D
1o Cy9 Cell_EcadherinEr167Di
Lot Phonoaraph22074935(  Cell_ERaGA1560i
L Phenograph22074935( (Call_EpCAMDy161Di
1.s*Phenograph22074335( (Call_FibronectinDy 163D
1*Phenoqraph22074935( |Cell_GATA3PA141Di
L Phenograph22074335( (Cell_Her2Eu151Di
Ls2#Phenograph22074935(  Cell_HistoneH3Yb1760i
Lo Phenograph22074935(  Cell_KIE7Er168D
Lw*Phenograph22074935(  Cell_PRABGA158D
1.*Phenograph22074335( _|Cell_S6Er170Di
I ienograph: 35(  Cell_SMANd148Di
ls®Phenograph22074936(  Cel_Twisthd145Di
{s2®Phenograph22074936( |Cel_VimentinDy 1620
[ Phenograph22074935(  Coll_bcateninHo165Di
Lt Phenoaraph22074935(  Area
L5 Phenograph22074936( |Eccentricity
Lo Phenograph22074935( = | Solidity
Lw®Phenograph22074935(  Extent
Lw*=Phenoaraph22074935( |Eulerhlumber
1:s*Phenograph22074935( |Perimet
L Phenograph22074335(  MajorAxisLength
L Phenograph22074935(  MinorAxisLength
Lo Phenograph22074935( _ Orientation
1.ZPhenograph22074935(
1*2Phenoaraph22074335¢
1s#Phenoaraph22074935( .
Visualze Sanples
Pot sanple area XY (orioff)
Highlight area excl .~ Vausize Highiight sample ... ~ Anayze
7 Maskioniof
9
Neighborheod Analyss T T AT

2. With “Merge Samples” you can pool multiple gates into one and give it a new name.
3. “Normalization” will take the Z-score of the selected marker and save it as a new channel at
the bottom of the list.

9. Neighborhood analysis

The “Neighborhood Analysis” can be started from the “Prepare Samples” drop-down menu. Select
the images (not the Phenograph clusters) to be considered from the gates box. This analysis can be
run across all samples at once or across selected sample groups, and results can be compared.

You will be asked to specify the amount of permutations and the significance cut-off for the P-
values. Furthermore you can choose a “special cluster” on which to focus in addition to displaying
the results for all Phenograph clusters. This will generate an additional individual output. “Extra
information” can be anything you know about the selected group of samples, such as
“GradelTumors” or “allilmages”. This information will appear in the file name of the individual figure
generated during the neighborhood analysis. Additionally, the number of pixels to expand from each
cell when searching for neighboring cells can be set. If this field is left empty, the analysis will simply
run across all pixel expansions from one to six and return results for each version. Finally, you can
specify the percentage (0-1) cut-off for present interactions to be displayed in the heatmaps.

The heatmap displays cluster-neighborhood frequencies across all images present in at least the
percentage of the images (Figure 23a, 10% (0.1 default)). For example, if you look at the square on
the diagonal corresponding to cluster five on both axes, you are looking at how often cells of cluster
five neighbor each other. The squares are displayed in different intensities of red or blue or remain
white. Red means the cells of these clusters neighbor each other more frequently than they would in
random permutations of the cell cluster labels for each image. Blue means that the cluster cells
neighbor each other less frequently than in images with randomly permuted cell labels. The same



color code applies to the clustergrams (Figure 23b). Here you see the cluster “interactions” on the x-
axis displayed as, for example, “5_5" for the frequencies of the cells of cluster five neighboring each
other. On the y-axis each of the images are listed, so that cluster combinations that significantly
deviate from random can be identified in each image. A separate clustergram is generated showing
only the interactions with the “special cluster”.

The results of the neighborhood analysis are automatically saved to the “Custom Gates” folder.
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Figure 23

10. Save options

The “Save” button drop-down menu on the upper left yields additional saving options (Figure 24).
Select “Save tiff figure” in order to save the currently visualized image on the left side of the
interface. You will be prompted to specify in which folder and file format to save the image.
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Similarly, the “Save plots” option will open the current plot displayed on the right half of the

interface as a figure and prompt you to select a file folder in which to save it as an image (Figure 25).
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Click “Export gates as CSV” in order to save all of the information for the currently selected gates to

your “Custom Gates” folder as CSV-files. These files contain the image and cell identifiers as the first

two columns, followed by one column for each marker, each containing the measured intensities.

After the marker columns the rest of the features (cell size, percent touching, number of neighbors,
etc.) and their values are listed (Figure 26).
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Figure 26

The “Export fcs” option will save all gates as fcs files, excluding the neighbor columns. This format is
suitable for use in, for example, a Citrus analysis. The exported fcs files are stored in the “Custom
Gates” folder.

miCAT - For power users

The miCAT code was written in Matlab version 2014b. For optimal performance be sure to have this
version installed when running miCAT from the source.

1. Modular build of miCAT

miCAT is built modularly, which yields the advantage that adding new features is easy and does not
require changes in any of the existing structure. In general, features in miCAT must include only two
basic scripts: one callback from the GUI and one script executing the function. The main functions
are not linked to the GUI and can be run independently.

2. Data retrieval

All data stored for the current session and necessary to perform any function can be retrieved from
the GUI handles or included manually without the GUI. Throughout a session, the data are kept in an
fcs format structure. There is one main matrix containing a column for each channel and a row for
each individual cell of each image. This matrix is continuously updated during the session and will
therefore also contain the custom gates and channels. The corresponding channel names for each
image are saved in a cell array. All individual tiff files and corresponding masks are stored in a
multidimensional matrix structure.



Supplementary Note 2 - Results

Supplementary Figure 5

The provided simple synthetic data set demonstrates the validity of the neighborhood
module in detecting cell neighborhoods deviating from randomness (Supplementary Figure 5a-
d). These artificial images were constructed in a chessboard pattern to simplify the visualization
of the validation. As described in the methods section, the absolute cell number or the size of the
image does not have a direct effect on the neighborhood analysis — only the frequencies of cell
types present, their relative quantities, and connectivity are important (see equation 2, Methods).
Therefore, the underlying synthetic data sets were designed to imitate the ratios and relative
frequencies of cell types present in the experimental data set. The validation covered average
and extreme cases (Supplementary Fig. 5e,f).

The test dataset contained three different “phenotypic” clusters of cells, constructed by
PhenoGraph: green represents cells of phenotype #1, blue represents cells of phenotype #2, and
red cells are part of phenotype #3. We did not add further phenotypes or structures, since image
complexity does not have a direct effect on the neighbor analysis of an individual cell phenotype
and cell connectivity is kept constant for the permutation test (see equation 2, methods).

All of the following examples used a pixel-expansion of 4 to define neighbors, 99
permutations were run, and a significance cut-off of 0.05 for the p-value was used. The
hierarchically clustered heatmaps display the cell cluster interactions on the x-axis and the four
testimages on the y-axis. No interactions involving phenotype #2 were observed. Those columns
were automatically cut out of the visualization since their interaction frequencies did not
significantly deviate from randomness. Thus, the focus here is on phenotypes #1 and #3.

The alternating pattern of cells of phenotype #1 and #3 in image 1 prevents cells of the
same cluster from being in each other’s neighborhood (Supplementary Fig. 5a,f). This example

represents common case in the experimental data where two phenotypes are equally distributed



across the image. Therefore, the interactions #1—#1 and #3—#3 are significantly less frequent
than in random permutations control which would almost always have some interaction between
cells of the same phenotype. As expected, miCAT neighbor analysis identifies both #1—#1 and
#3—#3 as avoiding each other (Supplementary Fig. 5a). Similar cell distributions are for example
observed in samples Ay10x3 and Ay1x3 which both have two equally sized abundant cell types
(Supplementary Fig. 5g).

A positive control for interaction is displayed as the bulk of phenotype #3 cells in image 2
(Supplementary Fig. 5b,f). This enrichment in interaction between cells of phenotype #3 with
themselves (#3—#3) is displayed red in the corresponding row of the hierarchically clustered
heatmap. This interaction occurs significantly more frequently in the actual test image than in a
matched randomized control image because random permutations are likely to distribute cells of
phenotype #3 among those of phenotype #1. This also leads to significantly fewer phenotype #1
cells neighboring phenotype #3 cells in the permuted images compared to our real image, hence
the blue #1—#3 interaction in the hierarchically clustered heatmap (Supplementary Fig. 5a). This
example represents the case of one phenotype forming a cluster that is measured as an
interaction with itself and the avoidance of other phenotypes. The presence of a rare cell type
next to an abundant cell type is a common scenario in the experimental data, with sample Ay5x7
and Ay5x8 being representative examples (Supplementary Fig. 5h)

Image 3 (Supplementary Fig. 5¢) does not reach the significance cut-off for any neighbor
interactions even though two of the cells of phenotype #3 are neighbors (Supplementary Fig. 5c).
This example represents a single rare interaction, and the result visualizes the effect of the
significance cut-off as expected. A simple example can be seen in image Ay7x1, an extreme case
with few cell types (Supplementary Fig. 5i).

Even though a single interaction is not significantly different than chance, two rare
phenotypes forming repeated interactions do measure as significant. In image 4, cells of

phenotype #1 always neighbor a cell of phenotype #3 and vice versa (Supplementary Fig. 5d).



Here, the hierarchically clustered heatmap of significant interactions in image 4 shows that the
interactions between cells of phenotype #1 and cells of phenotype #3 occur significantly more
often (in both directions) than in a randomly shuffled image. The presence of small clusters of
cells is a common occurrence, particular in Grade 1 tumor samples, and sample By14x4 and
Cy13x5 are representative examples of this scenario (Supplementary Fig. 5j).

These rare interactions visualized in image 3 and 4 are regularly present in the
experimental data as well (Supplementary Fig. 5b,i,j). This highlights the validity of the analysis
over a wide range of cell ratios, relative frequencies from prevalent to rare cell types and
interactions, and represents the full complexity of cell-cell interactions found within the

experimental data.

Supplementary Figure 6

To quantitatively assess how segmentation impacts our single-cell analysis and neighbor
identification, we had five independent users, two of them inexperienced in tissue segmentation
(users 4 and 5), segment three identical images using variations of our standard tissue
segmentation pipeline (Material and Methods). After segmentation, we compared the masks and
derived single-cell data. The five masks varied slightly, ranging from over segmentation (white,
user 4) to under segmentation (purple, user 5) masks (Supplementary Fig. 6a). To quantitatively
assess the segmentation quality, we used the segmentation score described previously by
Schiffler et al. (Supplementary Fig. 6b). This score is composed of four intuitive segmentation
constraints: (1) mask should overlap with membrane signal; (2) mask should not overlap with
nuclei signal; (3) segmented cells should contain maximal one nucleus; (4) mask should
approximate the expected number of cells based on cell radius. No individual user or
segmentation strategy provided the best scoring for all images.

We then studied the effect of variation in user segmentation on several levels. First, we

compared single-cell data from all test subjects in 2D scatter plot distributions. Single-cell



distributions and correlations between co-expressed markers (Supplementary Fig. 6c¢), and
spatially resolved features (Supplementary Fig. 6d) were highly similar. Second, PhenoGraph
analysis of the segmented single cells by the five users yielded similar cell type identifications
from the same images (Supplementary Fig. 6e) and similar cell numbers (Supplementary Fig. 6f).
Only the results from the inexperienced user 5 differed from those of the others. Small variations
in segmentation did result in some individual cells on the edge of a high-dimension single-cell
cluster being assigned to a different, but similar, cell phenotype during the PhenoGraph analysis.
This could result in small variations in the neighbor interaction analysis for rare phenotypes. Third,
we compared the neighborhood analysis among users. Using our standard settings (Material and
Methods) no individual user scored consistently better than any other (Supplementary Fig. 6a)
and comparable neighbor cell interactions were identified and clustering separated the individual
images (Supplementary Fig. 6g). Some differences were seen between users, with the biggest
difference seen for user 5 compared to all other users (which given the points above comes
without surprise). The main influence on the comparability of the neighbor analysis was found to
be rare cell types that could be caused by mis-segmentation. Thus, to ensure that rare or variable
neighbor interactions do not result in false positives throughout our analysis we only analyze
interactions that are present in greater than 10% of our images. Another factor that influences the
neighbor analysis is the distance parameter that defines if cells are neighbors. Varying the
expansion of the neighborhood in our dataset made the neighbor analysis of different users more
similar to each other without increasing false positive interactions (Supplementary Fig. 6g). We
conclude that our segmentation is of high quality and our neighbor analysis is robust to changes

in variations in segmentation using the segmentation methods applied here.

Supplementary Figure 7
Analysis of an IMC dataset of healthy mammary ducts and alveoli from six donors

validated our ability to identify relevant cell interactions that were known a priori. Specifically,



interactions between basal/myoepithelial and luminal cell types in the outer and inner layers of
mammary ducts are known features of both alveoli and ductal structures of the mammary gland.

IMC enabled identification of complex cell types with different combinations of luminal
(CK19, CK8/18, CK7) and basal (CK5, CK14, SMA) markers (Supplementary Fig. 7b). Multiple
luminal (Phenograph clusters #3 and #6) and basal (Phenograph clusters #4, #7 and #13) cell
types were identified, and SMA" endothelial cells (Phenograph clusters 12 and 14) were
distinguished from SMA" basal cells (Supplementary Fig. 7a,c). Specific luminal and basal cell
types were associated with different epithelial structures, but more images are needed to validate
this observation and identify alveoli or ductal specific cell phenotypes.

As visualized across all images, and in sample Ay1x5 alone (Supplementary Fig. 7a, fifth
row), high-dimension analysis revealed differences in the cytokeratin expression of the epithelial
cells from different ducts or alveoli even in neighboring structures of the same breast. Even within
the unforeseen complexity of these normal tissues, neighborhood analysis identified significant
interactions that correspond to known interactions within mammary ductal structures. Epithelial
cell types (Phenograph clusters #3, #4, #6, and #7) had similar interaction patterns
(Supplementary Fig. 7g). Within these interactions, as expected, all basal-luminal epithelial
interactions were highly significant, and basal cells were more commonly in the neighborhood of
a luminal cell than vice versa (e.g., row 6, column 7 > row 7, column 6: basal around luminal >
luminal around basal). Interaction patterns also helped distinguish endothelial vessels, which had
their own interaction profile (Supplementary Fig. 7g, row 12 and 14) and identified stromal cell
populations that were associated with mammary epithelial structures (Phenograph clusters #1,

#2, and #8) and those that avoided interactions (Phenograph clusters #5, #9, and #10).



Supplementary Note 3 — Discussion

Segmentation

Segmentation of tissues is a challenging task for the entire image cytometry field and all
tissue analysis approaches. In 5-um thick tissue sections, a small percentage of cells will overlap,
only a portion of a cell may be present within the analyzed section, and small differences in
segmentation between adjacent cells can result in a small spillover of signal between neighboring
cells. The ability to visualize a variety of cell markers and membrane stains helps to improve the
accuracy of segmentation masks. Different cell types are segmented using different markers and
a combination of markers helps to define cell boundaries. This is especially true in heterogeneous
tumor samples where different adhesion markers (E-cadherin) or cell markers (cytokeratins) are
present in different samples. In addition to improving segmentation, the increased information
provided by high-dimension imaging can also better identify any poorly segmented cells so that

they can be excluded from further analysis.

Phenotype Identification

Many single-cell technologies depend on automated high-dimension clustering techniques
for the analysis and understanding of cell types. Manual gating is no longer adequate for systems
level studies as 2D gating is not easily scalable, is biased toward expected results, and is one of
the most variable steps in cytometry studies'. High-dimension clustering, such as Phenograph, is
able to identify associations between markers that may be missed using conventional gating and
identifies rare cell populations?®. Differences in cell segmentation can impact marker quantification
and cell phenotype determination for individual cells, but we find that multiple segmentations by

different users provide a similar distribution of single-cell measurements.

Neighbor Interactions




Only recently have high-dimension imaging and other spatially resolved techniques been
developed that are able to identify many cell types within a single measurement, and neighbor
analysis is dependent on the ongoing development of tools for the identification and analysis of
these single cells. A change in the phenotype identified also results in the identification of a
different neighbor interaction, and differences in segmentation can change the measured
connectivity of a tissue thereby altering the distribution of potential interactions. The use of a
permutation test to measure the significance of a neighbor interaction provides internal controls
for all images thereby controlling for differences in image processing and analysis between
different experiments, as well as the inherent variability of different tissues. In addition, setting the
distance parameter that determines a neighbor interaction can alter or correct for differences in
segmentation strategies. Overall, we observed that relevant neighboring interactions are
consistently detected across different segmentations. A focus on interactions that are detected
across multiple samples results in identification of the significant neighboring interactions in a

sample set.
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Supplementary Note 4 — Antibody Validation
The majority of antibodies used in this study have previously been validated for imaging
mass cytometry. Additional example validations of antibodies used in this study provided by the

research community are below.

Smooth Muscle Actin (SMA): clone 1A4, Abcam

This antibody has been validated on multiple tissues including breast tissue and basal cancer
subtype by the vendor and has been used in many published studies.

http://www.abcam.com/alpha-smooth-muscle-actin-antibody-1a4-ab7817-references.htmi

EpCAM: clone 9C4, Biolegend

This antibody is validated for immunohistochemistry on paraffin-embedded sections and quality
tested for immunofluorescence by Biolegend. Validation staining has also been completed on
many tissues include breast cancer by The Human Protein Atlas:

http://www.proteinatlas.org/ENSG00000119888-EPCAM/antibody.

Fibronectin: clone 10/Fibronectin, Becton Dickinson

This antibody has been tested in multiple human cancer tissue types as well as
immunofluorescence of in vitro cell lines and western blot of human breast tissues. It was used
in:

Wagner D, Bonenfant N, Parsons C, Sokocevic D, Brooks E, Borg Z, et al. Comparative
decellularization and recellularization of normal versus emphysematous human lungs.

Biomaterials. 2014;35:3281-97.

Cytokeratin 5: clone EP1601Y, Abcam




This antibody is guaranteed for immunohistochemistry applications by the vendor and has

tested on multiple tissues including the basal cancer subtype of breast cancer.

Cytokeratin 19: clone Troma-Ill, Developmental Studies Hybridoma Bank

This antibody that has been tested on a variety of tissues and was used in a number of
published studies. It was used to detect specific cellular subpopulation in primary human breast
culture:

Zubeldia-Plazaola A, Ametller E, Mancino M, Prats de Puig M, Lépez-Plana A, Guzman F, et al.
Comparison of methods for the isolation of human breast epithelial and myoepithelial cells.

Frontiers in Cell and Developmental Biology. 2015;3:32.

Cytokeratin 14: polyclonal, Thermo Fischer

This antibody is validated for immunohistochemistry application, and amongst many other uses
was shown to identify the basal cell population in human breast primary culture and mouse
mammary tissues:

Hines WC, Yaswen P, Bissell MJ. Modelling breast cancer requires identification and correction
of a critical cell lineage-dependent transduction bias. Nature Communications. 2015;6:null
Meyer DS, Brinkhaus H, Muller U, Miller M, Cardiff RD, Bentires-Alj M. Luminal expression of
PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer

Research. 2011;71:4344.

Cytokeratin: clone AE3, Millipore

Performance of this antibody is guaranteed by the vendor in immunohistochemistry against type
Il keratins. It has been extensively used in combination with other antibodies to detect epithelial

or carcinoma tissue.
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