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Supplementary Fig 1 | Summary of features available in current analysis software tools. miCAT combines features from multiplexed cytometry 
and image analysis in one user-friendly open source toolbox. Proprietary commercial software is excluded from this summary. 
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Supplementary Figure 2 | Representative biaxial plots of single cell data from Figure 2. (a) All cells colored by source image, and 
(b) PhenoGraph cell phenotype #7 CD68+ (blue) and Fibronectin+ phenotype #26 or Cytokeratin 8/18+ and Cytokeratin 7+ 
phenotype #20 (red).
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Supplementary Figure 3 | Distribution of cell phenotypes. (a) Heatmap depicting the source images of each 
phenotype where color intensity depicts the percentage of a cell phenotype present in each image. (b) Heatmap 
depicting the variety of cell phenotypes in each image where color intensity depicts the percentage of cells in 
the image from each cell phenotype.
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Supplementary Figure 5 | Neighborhood analysis validation using synthetic data. Four synthetic images were 
created containing three synthetic, square cell types (1 = Purple, 2 = Green, 3 = Blue) that only touch at their 
corners with black depicting the absence of a cell. The interactions in these four images are represented in a 
single hierarchically clustered heatmap. Cell type 2 is not in any significant interactions and therefore does not 
appear in the hierarchically clustered heatmap. (a) In synthetic image #1 cells do not neighbor other cells of the 
same phenotype. The hierarchically clustered heatmap indicates that interactions between cells of the same type 
(1←→1, 3←→3) are less likely than a random distribution of cells. (b) Synthetic image #2 has a distinct, large 
cluster of cell type 3 . The hierarchically clustered heatmap indicates significant interactions between cells of type 
3 and a decreased number of interactions between cells of type 1 and 3 compared to a random distribution 
throughout. (c) In Synthetic image #3, rare, small clusters of cells do not result in statistically significant 
interactions (p<0.05) and are therefore not displayed in the hierarchically clustered heatmap. (d) Distinct pairs of 
cells in synthetic image #4 result in significant interactions in both directions between cell types 1 and 3. The 
distribution of cell frequencies is displayed as the quantity of each cell phenotype ordered from the most to the
least abundant for (e) all tissue samples and (f) synthetic images. Specific breast cancer image examples that 
have similar relative cell frequencies as presented in the synthetic data are shown in (g)-(j). (g) Breast cancer 
images with two abundant cell types akin to synthetic data image #1. (h) Breast cancer images with abundant and 
rare cell types akin to synthetic data image #2. (i) Breast cancer images with extremely rare cell types akin to 
synthetic data image #3. (j) Breast cancer images with small clusters of cells akin to synthetic data image #4.
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Supplementary Figure 6 | Segmentation Comparison. (a) Visualization of single cell segmentation 
masks created by �ve independent users alone (Left) and overlaid on top of IMC tissue image (Right, 
Membrane = E-cadherin + CK8/18 + CK7 + Her2 + SMA (yellow), DNA Intercalator (blue)). Scale bar 50μ
m. (b) Table of mask segmentation scores with the best score highlighted in red. No single user 
provides the best score for all images and User 5 consistently performs worse than the other users. (c) 
Biaxial plots of single cell data from �ve independent segmentations of three images colored by user. 
(d) Boxplots of single cell spatial features from �ve independent segmentations of three images. (e) 
tSNE maps of single cell data from �ve independent segmentations of three images colored by source 
image, segmentation user, and PhenoGraph cluster. (f) Histograms of the number of cells from each 
PhenoGraph cluster in each image that were identi�ed by each user. (g) Agglomerative clustering of 
all cell-to-cell interactions identi�ed by pixel expansion (PE) of 1- 6 pixels in the three images by each 
user according to the presence of signi�cant (p < 0.01) phenotype interaction (red) or avoidance 
(blue). White represents interactions that are not present or not signi�cant. Extended, less speci�c 
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Supplementary Figure 7 | Neighbor Analysis of Healthy Mammary Tissue. (a) Raw Image, Image with single cell mask, and Phenograph Phenotype 
- labelled high-dimension IMC images of normal mammary tissue. Cytokeratin 7 (red), SMA (Smooth Muscle Actin, green), DNA Intercelator (blue). 
Scale bar 50μm.  (b) Biaxial plots of single cell data from segmented health mammary tissue colored by source image. (c) tSNE plot of high-dimen-
sion single cell data colored by source image. (d) tSNE plot of high-dimension single cell data with the quanti�cation of the marker of interest 
heatmapped for each cell. (e) Phenograph clustering of all cell phenotypes visualized as a distinct color on the tSNE plot. (f) Heatmap visualizing the 
median marker intensity for each Phenograph de�ned cell phenotype. (g) Heatmap of all neighboring cell interactions between all cell phenotypes 
in which square color indicates the prevalence of samples with signi�cant interactions (permutation test: p < 0.01) in which the cell type in the row 
is signi�cantly neighbored (red) or avoided (blue) by the cell type in the column. White represents a prevalence less than 10%.
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Supplementary Figure 8 | Raw Image, Image with single cell mask, and phenoGraph phenotype for visualization of 
observed interactions. Scale bar 50μm. (a) Highlighted directional interaction from main Fig. 3c: highly interactive 
tumor cell phenotype #3 is surrounded by stromal cell phenotype #13 (main Fig. 3c row 3, column 13, red square), but 
phenotype #3 is not signi�cantly enriched in the surroundings of phenotype #13 (main Fig. 3c row 13, column 3, blue 
square). Also, cluster 1 interactions depicted in Fig. 3e of self interacting phenotype #3 cells with phenotype #2 and 
#13 interactions. (b) Example from Neighbor Heatmap main Fig. 3c and Network main Fig. 3e: Directional interactions 
between phenotype #11 and #5. Phenotype #11 is surrounded by #5, while #11 is avoiding phenotype #5. (c) Avoidant 
proliferative cell phenotype #8 and interactive proliferative cell phenotypes #10 and #19. (d) Avoidance of active 
stroma phenotype #6 and hypoxic cell phenotype #14 identi�ed in cluster #2 (main Fig. 3d,e; Supplementary Fig. 8) (e) 
CD68+ cell phenotype #7 which has interactions identi�ed in the Grade 3 enriched cluster 2 (main Fig. 3d,e).
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Metal	Tag	 Target	 Clone	 Marker	 Vendor	 Lot	

La139	 phosphoCreb	 J151-21	 Signaling	 Becton	Dickinson	 558359	

Pr141	 GATA3	 L50-823	 Transcription	Factor	 Becton	Dickinson	 558686	

Nd145	 Twist	 ABD29	 Transcription	Factor	 Millipore	 2039819	

Nd146	 CD68	 KP1	 Immune	 E	Biosciences	 14-0688-82	

Nd148	 SMA	 1A4	 Stromal	 Abcam	 ab76549	

Eu151	 c-erbB-2,	HER2	 3B5	 Receptor	Tyrosine	Kinase	 Becton	Dickinson	 2223593	

Gd158	 Progesterone	Receptor	A/B	 EP2	 Hormone	Receptor	 Epitomics	 N/A	

Gd160	 CD44	 IM7	 Adhesion	 Becton	Dickinson	 550538	

Dy161	 EpCAM	 9C4	 Epithelial	 Biolegend	 B166689	

Dy162	 Vimentin	 D21H3	 Stromal	 Cell	Signaling	
	

5741BF	

Dy163	 Fibronectin	 10/Fibronectin	 Stromal	 Becton	Dickinson	 N/A	

Dy164	 Cytokeratin	7	 RCK105	 Epithelial	 Becton	Dickinson	 550507	

Ho165	 b-Catenin	 D13A1	 Epithelial	 Cell	Signaling	 8814BF	

Er166	 Carbonic	Anhydrase	IX	 AF2188	 Hypoxia	 R&D	Systems	 AF2188	

Er167	 E-Cadherin	 36/E-Cadherin	 Epithelial	 Becton	Dickinson	 610182	

Er168	 Ki-67	 8D5	 Proliferation	 Cell	Signaling	 2	

Er170	 phosphoS6	 D57.2.2E	 Growth,	Signaling	 Cell	Signaling	 4858BF	

Yb174	 Cytokeratin	8/18	 C51	 Epithelial	 Cell	Signaling	 2	

Yb176	 Histone	H3	 D1H2	 Nuclei	 Cell	Signaling	 6	
 
Supplementary Table 1a | Antibodies and stains used to measure breast cancer samples. 
 
 

Metal	Tag	 Target	 Clone	 Marker	 Vendor	 Lot	

Pr141	 Cytokeratin	5	 EP1601Y	 Basal	 Abcam	 GR233399-1	

Nd143	 Cytokeratin	19	 Troma-III	 Luminal	 Dev	Studies	Hybridoma	Bank	 9/28/15	

Nd144	 Cytokeratin	8/18	 C51	 Luminal	 Cell	Signaling	 2	

Sm147	 Cytokeratin	14	 Polyclonal	 Basal	 Thermo	Fischer	 QI2091522	

Nd148	 SMA	 1A4	 Basal	/	Endothelial	 Abcam	 033M4768	

Er167	 E-Cadherin	 36/E-Cadherin	 Epithelial	 Becton	Dickinson	 610182	

Yb174	 Cytokeratin	7	 RCK105	 Luminal	 Becton	Dickinson	 5259670	

Lu175	 Pan-Cytokeratin	 AE3	 Epithelial	 Millipore	 2607604	

Ir191/Ir193	 DNA	Intercelator	 	 DNA	 Fluidigm	 	

 
Supplementary Table 1b | Antibodies used to stain healthy breast tissue samples. 
 



Supplementary	Note	1	–	miCAT	Manual	

miCAT	–	Getting	started	

1.	Install	miCAT	

miCAT	 is	 automatically	 installed	 from	 the	 web	 when	 running	 the	 miCATAppInstaller.exe	 file.	
Windows	users	must	have	Visual	Studio	installed	for	features	like	PhenoGraph	to	function.	If	Visual	
Studio	 is	 not	 already	 installed	 on	 your	 computer	 download	 it	 from	
https://www.visualstudio.com/downloads/.	

	

2.	Open	miCAT	

Double	click	the	icon	generated	during	installation	to	open	miCAT.	

	

3.	Data	requirements	

In	order	for	raw	image	data	to	be	successfully	loaded	into	miCAT,	all	files	associated	with	a	specific	
image	 need	 to	 be	 stored	 in	 a	 separate,	 uniquely	 named	 folder	 (see	 example	 data	 set).	 Multiple	
folders,	 each	 containing	 the	data	 corresponding	 to	one	 image,	 can	be	 loaded	 simultaneously.	 The	
different	markers	measured	must	be	 stored	as	 individual	 (unstacked)	 tiff	 files	 in	 the	 image	 folder.	
miCAT	requires	that	the	tiff	files	be	saved	as	unsigned	16-bit	integers	(uint16).	If	there	is	single-cell	
information,	the	image	folder	can	also	contain	a	mask,	such	as	that	generated	after	segmentation	in	
CellProfiler,	 that	 identifies	 individual	 cells.	The	mask	can	be	saved	as	a	mat	or	 tiff	 file	 in	uint16	or	
int32	format.	

	

4.	Load	samples	into	miCAT	

After	opening	the	miCAT	GUI,	the	first	step	is	to	load	the	image	data	for	subsequent	analysis.	Click	
on	the	“Load”	button	on	the	upper	 left	of	 the	 interface.	A	drop-down	menu	with	 two	options	will	
appear.	Choose	“Load	Samples”	in	order	to	start	a	new	miCAT	session	(Figure	1).	



	

Figure	1	

You	will	be	prompted	with	a	folder	selection	box	(Figure	2).	Navigate	to	the	folders	containing	the	
images	 to	be	 loaded.	Click	 “Done”	once	you	have	added	all	 the	desired	samples	 to	 the	 list	on	 the	
right	of	the	window	(Figure	2).	

	

Figure	2	

Once	miCAT	has	finished	loading	the	image	data,	you	will	be	asked	to	specify	the	number	of	pixels	to	
expand	from	each	cell	 in	order	to	 look	for	neighboring	cells	(Figure	3).	Choose	an	 integer	between	
two	and	ten.	This	pixel	expansion	can	 later	be	set	to	a	different	value.	 If	you	would	 like	to	arcsinh	



transform	 your	 data,	 enter	 a	 suitable	 cofactor	 in	 the	 corresponding	 question	 box,	 otherwise	 just	
press	cancel.	It	may	take	from	a	couple	of	seconds	up	to	one	minute	per	image	(500x500	pixels)	for	
the	 single-cell	 information	 to	 be	 updated.	 Once	 the	 folder	 selection	 prompt	 appears,	 browse	 to	
where	you	wish	 to	store	 the	“Custom	Gates	Folder”.	This	 is	where	any	 files	 that	are	automatically	
generated	during	 the	miCAT	session	will	be	saved.	Folder	names	should	not	 include	any	spaces	or	
special	characters.	

	

Figure	3	

The	 loaded	 image	data	are	displayed	 in	 two	columns	 in	 the	center	of	 the	 interface	 (Figure	4).	The	
box	on	the	left	hand	side	contains	the	“Samples”,	which	at	this	stage	in	the	analysis	process	are	just	
the	 individual	 images.	 The	 measured	 markers	 for	 the	 currently	 selected	 image	 are	 shown	 in	 the	
“Channels”	box	on	the	right.	Note	that	miCAT	also	calculates	image-specific	cell	identifiers,	cell	size	
and	shape	measurements,	the	percentage	of	a	cell’s	surface	touching	other	cells,	and	the	number	of	
neighboring	cells.	Figure	4	displays	the	overall	arrangement	of	the	miCAT	interface.	



	

Figure	4	

	

5.	Save	and	reload	session	data	

Once	a	miCAT	analysis	has	been	started,	the	full	session	can	be	saved	by	clicking	the	save	icon	(do	
not	attempt	to	use	the	save	button	in	the	drop-down	menu)	on	the	upper	left	of	the	GUI	(Figure	5).	
The	session	must	be	saved	as	a	mat	file	in	order	to	continue	the	analysis	at	a	later	time.	

	

Figure	5	

To	 reopen	 a	 previously	 saved	 session,	 choose	 the	 “Load	 Session	 Data”	 option	 in	 the	 drop-down	
menu	of	the	“Load”	button	and	navigate	to	the	mat	file	containing	the	session	of	interest.	

	

6.	Visualize	images	

The	left	hand	side	of	the	GUI	is	dedicated	to	different	kinds	of	visualizations	of	the	selected	images.	
The	 form	 of	 visualization	 can	 be	 determined	 and	 changed	 using	 the	 “View	 Options”	 drop-down	
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menu	on	the	lower	left	(Figure	6).	Having	selected	one	of	the	options,	the	“Visualize”	button	must	be	
pressed	for	changes	to	be	applied.	The	following	visualization	options	are	supported:	

	

Figure	6	

1. Choose	“Apply	RGBCMY	on	selected	samples”	 in	order	to	display	the	signal	of	the	selected	
markers	each	in	a	different	color	and	overlaid	into	one	image	(Figure	7a).	To	select	multiple	
markers	 or	 images,	 please	 hold	 down	 the	 shift/CMD	key.	 The	 tabs	 that	 appear	 above	 the	
visualization	 represent	each	of	 the	selected	 images.	Below	the	 image	a	slider	along	with	a	
checkbox	for	each	color	appears.	Check	a	color	and	move	the	slider	in	order	to	increase	the	
intensity	of	a	specific	signal.	When	the	mask	checkbox	on	the	lower	left	is	selected,	the	tiff	
image	 is	overlaid	with	 the	segmentation	mask,	highlighting	 the	 individual	 cells	 (Figure	7b).	
The	“Plot	sample	area	XY”	checkbox	marks	the	centroid	of	each	cell	on	the	image.	

	

Figure	7	

a)	 b)	



2. The	 “Heatmap	 channels	 on	 selected	 samples”	 option	 displays	 a	 heatmap	 of	 the	 selected	
channel	(Figure	8a)	overlaid	on	the	single-cell	mask	(Figure	8b).	In	this	case,	the	slider	allows	
you	 to	 specify	 a	 “percentile	 cut-off”	 for	 very	high	 values.	 This	 can	be	used	 to	prevent	 the	
heatmap	from	being	displayed	as	mostly	blue	if	there	are	some	extremely	high	values	in	very	
few	cells.	If	the	slider	is	set	to	one,	the	cut-off	will	be	at	the	99th	percentile,	meaning	that	the	
intensities	above	this	value	will	be	set	to	the	value	of	the	cut-off.	

	

Figure	8	

3. Cells	of	 interest	can	be	manually	gated	with	the	“Gate	an	area	on	tiff”	option.	Confirm	the	
selection	by	pressing	the	“Visualization”	button	before	gating.	Afterwards,	encircle	a	certain	
area	with	 the	 cursor	 directly	 in	 the	 tiff	 image	 (Figure	 9).	Hold	 down	 the	mouse	 key	while	
selecting	and	release	it	when	finished.	These	cells	are	then	saved	as	a	gate,	which	appears	in	
the	samples	column	bellow	the	loaded	images.	

	

Figure	9	

4. A	 subset	 of	 cells	 (such	 as	 a	 Phenograph	 cluster	 or	 manually	 gated	 cells)	 can	 also	 be	
highlighted	on	the	tiff	image	using	the	“Highlight	samples	on	tiff”	option.	If	multiple	subsets	

a)	 b)	



are	visualized	simultaneously,	they	appear	in	different	colors	on	the	image.	These	colors	are	
automatically	 selected	 such	 that	 they	 are	 most	 distinguishable	 from	 the	 colors	 in	 the	
background	image	(Figure	10).	

	

Figure	10	

5. “Highlight	excluding	selected	sample”	 leads	to	the	exact	opposite	of	“Highlight	samples	on	
tiff”.	All	cells	except	for	the	ones	in	the	selected	gates	will	be	marked	(Figure	11).	

	

Figure	11	

	

7.	Analyze	data	

The	 right	 hand	 side	of	 the	 interface	 is	 dedicated	 to	 data	 analysis	 and	 representation.	Next	 to	 the	
“Analyze”	button	there	are	several	options	(Figure	12).	



	

Figure	12	

1. The	“Scatter”	option	produces	a	scatterplot	of	up	 to	 three	markers.	 If	multiple	 images	are	
selected,	they	are	displayed	in	different	colors	(Figure	13a).	From	the	channel	list	either	two	
or	 three	 markers	 can	 be	 selected	 simultaneously	 to	 be	 displayed	 in	 a	 two-	 or	 three-
dimensional	plot.	A	fourth	channel	can	be	visualized	in	terms	of	color.	Choose	this	additional	
channel	from	the	“Heatmap	Channels”	box	below	the	regular	channels.	This	will	overlay	the	
dots	 in	 the	scatterplot	with	a	heatmap	of	 the	selected	marker’s	 intensities	 (Figure	13b).	 In	
two-dimensional	 plots,	 a	 regression	 line	 can	 be	 added	 to	 the	 scatterplot	 by	 checking	 the	
“Regression	line”	box.	Additionally,	the	R-value	of	Pearson’s	correlation	will	be	displayed.		

	

Figure	13	

2. The	 “Histogram”	 option	 creates	 one	 histogram	 for	 each	 selected	 channel,	 displaying	 the	
lines	 for	 multiple	 selected	 images	 in	 different	 colors	 (Figure	 14a).	 Alternatively,	 choose	
“Boxplot”	 if	 this	 representation	 is	better	 suited	 for	your	purpose	 (Figure	14b).	For	optimal	
visualization,	this	option	is	best	used	with	multiple	images	but	not	too	many	channels	at	the	
time.	

a)	 b)	



	

Figure	14	

3. Generate	 a	 heatmap	 of	 the	 selected	 gates	 (y-axis)	 and	 channels	 (x-axis)	 by	 choosing	 the	
“Heatmap”	 option	 (Figure	 15a).	 Checking	 the	 “b2r”	 checkbox	 will	 convert	 the	 regular	
heatmap	to	a	more	meaningful	“anomaly	heatmap”,	where	white	represents	values	close	to	
zero	 and	 blue	 or	 red	 represent	 values	 below	 or	 above	 zero,	 respectively	 (Figure	 15b).	 By	
default	 the	heatmap	displays	mean	values.	 These	 can	be	 changed	 to	medians	by	 checking	
the	“median	instead	of	mean”	checkbox.	

	

Figure	15	

4. A	t-SNE	dimensionality	reduction	can	be	run	on	cells	in	the	selected	gates	with	the	selected	
channels	 by	 choosing	 the	 “Run	 t-SNE”	 option.	 A	 seed	 is	 set	 internally	 to	 ensure	
reproducibility.	The	resulting	cell	coordinates	necessary	to	display	the	t-SNE	map	are	saved	
as	 two	 additional	 channels	 at	 the	 bottom	of	 the	 list.	 Generate	 a	 scatterplot	 of	 these	 two	
channels	with	 the	 “Scatter”	option	 of	 the	 “Analyze	Options”	drop-down	menu	 in	order	 to	
visualize	 the	 t-SNE	 map	 (Figure	 16a).	 If	 no	 channel	 from	 the	 “Heatmap	 Channels”	 box	 is	
selected,	the	colors	on	the	plot	simply	represent	the	different	selected	images.	If	a	channel	
is	selected,	the	t-SNE	map	will	be	overlaid	with	the	heatmap	of	the	marker	intensities	from	
the	selected	channel.	When	overlaying	cells	with	a	heatmap,	the	“Percentile	cut-off”	slider	

a)	 b)	

a)	 b)	



allows	 the	 intensities	 of	 the	 highest	 outliers	 to	 be	 set	 to	 the	 intensity	 value	 of	 a	 given	
percentile	(Figure	16b).	

	

Figure	16	

5. The	“Phenograph”	option	will	cluster	the	cells	of	the	selected	gates	into	Phenograph	clusters	
based	on	the	selected	channels.	Each	resulting	cluster	will	be	saved	as	an	individual	gate	and	
will	appear	below	the	rest	of	the	samples.	One	possibility	for	visualization	of	the	Phenograph	
clusters	 is	 to	 overlay	 the	 t-SNE	map	with	 the	 differently	 colored	 clusters	 by	 choosing	 the	
Phenograph	result	from	the	“Heatmap	Channels”	box	(Figure	17).	

	

Figure	17	

6. Similar	to	the	manual	gating	on	the	tiff	image,	“Gate	on	plot”	allows	you	to	gate	on	certain	
cells	 of	 interest	 directly	 in	 the	 scatterplot	 (Figure	 18).	 The	 cells	 in	 the	 gated	 area	 will	 be	
saved	as	a	new	gate	with	a	user-specified	name.		

a)	 b)	



	

Figure	18	

7. The	“Highlight	samples	on	plot”	option	outlines	cells	of	the	selected	gates	on	the	scatterplot	
or	t-SNE	map	(Figure	19).	

	

Figure	19	

8. A	principle	component	analysis	can	be	run	by	selecting	the	“Run	PCA”	option.	As	for	the	t-
SNE	 dimensionality	 reduction,	 the	 resulting	 coordinates	 necessary	 to	 display	 the	 first	 two	
components	are	saved	as	two	new	channels	at	the	bottom	of	the	list.	Generate	a	scatterplot	
of	these	two	channels	with	the	“Scatter”	option	of	the	“Analyze	Options”	drop-down	menu	
in	order	 to	 visualize	 the	 first	 two	principle	 components.	 If	 no	 channel	 from	 the	 “Heatmap	
Channels”	 box	 is	 selected,	 the	 colors	 on	 the	 plot	 simply	 represent	 the	 different	 selected	
images	 (Figure	 20a).	 If	 a	 channel	 is	 selected,	 the	 scatter	 plot	 will	 be	 overlaid	 with	 the	
heatmap	of	the	marker	intensities	from	the	selected	channel	(Figure	20b).	When	overlaying	
cells	 with	 a	 heatmap,	 the	 “Percentile	 cut-off”	 slider	 allows	 the	 intensities	 of	 the	 highest	
outliers	to	be	set	to	the	intensity	value	of	a	given	percentile.	



	

Figure	20	

9. A	 k-means	 clustering	 can	 be	 run	 on	 any	 two-dimensional	 plot	 by	 selecting	 the	 “Run	 k-
means”	 option.	 You	 will	 be	 asked	 to	 choose	 an	 amount	 of	 clusters	 and	 a	 number	 of	
iterations	for	the	algorithm	to	run.	The	resulting	cluster	assignments	for	each	cell	are	saved	
as	a	new	channel	at	the	bottom	of	the	list.	Scatterplots	can	then	be	overlaid	with	the	color	
code	corresponding	to	the	k-means	clusters	(Figure	21).	

	

Figure	21	

	

8.	Prepare	samples	

Below	the	channel	and	gate	selection	boxes	the	“Sample	Options”	drop-down	menu	provides	several	
options	 to	 prepare	 the	 loaded	 sample	 data	 or	 custom-made	 gates	 for	 further	 analysis.	 Click	 the	
“Prepare”	button	to	apply	the	selected	option	(Figure	22).	

1. “Import	 Neighbors”	 will	 create	 a	 new	 gate	 containing	 the	 neighbors	 of	 the	 cells	 in	 the	
currently	selected	gate.	

b)	a)	



	

Figure	22	

2. With	“Merge	Samples”	you	can	pool	multiple	gates	into	one	and	give	it	a	new	name.	
3. “Normalization”	will	take	the	Z-score	of	the	selected	marker	and	save	it	as	a	new	channel	at	

the	bottom	of	the	list.	
	

9.	Neighborhood	analysis	

The	“Neighborhood	Analysis”	can	be	started	 from	the	“Prepare	Samples”	drop-down	menu.	Select	
the	images	(not	the	Phenograph	clusters)	to	be	considered	from	the	gates	box.	This	analysis	can	be	
run	across	all	samples	at	once	or	across	selected	sample	groups,	and	results	can	be	compared.		

You	 will	 be	 asked	 to	 specify	 the	 amount	 of	 permutations	 and	 the	 significance	 cut-off	 for	 the	 P-
values.	Furthermore	you	can	choose	a	“special	cluster”	on	which	to	 focus	 in	addition	to	displaying	
the	 results	 for	 all	 Phenograph	 clusters.	 This	 will	 generate	 an	 additional	 individual	 output.	 “Extra	
information”	 can	 be	 anything	 you	 know	 about	 the	 selected	 group	 of	 samples,	 such	 as	
“Grade1Tumors”	or	“allImages”.	This	information	will	appear	in	the	file	name	of	the	individual	figure	
generated	during	the	neighborhood	analysis.	Additionally,	the	number	of	pixels	to	expand	from	each	
cell	when	searching	for	neighboring	cells	can	be	set.	If	this	field	is	left	empty,	the	analysis	will	simply	
run	across	all	pixel	expansions	from	one	to	six	and	return	results	 for	each	version.	Finally,	you	can	
specify	the	percentage	(0-1)	cut-off	for	present	interactions	to	be	displayed	in	the	heatmaps.	

The	 heatmap	 displays	 cluster-neighborhood	 frequencies	 across	 all	 images	 present	 in	 at	 least	 the	
percentage	of	the	images	(Figure	23a,	10%	(0.1	default)).	For	example,	if	you	look	at	the	square	on	
the	diagonal	corresponding	to	cluster	five	on	both	axes,	you	are	looking	at	how	often	cells	of	cluster	
five	neighbor	each	other.	The	squares	are	displayed	in	different	intensities	of	red	or	blue	or	remain	
white.	Red	means	the	cells	of	these	clusters	neighbor	each	other	more	frequently	than	they	would	in	
random	 permutations	 of	 the	 cell	 cluster	 labels	 for	 each	 image.	 Blue	means	 that	 the	 cluster	 cells	
neighbor	each	other	 less	 frequently	 than	 in	 images	with	 randomly	permuted	cell	 labels.	The	same	



color	code	applies	to	the	clustergrams	(Figure	23b).	Here	you	see	the	cluster	“interactions”	on	the	x-
axis	displayed	as,	for	example,	“5_5”	for	the	frequencies	of	the	cells	of	cluster	five	neighboring	each	
other.	 On	 the	 y-axis	 each	 of	 the	 images	 are	 listed,	 so	 that	 cluster	 combinations	 that	 significantly	
deviate	from	random	can	be	identified	in	each	image.	A	separate	clustergram	is	generated	showing	
only	the	interactions	with	the	“special	cluster”.	

The	results	of	the	neighborhood	analysis	are	automatically	saved	to	the	“Custom	Gates”	folder.	

	

Figure	23	

	

10.	Save	options	

The	“Save”	button	drop-down	menu	on	the	upper	 left	yields	additional	 saving	options	 (Figure	24).	
Select	 “Save	 tiff	 figure”	 in	 order	 to	 save	 the	 currently	 visualized	 image	 on	 the	 left	 side	 of	 the	
interface.	You	will	be	prompted	to	specify	in	which	folder	and	file	format	to	save	the	image.	

a)	 b)	



	

Figure	24	

Similarly,	 the	 “Save	 plots”	 option	 will	 open	 the	 current	 plot	 displayed	 on	 the	 right	 half	 of	 the	
interface	as	a	figure	and	prompt	you	to	select	a	file	folder	in	which	to	save	it	as	an	image	(Figure	25).	

	

Figure	25	

Click	“Export	gates	as	CSV”	in	order	to	save	all	of	the	information	for	the	currently	selected	gates	to	
your	“Custom	Gates”	folder	as	CSV-files.	These	files	contain	the	image	and	cell	identifiers	as	the	first	
two	columns,	 followed	by	one	column	 for	each	marker,	each	containing	 the	measured	 intensities.	
After	the	marker	columns	the	rest	of	the	features	(cell	size,	percent	touching,	number	of	neighbors,	
etc.)	and	their	values	are	listed	(Figure	26).	



	

Figure	26	

The	“Export	fcs”	option	will	save	all	gates	as	fcs	files,	excluding	the	neighbor	columns.	This	format	is	
suitable	 for	use	 in,	 for	example,	a	Citrus	analysis.	The	exported	 fcs	 files	are	stored	 in	 the	“Custom	
Gates”	folder.	

miCAT	–	For	power	users	

The	miCAT	code	was	written	in	Matlab	version	2014b.	For	optimal	performance	be	sure	to	have	this	
version	installed	when	running	miCAT	from	the	source.	

	

1.	Modular	build	of	miCAT	
miCAT	is	built	modularly,	which	yields	the	advantage	that	adding	new	features	is	easy	and	does	not	
require	changes	in	any	of	the	existing	structure.	In	general,	features	in	miCAT	must	include	only	two	
basic	scripts:	one	callback	from	the	GUI	and	one	script	executing	the	function.	The	main	functions	
are	not	linked	to	the	GUI	and	can	be	run	independently.	

	
2.	Data	retrieval	
All	data	stored	for	the	current	session	and	necessary	to	perform	any	function	can	be	retrieved	from	
the	GUI	handles	or	included	manually	without	the	GUI.	Throughout	a	session,	the	data	are	kept	in	an	
fcs	format	structure.	There	is	one	main	matrix	containing	a	column	for	each	channel	and	a	row	for	
each	 individual	 cell	of	each	 image.	This	matrix	 is	 continuously	updated	during	 the	session	and	will	
therefore	also	contain	 the	custom	gates	and	channels.	The	corresponding	channel	names	 for	each	
image	 are	 saved	 in	 a	 cell	 array.	 All	 individual	 tiff	 files	 and	 corresponding	 masks	 are	 stored	 in	 a	
multidimensional	matrix	structure.	
	
 
	



Supplementary Note 2 - Results 
 
Supplementary Figure 5 

 

The provided simple synthetic data set demonstrates the validity of the neighborhood 

module in detecting cell neighborhoods deviating from randomness (Supplementary Figure 5a-

d). These artificial images were constructed in a chessboard pattern to simplify the visualization 

of the validation. As described in the methods section, the absolute cell number or the size of the 

image does not have a direct effect on the neighborhood analysis - only the frequencies of cell 

types present, their relative quantities, and connectivity are important (see equation 2, Methods). 

Therefore, the underlying synthetic data sets were designed to imitate the ratios and relative 

frequencies of cell types present in the experimental data set. The validation covered average 

and extreme cases (Supplementary Fig. 5e,f). 

The test dataset contained three different “phenotypic” clusters of cells, constructed by 

PhenoGraph: green represents cells of phenotype #1, blue represents cells of phenotype #2, and 

red cells are part of phenotype #3. We did not add further phenotypes or structures, since image 

complexity does not have a direct effect on the neighbor analysis of an individual cell phenotype 

and cell connectivity is kept constant for the permutation test (see equation 2, methods). 

All of the following examples used a pixel-expansion of 4 to define neighbors, 99 

permutations were run, and a significance cut-off of 0.05 for the p-value was used. The 

hierarchically clustered heatmaps display the cell cluster interactions on the x-axis and the four 

test images on the y-axis. No interactions involving phenotype #2 were observed. Those columns 

were automatically cut out of the visualization since their interaction frequencies did not 

significantly deviate from randomness. Thus, the focus here is on phenotypes #1 and #3. 

The alternating pattern of cells of phenotype #1 and #3 in image 1 prevents cells of the 

same cluster from being in each other’s neighborhood (Supplementary Fig. 5a,f). This example 

represents common case in the experimental data where two phenotypes are equally distributed 



across the image. Therefore, the interactions #1↔#1 and #3↔#3 are significantly less frequent 

than in random permutations control which would almost always have some interaction between 

cells of the same phenotype. As expected, miCAT neighbor analysis identifies both #1↔#1 and 

#3↔#3 as avoiding each other (Supplementary Fig. 5a). Similar cell distributions are for example 

observed in samples Ay10x3 and Ay1x3 which both have two equally sized abundant cell types 

(Supplementary Fig. 5g).  

A positive control for interaction is displayed as the bulk of phenotype #3 cells in image 2 

(Supplementary Fig. 5b,f). This enrichment in interaction between cells of phenotype #3 with 

themselves (#3→#3) is displayed red in the corresponding row of the hierarchically clustered 

heatmap. This interaction occurs significantly more frequently in the actual test image than in a 

matched randomized control image because random permutations are likely to distribute cells of 

phenotype #3 among those of phenotype #1. This also leads to significantly fewer phenotype #1 

cells neighboring phenotype #3 cells in the permuted images compared to our real image, hence 

the blue #1→#3 interaction in the hierarchically clustered heatmap (Supplementary Fig. 5a). This 

example represents the case of one phenotype forming a cluster that is measured as an 

interaction with itself and the avoidance of other phenotypes. The presence of a rare cell type 

next to an abundant cell type is a common scenario in the experimental data, with sample Ay5x7 

and Ay5x8 being representative examples (Supplementary Fig. 5h) 

Image 3 (Supplementary Fig. 5c) does not reach the significance cut-off for any neighbor 

interactions even though two of the cells of phenotype #3 are neighbors (Supplementary Fig. 5c). 

This example represents a single rare interaction, and the result visualizes the effect of the 

significance cut-off as expected. A simple example can be seen in image Ay7x1, an extreme case 

with few cell types (Supplementary Fig. 5i). 

Even though a single interaction is not significantly different than chance, two rare 

phenotypes forming repeated interactions do measure as significant. In image 4, cells of 

phenotype #1 always neighbor a cell of phenotype #3 and vice versa (Supplementary Fig. 5d). 



Here, the hierarchically clustered heatmap of significant interactions in image 4 shows that the 

interactions between cells of phenotype #1 and cells of phenotype #3 occur significantly more 

often (in both directions) than in a randomly shuffled image. The presence of small clusters of 

cells is a common occurrence, particular in Grade 1 tumor samples, and sample By14x4 and 

Cy13x5 are representative examples of this scenario (Supplementary Fig. 5j).  

These rare interactions visualized in image 3 and 4 are regularly present in the 

experimental data as well (Supplementary Fig. 5b,i,j). This highlights the validity of the analysis 

over a wide range of cell ratios, relative frequencies from prevalent to rare cell types and 

interactions, and represents the full complexity of cell-cell interactions found within the 

experimental data. 

 
 
Supplementary Figure 6 
 

To quantitatively assess how segmentation impacts our single-cell analysis and neighbor 

identification, we had five independent users, two of them inexperienced in tissue segmentation 

(users 4 and 5), segment three identical images using variations of our standard tissue 

segmentation pipeline (Material and Methods). After segmentation, we compared the masks and 

derived single-cell data. The five masks varied slightly, ranging from over segmentation (white, 

user 4) to under segmentation (purple, user 5) masks (Supplementary Fig. 6a). To quantitatively 

assess the segmentation quality, we used the segmentation score described previously by 

Schüffler et al. (Supplementary Fig. 6b). This score is composed of four intuitive segmentation 

constraints: (1) mask should overlap with membrane signal; (2) mask should not overlap with 

nuclei signal; (3) segmented cells should contain maximal one nucleus; (4) mask should 

approximate the expected number of cells based on cell radius. No individual user or 

segmentation strategy provided the best scoring for all images. 

We then studied the effect of variation in user segmentation on several levels. First, we 

compared single-cell data from all test subjects in 2D scatter plot distributions. Single-cell 



distributions and correlations between co-expressed markers (Supplementary Fig. 6c), and 

spatially resolved features (Supplementary Fig. 6d) were highly similar. Second, PhenoGraph 

analysis of the segmented single cells by the five users yielded similar cell type identifications 

from the same images (Supplementary Fig. 6e) and similar cell numbers (Supplementary Fig. 6f). 

Only the results from the inexperienced user 5 differed from those of the others. Small variations 

in segmentation did result in some individual cells on the edge of a high-dimension single-cell 

cluster being assigned to a different, but similar, cell phenotype during the PhenoGraph analysis. 

This could result in small variations in the neighbor interaction analysis for rare phenotypes. Third, 

we compared the neighborhood analysis among users. Using our standard settings (Material and 

Methods) no individual user scored consistently better than any other (Supplementary Fig. 6a) 

and comparable neighbor cell interactions were identified and clustering separated the individual 

images (Supplementary Fig. 6g). Some differences were seen between users, with the biggest 

difference seen for user 5 compared to all other users (which given the points above comes 

without surprise). The main influence on the comparability of the neighbor analysis was found to 

be rare cell types that could be caused by mis-segmentation. Thus, to ensure that rare or variable 

neighbor interactions do not result in false positives throughout our analysis we only analyze 

interactions that are present in greater than 10% of our images. Another factor that influences the 

neighbor analysis is the distance parameter that defines if cells are neighbors. Varying the 

expansion of the neighborhood in our dataset made the neighbor analysis of different users more 

similar to each other without increasing false positive interactions (Supplementary Fig. 6g). We 

conclude that our segmentation is of high quality and our neighbor analysis is robust to changes 

in variations in segmentation using the segmentation methods applied here. 

 
Supplementary Figure 7 
 

Analysis of an IMC dataset of healthy mammary ducts and alveoli from six donors 

validated our ability to identify relevant cell interactions that were known a priori. Specifically, 



interactions between basal/myoepithelial and luminal cell types in the outer and inner layers of 

mammary ducts are known features of both alveoli and ductal structures of the mammary gland.  

IMC enabled identification of complex cell types with different combinations of luminal 

(CK19, CK8/18, CK7) and basal (CK5, CK14, SMA) markers (Supplementary Fig. 7b). Multiple 

luminal (Phenograph clusters #3 and #6) and basal (Phenograph clusters #4, #7 and #13) cell 

types were identified, and SMA+ endothelial cells (Phenograph clusters 12 and 14) were 

distinguished from SMA+ basal cells (Supplementary Fig. 7a,c). Specific luminal and basal cell 

types were associated with different epithelial structures, but more images are needed to validate 

this observation and identify alveoli or ductal specific cell phenotypes. 

As visualized across all images, and in sample Ay1x5 alone (Supplementary Fig. 7a, fifth 

row), high-dimension analysis revealed differences in the cytokeratin expression of the epithelial 

cells from different ducts or alveoli even in neighboring structures of the same breast. Even within 

the unforeseen complexity of these normal tissues, neighborhood analysis identified significant 

interactions that correspond to known interactions within mammary ductal structures. Epithelial 

cell types (Phenograph clusters #3, #4, #6, and #7) had similar interaction patterns 

(Supplementary Fig. 7g). Within these interactions, as expected, all basal-luminal epithelial 

interactions were highly significant, and basal cells were more commonly in the neighborhood of 

a luminal cell than vice versa (e.g., row 6, column 7 > row 7, column 6: basal around luminal > 

luminal around basal). Interaction patterns also helped distinguish endothelial vessels, which had 

their own interaction profile (Supplementary Fig. 7g, row 12 and 14) and identified stromal cell 

populations that were associated with mammary epithelial structures (Phenograph clusters #1, 

#2, and #8) and those that avoided interactions (Phenograph clusters #5, #9, and #10). 

 

  
  



Supplementary Note 3 - Discussion  
 

Segmentation 

Segmentation of tissues is a challenging task for the entire image cytometry field and all 

tissue analysis approaches. In 5-µm thick tissue sections, a small percentage of cells will overlap, 

only a portion of a cell may be present within the analyzed section, and small differences in 

segmentation between adjacent cells can result in a small spillover of signal between neighboring 

cells. The ability to visualize a variety of cell markers and membrane stains helps to improve the 

accuracy of segmentation masks. Different cell types are segmented using different markers and 

a combination of markers helps to define cell boundaries. This is especially true in heterogeneous 

tumor samples where different adhesion markers (E-cadherin) or cell markers (cytokeratins) are 

present in different samples. In addition to improving segmentation, the increased information 

provided by high-dimension imaging can also better identify any poorly segmented cells so that 

they can be excluded from further analysis. 

 

Phenotype Identification 

Many single-cell technologies depend on automated high-dimension clustering techniques 

for the analysis and understanding of cell types. Manual gating is no longer adequate for systems 

level studies as 2D gating is not easily scalable, is biased toward expected results, and is one of 

the most variable steps in cytometry studies1. High-dimension clustering, such as Phenograph, is 

able to identify associations between markers that may be missed using conventional gating and 

identifies rare cell populations2. Differences in cell segmentation can impact marker quantification 

and cell phenotype determination for individual cells, but we find that multiple segmentations by 

different users provide a similar distribution of single-cell measurements.  

 

Neighbor Interactions 



 Only recently have high-dimension imaging and other spatially resolved techniques been 

developed that are able to identify many cell types within a single measurement, and neighbor 

analysis is dependent on the ongoing development of tools for the identification and analysis of 

these single cells. A change in the phenotype identified also results in the identification of a 

different neighbor interaction, and differences in segmentation can change the measured 

connectivity of a tissue thereby altering the distribution of potential interactions. The use of a 

permutation test to measure the significance of a neighbor interaction provides internal controls 

for all images thereby controlling for differences in image processing and analysis between 

different experiments, as well as the inherent variability of different tissues. In addition, setting the 

distance parameter that determines a neighbor interaction can alter or correct for differences in 

segmentation strategies. Overall, we observed that relevant neighboring interactions are 

consistently detected across different segmentations. A focus on interactions that are detected 

across multiple samples results in identification of the significant neighboring interactions in a 

sample set.  
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Supplementary Note 4 – Antibody Validation 

The majority of antibodies used in this study have previously been validated for imaging 

mass cytometry. Additional example validations of antibodies used in this study provided by the 

research community are below.  

 

Smooth Muscle Actin (SMA): clone 1A4, Abcam 

This antibody has been validated on multiple tissues including breast tissue and basal cancer 

subtype by the vendor and has been used in many published studies. 

http://www.abcam.com/alpha-smooth-muscle-actin-antibody-1a4-ab7817-references.html 

 

EpCAM: clone 9C4, Biolegend 

This antibody is validated for immunohistochemistry on paraffin-embedded sections and quality 

tested for immunofluorescence by Biolegend. Validation staining has also been completed on 

many tissues include breast cancer by The Human Protein Atlas: 

http://www.proteinatlas.org/ENSG00000119888-EPCAM/antibody. 

	

Fibronectin: clone 10/Fibronectin, Becton Dickinson 

This antibody has been tested in multiple human cancer tissue types as well as 

immunofluorescence of in vitro cell lines and western blot of human breast tissues. It was used 

in: 

Wagner D, Bonenfant N, Parsons C, Sokocevic D, Brooks E, Borg Z, et al. Comparative 

decellularization and recellularization of normal versus emphysematous human lungs. 

Biomaterials. 2014;35:3281-97. 

	

Cytokeratin 5: clone EP1601Y, Abcam 



This antibody is guaranteed for immunohistochemistry applications by the vendor and has 

tested on multiple tissues including the basal cancer subtype of breast cancer. 

	

Cytokeratin 19: clone Troma-III, Developmental Studies Hybridoma Bank 

This antibody that has been tested on a variety of tissues and was used in a number of 

published studies. It was used to detect specific cellular subpopulation in primary human breast 

culture: 

Zubeldia-Plazaola A, Ametller E, Mancino M, Prats de Puig M, López-Plana A, Guzman F, et al.  

Comparison of methods for the isolation of human breast epithelial and myoepithelial cells. 

Frontiers in Cell and Developmental Biology. 2015;3:32. 

	

Cytokeratin 14: polyclonal, Thermo Fischer 

This antibody is validated for immunohistochemistry application, and amongst many other uses 

was shown to identify the basal cell population in human breast primary culture and mouse 

mammary tissues: 

Hines WC, Yaswen P, Bissell MJ. Modelling breast cancer requires identification and correction 

of a critical cell lineage-dependent transduction bias. Nature Communications. 2015;6:null 

Meyer DS, Brinkhaus H, Müller U, Müller M, Cardiff RD, Bentires-Alj M. Luminal expression of 

PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer 

Research. 2011;71:4344. 

 

Cytokeratin: clone AE3, Millipore 

Performance of this antibody is guaranteed by the vendor in immunohistochemistry against type 

II keratins. It has been extensively used in combination with other antibodies to detect epithelial 

or carcinoma tissue. 
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