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Transcriptional regulatory network expansion. We constructed an
expanded transcriptional regulatory network (TRN) based
on RegulonDB version 9.4 (last updated 05-08-2017) (1) and
primary literature that included Chromatin ImmunoPrecipita-
tion (ChIP)-binding data. Specifically, we added ChIP-based
regulatory interactions for 15 regulons: arcA and fnr (2–4),
argR (5, 6), trpR, lrp (6), fur (7), gadEWX (8), oxyR, soxRS
(9), purR (10), crp (11) and cra (12). All regulatory interac-
tions were specified to be either activation or repression. If the
regulatory direction was uncertain, we added an interaction
each for activation and repression.

Preparation of expression compendium. We used the EcoMAC
microarray compendium (13) to analyze transcriptomic shifts
across conditions. In this study, we aimed to assess how
consistent our TRN was with measured transcriptome changes
across a variety of conditions. Therefore, we chose to exclude
experiments from the compendium that either perturbed the
TRN wiring, or included artificial environmental perturbations
that may not be representative of the evolutionary history
of E. coli. We also focused our analysis on the exponential
growth phase. We thus included only a relevant subset of all
conditions, as with (14). Specifically, we excluded regulatory
rewiring samples, as they would not represent the naturally-
evolved expression patterns. We also removed microgravity
and magnetic treatment conditions, as these perturbations
were not representative of the evolutionary history of E. coli.
Since our TRN was reconstructed primarily for E. coli K-12,
we kept only strains labeled as K12, MG1655, BW25113, and
W3110. We removed time-dependent samples (i.e., kept arrays
with Time labeled blank, WT, exponential, mid log phase,
and mid-log phase). Finally, we had 444 relevant samples.

PCA analysis. PCA analysis was performed with the PCA func-
tion in the sklearn.decomposition package. Each principal
component is a linear combination of all genes, and 100 genes
with the heaviest loadings in each component were subjected
to enrichment analysis with respect to regulon, GO, COG and
KEGG.

Analysis of the first two principal components from PCA. PCA re-
duced the dimensionality of the dataset to 50 principal compo-
nents by 441 samples, in which each principal component was
a linear combination of 4,189 genes. Upon plotting the first
and second components, the 441 samples were separated into
3 distinct groups (Fig. S18). To understand the separation
of the data, metadata including medium, oxygen level, and
carbon source were used to label the data points. However,
the division of the dataset between the 3 groups did not show
a clear correlation with metadata. Interestingly, out of all 441

samples, all 188 samples originating from the Faith lab fell into
the same group (Fig. S19). But also note in most of Faith et
al.’s samples, DNA damage was induced by norfloxacin, which
was not used by any other group. The usage of norfloxacin
could potentially explain the clustering of the 188 experiments.

Regulon enrichment analysis was performed on the top 100
genes that carried the most weight in the first and second
principal components. The results showed that the first com-
ponent was enriched for only 3 regulon nanR (P = 0.02), basR
(P = 0.035), mlrA (P = 0.02). The second component was
enriched for multiple stress response regulons including acid
resistance regulons GadE, GadW, GadX and phoP, antibiotic
resistance regulon marA (P < 10−4), anaerobic growth regulon
adiY, motility system regulons flhD/flhC and fliZ. However,
the coverage of the transcriptional regulatory network was
relatively low for the top loaded genes. Out of the top 100
genes for each component, 69 genes were not found in the TRN
for component 1, while 43 genes were not found for component
2.

Non-negative Matrix Factorization (NMF). NMF decomposes the
non-negative matrix A into two positive matrices W and H:
A = WH. Matrix A is generated from the EcoMAC dataset
as follows: to meet the non-negativity constraint for NMF
analysis, each gene was represented in two columns. One
indicates positive expression and the other one indicates nega-
tive expression compared to wild type (15). NMF was then
performed on the transformed dataset A that had a dimension
of (8378, 441). The reduced dimensionality was determined by
two methods. The first method compares NMF with singular
value decomposition on a random matrix that has the same
dimension, mean and variance as the original dataset. The
second approach adopted from Wu’s study ensures the stability
of NMF results (16). Wu’s approach minimizes the dissimi-
larities between matrices across different runs. NMF analysis
was then performed using the NMF function in the sklearn
decomposition package, with the number of components set
to be 40, and initializing method set to be ’nndsvd’, which is
better for sparseness. Default values were used for all other
parameters. To reconstruct matrix W, the negative expression
is subtracted from the positive expression for each gene to
create a new matrix W that has a dimension of (4189,40).
Each column in the W represents a metagene, and the entries
represent the coefficient of each gene. Matrix H is the expres-
sion pattern of metagenes. The top genes that account for
15% of the weight for the entire metagene were identified as
dominating genes, and enriched for regulons.

Selection of dimensionality for NMF. The first method used for
dimensionality selection was adopted from Kim and Tidor’s
paper (17). It utilized singular value decomposition (SVD), one
of the more established methods for dimensionality reduction,
as SVD was proven to produce the minimum error for a given
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dimensionality. It is illustrated in Fig. S20 that NMF is
an appropriate method for dimensionality reduction on this
dataset, as the error generated during NMF reconstruction is
comparable to that produced by SVD. For comparison, SVD
is also performed on a random dataset that does not have
any correlated features. The random matrix has a gaussian
distribution and shares the same dimension, mean and variance
of the EcoMAC dataset. The slope of the SVD_random
represents the additional structure of the uncorrelated matrix
captured by adding one more basis vector. The comparison
of the slopes between NMF and SVD_random justified the
choices of the reduced dimension, as the slopes are comparable
between the dimension of 35 and 50.

Due to the random seed utilized during the Sci-kit Learn
NMF function, the decomposition result from each run varies.
Wu’s method (16) was adopted to ensure the stability of
the NMF results. For each dimension between 35 and 50,
we generated 100 alternative optimal solutions close to the
global optimum. To quantify the stability of the W matrix for
each dimension, dissimilarity between W matrices is measured
by an Amari-type error, which is calculated from the cross-
correlation matrix between the columns of W matrices. The
dimension that has the smallest average Amari-type error
produces the most stable NMF results. For the EcoMAC
dataset, a dimension of 40 produced the smallest Amari-type
error and thus was chosen to be the reduced dimension.

Overlap between PC membership and NMF membership. We inves-
tigated the overlap of dominant genes between PCA and NMF
analysis. We have identified a total of 1961 dominant genes
(following the same method in NMF analysis) in the 40 princi-
pal components in PCA analysis, and 1734 dominant genes
in 40 metagenes in NMF analysis. Our results showed that
80.2% (1391/1734) of the dominant genes in NMF analysis
overlapped with the dominant genes in PCA, which suggest
consistency between two methods. Due to the difference in
the nature of these two methods, the individual components
of these two methods are different as expected.

Regulon Enrichment analysis. Regulon enrichment analysis was
performed using the fisher_exact function in the scipy.stats
package. Prior to the analysis, the following variables were
calculated: the size of each regulon, the size of the set of
genes subjected to enrichment analysis, the overlap between
the set of interest and each regulon, and the total number
of genes involved in TRN and EcoMAC. The Fisher-exact
test calculates P-values for each regulon, and a regulon is
considered to be enriched if the p-value is less than 0.05.

Core regulatory module identification. We identified a core regu-
latory network by integrating the results of differential gene
expression identification, enrichment analysis of ChIP-based
regulons, and dimensionality reduction into biological ‘parts’
by NMF. For NMF, we used regularized NMF with a 15%
cutoff of metagene loadings to define representative genes. Al-
ternatively, we used non-smooth NMF (18), which produced
more sparse metagenes and required a 0.001 cutoff of the coef-
ficients. Since the NMF algorithms use randomization to solve
the non-convex optimization problem, we randomly started
NMF 100 times to retain alternate optimal solutions close to
the global optimum. We then performed enrichment analy-
sis of regulons for the representative genes in the metagene
loadings.

Using all 200 (2 NMF algorithms x 100 runs) TF-metagene
enrichment results, we created a co-enrichment network of
TFs: i.e., co-occurrence network of pairs of TFs enriched in the
same metagene. We quantified the strength of co-enrichment
of a given TF pair using the Jaccard index

J(A,B) = |A ∩B|
|A|+ |B| − |A ∩B|

where |A ∩ B| is the number of metagenes for which TF A
and B are co-enriched, |A| the number of metagenes for which
TF A is enriched, and |B| the number of metagenes for which
TF B is enriched. To retain only statistically significant pairs
of co-enriched TFs, we compared the network against 100,000
randomly generated co-enrichment networks by sampling from
the observed frequency of enriched TFs. Only the TF pairs
having FDR-adjusted P < 0.05 were kept. We also only kept
TF pairs that were strongly coenriched, in this case Jaccard
index > 0.18. We finally had 522 significant co-enriched TF
pairs. We then performed community detection on this signifi-
cant co-enrichment network. We used multi-level modularity
optimization using the cluster_louvain function in igraph (19).
The modularity coefficient was 0.483. The modularity for the
computed graph was always greater than the random graphs,
so we deemed it to be significant. Finally, we identified a
significant, core TRN consisting of 10 major modules (11, in-
cluding non-coenriched TFs) that were functionally-annotated
by DAVID(20) followed by manual curation. These modules
were then used for further characterization.

We applied this workflow also for the COLOMBOS com-
pendium (21). For COLOMBOS, we obtained 484 significant
co-enriched TF pairs. The multi-level modularity optimiza-
tion resulted in 11 modules (12, including non-coenriched TFs)
with modularity coefficient of 0.57. The regulatory modules
for both compendia are in Dataset S2.

Robustness of TF modules. Since new ChIP-binding data is con-
stantly being generated, the TRN network is always expanding
to incorporate new interactions. Therefore, we also evaluated
the robustness of the TRN modules when new interactions
between TFs and genes are added to the TRN network. We
added in low-confidence interactions from up to 60 random
regulons ten times each. Note that if the TF for a randomly
chosen regulon already existed, the low-confidence interactions
for that regulon were added. We then computed similarity of
clusterings using two measures. First, we used the variation of
information (VI) (22) for the TFs common between the original
and perturbed TRNs. This metric thus reflects to what extent
TFs within a module get re-assigned to different modules as
new regulatory interactions or TFs are discovered. Because
VI did not account for the new TFs added we also used a
Jaccard index-based metric to quantify the overall change in
TF modules. Given original and alternative modules from the
original and perturbed TRNs, we computed the Jaccard index
for all pairs of modules based on the TFs within the modules.
For each original module, we defined its similarity to be the
highest Jaccard index between it and all alternate modules.
Thus, the similarity of the original to the perturbed modules
was the mean of these Jaccard indices across all the original
modules. The similarity of the alternative to original modules
was computed in the same way, to account for potentially new
modules arising with new TFs. The final Jaccard index-based
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similarity between the two clusterings was the average of these
two similarities.

Conservation of TF regulons. Gene annotation of strains
and species were obtained from the SEED server
(http://theseed.org), and ortholog calculation to E. coli K-12
MG1655 was also performed on the RAST (Rapid Annotation
using Subsystem Technology) server (23). The number of
strains in each phylogenetic group was 33 Enterobacteriaceae,
134 γ-protebacteria, 40 β-proteobacteria, 58 α-proteobacteria,
and 23 δ-proteobacteria. The percentage of gene conservation
indicates the number of strains having a particular gene in
a phylogenetic group divided by the total number of strains
in the group. We computed conservation of the 147 E. coli
TFs in our hiTRN across these phylogenetic groups. We then
identified modules consisting of TFs having significantly high
or low evolutionary conservation compared to all other TFs
(Wilcoxon rank sum test P < 0.05).

TF binding motif analysis. Sequences of TF binding motifs were
collected from RegulonDB(1). Sequence homology between
TF binding motifs was analyzed using the global alignment
function in the Bio.pairwise2 package. The best match be-
tween each pair of TFs was identified and alignment score was
recorded. For each TF module, we compared the alignment
scores of TF within and outside the modules with Mann-
Whitney-Wilcoxon test. TF modules that have a p-value less
than 0.05 were considered to have more similar binding motifs
within the modules.

TF structure analysis. Homology models for the protein se-
quences were generated for 117 of the 147 TFs in the core
regulatory network using the I-TASSER software package (24).
DNA-binding domain predictions were also carried out for 114
TFs based on templates available in the PDB. The structures
were compared using the pairwise rigid FATCAT aligner (25),
creating an all vs. all alignment. The average TM-score (simi-
larity score in the range of [0,1] (26)) of all pairwise alignments
within each cluster was compared to the average TM-score of
the alignments from randomly-generated groups of TFs of the
same size to generate a p-value for each cluster. In addition,
a hypergeometric test was applied to domain assignments by
(27) to test for domain enrichment in clusters.

Toxin-Antitoxin analysis on TF modules . In the most updated
TRN, we have included multimer TFs, among which 3 of
them are also toxin-antitoxin (TA) gene pairs: dinJ-yafQ,
relE-relB, yefM-yoeB. We also included monomer TFs that are
components of the TA pairs, including yefM, relB, higA. Out
of 6 TFs that are members of TA pairs, 5 TFs (relE-relB, yefM,
relB,yefM-yoeB, higA) are in the same TF module (module
6). Interestingly, module 6 is represented by stress response
TFs, which is consistent with the functional roles of the TA
members (amino acid starvation, multidrug resistance, etc.).
Thus, the TAs studied here change expression in a functionally
cohesive manner across conditions.

Differentially-expressed gene (DEG) Identification. DEGs were iden-
tified using the R package limma in Bioconductor (28). The
reference samples used for all samples were wild type MG1655
grown in M9 with glucose as carbon source under aerobic
condition. The replicates of all experimental conditions were
identified and compared against reference sample using limma.

Genes having an expression level fold change greater than 2
and (FDR) adjusted p-value less than 0.05 were identified as
DEGs.

Network-expression consistency analysis. Network analysis was
done on the DEGs for experiments that involve at least one
TF knockout. DEGs were identified using limma (28) with
different reference samples for each experimental condition.
Using SigNetTrainer (29), we computed the consistency of the
TRN (including direction of regulation–activation vs. inhi-
bition) with measured expression changes for TF knockout
experiments.

In addition, consistency and reachability for only DEGs
were calculated for 20 experiments, as 3 experiments had none
or only very few DEGs identified. We have also performed
a permutation test, in which we selected a random TF (or
two TFs depending on the original number of TFs that were
knocked out in each experiment) to be the knocked out TF in
each experiment, and calculated the reachability from DEGs
to the randomly selected TF(s). P-value for the permutation
test was calculated for 10,000 runs to be 3.91× 10−4.

Reachability was calculated by utilizing the igraph pack-
age in Python (19). A graph containing all the nodes and
edges in the TRN was established, and all the nodes that
could be reached from each TF were recorded. Reachability
was then calculated by identifying the overlap of the set of
nodes reachable by the TF and the DEGs in the TF knockout
experiment.

Information Analysis. The mutual information between two dis-
tributions is defined as:

MI(X,Y ) = H(X) +H(Y )−H(X;Y )

where H(X) is the entropy of distribution X, H(Y) is the
entropy of distribution Y, and H(X,Y) is the joint entropy of
distributions X and Y. The entropy of a discrete distribution
is defined as:

H(X) =
∑
i

−pi log pi

where pi is the probability of state i. Mutual information
for continuous variables can be calculated using differential
entropy, rather than entropy. The mutual information between
two genes was defined as the mutual information between the
log fold change expression profiles of each gene, as calculated
by the NPEET package for Python (30).

For each TF, the mutual information was calculated be-
tween the TF expression profile and the expression profile
of each gene in its regulon. This distribution was compared
against the MI between the TF expression profile and all other
genes not in its regulon using the Wilcoxon rank-sum test
(α = 0.05). The null hypothesis states the MI distributions
originated from the same distribution, and the alternative
states that the MI distribution of the genes in the regulon is
greater than the distribution of the genes outside the regu-
lon. Only high confidence interactions were included in the
analysis.

In addition, the mutual information was compared for pairs
of genes in the same regulatory module as compared to genes
not sharing a module. The mutual information was calculated
for 1,000 randomly selected gene pairs in each module, and
for 1,000 randomly selected gene pairs that did not belong to
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the same module, serving as the null distribution. A Mann-
Whitney-U test was applied to each module against the null,
with a significance value of p < 0.05 to determine if the MI
between genes within each module were significantly higher
than the MI between genes not sharing a module.

Expression Profile Regression. The expression log fold change of
transcription units was calculated by averaging the log fold
change of each gene in the TU. TUs were defined from Regu-
lonDB (1), and only those with strong evidence or greater were
kept; in all other cases the TUs were defined as single genes.
Of the resulting 1538 TUs, EcoMAC contained expression
data for 1364 TUs, and sigma factors were defined for 1098
TUs.

Eight model structures were used to predict the TU expres-
sion profile, with features including the log-fold change of the
known regulators of the TU, cooperation/competition terms
for all combinations of two TFs, and the log-fold change of the
known sigma factors of the TUs.

Both linear regression and support vector regression were
performed using the Scikit-learn package for Python (31). For
the support vector regressors, the parameters C, gamma and
epsilon were optimized using 3-fold cross validation for each
individual TU regression. The accuracy of the regression mod-
els was measured by the average coefficient of determination
(R2) across a 10-fold cross validation. Samples from the same
lab under the same condition were not split across folds.

We performed an F-test on the linear regression of the
training data to determine if the TFs or sigma factors signifi-
cantly improved the prediction results for each gene. The R2

values of the testing data as predicted by the linear model
and SVR were compared using the Wilcoxon signed-rank test.
To determine whether the model captured condition-specific
effects, we shuffled the TU expression profiles 1000 times and
then ran the regression on each shuffled profile using 10-fold
cross validation, while maintaining the condition-based order
of the regulator expression profiles. The shuffling served to
unlink the experimental condition of the regulators from the
conditions of the predicted expression profile. Significance
was assigned to each TU by calculating the fraction of shuf-
fled profiles with a higher testing R2 value than the original
regression, and applying the Benjamini-Hochberg procedure
to the resulting distribution with an FDR of 0.05. The rela-
tive power of our TRN compared to a randomized TRN was
calculated by randomly assigning 1000 sets of TFs to each
TU and running the regression using both the linear model
and the SVR on each set. The number of regulators for each
TU was maintained, and TFs that had a high mutual infor-
mation with true regulators of the TU were not assigned to
the TU. As before, significance was assigned to each TU by
determining the fraction of randomly generated TRNs with
higher testing R2 values than the original regression using a
Benjamini-Hochberg procedure with an FDR of 0.05.

Regression Model Selection. We implemented eight regression
models to predict gene expression profiles from the EcoMAC
dataset. All eight models, four linear regressors, two SVRs with
linear kernels, and two SVRs with gaussian kernels, predicted
gene expression profiles from the gene’s TF expression profiles.
Four models included the gene’s known sigma factors (32),
and two of the linear models accounted interactions between
TFs as shown below:

Model 1: Linear Model

Yi = ai +
n∑
j=1

bijyTFj , [1]

Model 2: Linear Model with Sigma Factors

Yi = ai +
n∑
j=1

bijyTFj +
m∑
j=1

cijyσj , [2]

Model 3: Linear Model with TF Interaction

Yi = ai +
n∑
j=1

bijyTFj +
n∑
j=1

n∑
jk=1

dijkyTFjyTFk, [3]

Model 4: Linear Model with TF Interaction and Sigma
Factors

Yi = ai+
n∑
j=1

bijyTFj+
m∑
j=1

cijyσj+
n∑
j=1

n∑
k=1

dijkyTFjyTFk, [4]

Model 5: Linear SVR

Yi = f(yTF1, yTF2, . . . ), [5]

Model 6: Linear SVR and Sigma Factors

Yi = f(yTF1, yTF2, . . . , yσ1, . . . ), [6]

Model 7: SVR with Gaussian Kernel

Yi = f(kernel(yTF1, yTF2, . . . )), [7]

Model 8: SVR with Gaussian Kernel and Sigma Factors

Yi = f(kernel(yTF1, yTF2, . . . , yσ1, . . . )), [8]

where Yi is the expression profile of gene i, yTFj is the
expression profile of TFj , yσj is the expression profile of sigma
factor j, ai is the baseline expression level for gene i, bij is the
coefficient of TFj on gene i, cij is the coefficient of sigma factor
j on gene i, dijk is the interaction term between gene i, TFj ,
and TFk, and kernel is the gaussian kernel transformation.
The TF interaction terms were not required for the SVRs as
a gaussian kernel can account for nonlinearities and interplay
between regressors.

The models were evaluated using 10-fold cross validation,
with samples from the same lab under the same conditions
grouped in the same fold. We performed an F-test of overall
significance on Model 3 (Linear Model with TF Interaction)
to determine whether the model fit the data better than
an intercept-only model. In addition, an F-test of overall
significance was applied to an additional sigma factor-only
linear model (with interactions) to highlight the effects of
including sigma factors as regressors. We then compared the
linear model with the best accuracy (Model 4) to the SVR
with the best accuracy (Model 8) to compare the strength
of each algorithm using the Wilcoxon rank-sum test. The
model with the highest overall accuracy on the testing dataset
(Model 8) was used for the remainder of the analysis.

When shuffling the conditions, the TU expression profile
was shuffled 1000 times, while keeping the same TRN struc-
ture. P-values were determined by the number of these trials
that resulted in a higher R2 value than the original model, and
significance was assigned based on the Benjamini-Hochberg
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procedure with an FDR of 0.05. To compare our TRN against
a randomly generated TRN, a pool of all transcription factors
were generated for each TU excluding those known to regulate
the TU, any TFs in the TU, and any TFs that had a high mu-
tual information with a TF known to regulate the TU. A pair
of TFs with mutual information above the 75th percentile was
designated as a high mutual information pair (see Fig. S13).
Five hundred sets of transcription factors were selected from
this pool, all with the same number of regulators as defined in
the original TRN. As before, significance was assigned to each
TU by determining the fraction of randomly generated TRNs
with higher testing R2 values than the original regression using
a Benjamini-Hochberg procedure with an FDR of 0.05.

Surrogate Variable Analysis. Surrogate variable analysis was per-
formed as described in Leek and Storey (33). The residuals
for the analysis were generated from the SVR model with
sigma factors. Three surrogate variables were identified and
compared against the compendium metadata.

Comparing hiTRN with only high-confidence interactions in Regu-
lonDB. To further characterize the additional information added
by high-confidence interactions identified by ChIP data, we
performed the same analysis on EcoMAC with a new TRN that
only contains the high-confidence interactions in RegulonDB.
Since the input for network analysis is different (hiTRN versus
RegulonDB network) for sigNetTrainer, it is difficult to com-
pare the results for Figure 2. Instead, we made a table that
compares the number of differentially-expressed genes that can
be reached from the knocked-out TF in these two networks
(see SI Table 1). Results suggested that numbers of DEGs
decreased in most experiments when excluding ChIP-based
interaction, especially experiments involving arcA and fnr .

Lastly, we did regression analysis on EcoMAC using the
TRN with only RegulonDB interactions (Fig. S10). 596 of
the 690 TUs with known regressors (86%) yielded significant
differences between the shuffled expression profile regression
and the original regression (FDR-adjusted P < 0.05), and
90 TUs (13% of 690) were predicted significantly better than
random TRNs for the best SVR (FDR-adjusted P < 0.05),
which is similar to the results from the hiTRN.

Comparison with COLOMBOS dataset. To validate our results, we
performed the same analysis on a different E.coli expression
dataset COLOMBOS (21). We have used the same filtering
standard as EcoMAC and calculated the missing data with
the R package Impute (34). The processed COLOMBOS
dataset has 4266 genes and 2049 profiles. We first selected
the dimension of NMF reduction following Kim and Tidor’s
method (17) to be 63, as many additional conditions are
incorporated in COLOMBOS.

Regulatory modules: After reducing the COLOMOBOS
dataset using NMF, we ran the enrichment analysis on domi-
nant genes of metagenes followed by community detection to
identify TF modules. We compared the regulatory modules
identified from EcoMAC and COLOMBOS (SI Dataset XX)
using the variation of information (VI) (22). VI is a widely
used metric to compare how similar two clusterings are:

V I(X;Y ) = H(X) +H(Y )− 2I(X,Y )

For n elements to cluster (i.e., genes), VI is bounded by ln(n).
Alternatively, for k maximum clusters, VI is bounded by

2 ln(k). A normalized VI relative to either n or k is bounded
between 0 and 1, where 0 indicates equivalent clusterings and 1
indicates zero mutual information between the two clusterings.
We computed VI using the clusters.stats function from the fpc
R library (35), excluding the unclustered “noise class” from
computations. There were n = 3070 genes that were common
between the regulons contained in both regulatory module
sets, from the two expression compendia. The VI normalized
by n genes was 0.17. Alternatively, the VI normalized by the
number of modules (k = 11) was 0.29. Both normalized VI
values were significantly lower than 10,000 randomly generated
regulatory modules (permutation test, P < 10−4). We gener-
ated random networks preserving the number of nodes and
edges but with randomly re-assigned edges and edge weights
randomly sampled within the range of observed weights. We
then computed the VI between these random modules and the
EcoMAC-based core TRN and compare the VI against that
between EcoMAC and COLOMBOS. Based on these tests, we
finally concluded that the core TRN identified was significantly
preserved regardless of the transcriptomics data set used.

TRN coverage: In addition, we have also extracted 9 TF
knockout experiments from COLOMBOS dataset. Excluding
the experiments with missing reference sample and no DEG
identified, we calculated the consistency and reachability of
DEGs in hiTRN to knocked out TF for 4 experiments (see Fig.
S2) using SigNetTrainer (29). The result is similar to the 21
TF knockout experiments we previously analyzed. Consistency
between prediction and experimental measurement is between
59% and 99%, while 56% of DEGs can be traced back to the
knocked out TF (only considering 3 experiments that have
more than 10 DEGs identified).

Quantitative gene expression prediction: Moreover, we also
performed the regression analysis on this dataset S9. 1081 of
the 1375 TUs with known regressors (79%) yielded significant
differences between the shuffled expression profile regression
and the original regression (FDR-adjusted P < 0.05), and
122 TUs (9% of 1375) were predicted significantly better than
random TRNs for the best SVR (FDR-adjusted P < 0.05).
Using only strong interactions from RegulonDB S11, 553 of
the 690 TUs with known regressors (80%) yielded significant
differences between the shuffled expression profile regression
and the original regression, and 85 TUs (12% of 690) were
predicted significantly better than random TRNs. These
statistics are close to the values generated from the EcoMAC
dataset. The mutual information analysis showed that 26%
(36/137) of known TFs shared significantly higher MI with
genes inside as compared to outside their regulons (FDR
< 0.05), which is also on par with the data generated from
EcoMAC (28% or 39/137).

Comparing TF modules with previous works. We compared the TF
modules we have identified with previous work done by other
groups. Baliga lab has identified 590 conditionally co-regulated
modules (corems) from a gene expression compendium (36).
We compared the corems with the TF modules we proposed
by performing enrichment analysis of TF modules for each
corem on the gene level. The results showed that 230/590
corems are enriched by at least 1 TF module (see Dataset
S3), which shows correlation between some corems and TF
modules. For the rest of the corems that are not enriched for
any TF modules, potential explanations are: 1. Since we only
included high-confidence interactions in hiTRN, not all the
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genes in corems are part of the hiTRN; 2. The E.coli expression
compendium used to create corems has more conditions(e.g.
heat, pH, metal) than EcoMAC, so it is possible that the
proposed TF modules did not incorporate information related
to such conditions. Thus, using a larger compendium with
more conditions to create the TF modules could potentially
improve the results.
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Fig. S1. Regulon enrichment of DEGs under various experimental conditions. Samples that do not have regulons enriched and regulons that are not enriched in any samples
are not shown in this graph. Dark and light blue represent enrichment and no enrichment respectively.
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Fig. S2. Consistency of hiTRN with observed differential gene expression in TF
knockout experiments from COLOMBOS dataset. (A) Consistency of hiTRN with
observed differential and non-differential gene expression accounting for regulatory
bias (sign consistency). (B) Reachability from deleted TFs to DEGs in the TRN.
Percentages above each bar are the percentage of DEGs that were reachable from
the deleted TF within the TRN.
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Fig. S3. Correlation between the number of genes regulated and consistency between
TRN prediction and experimental measurement. The Pearson correlation coefficient
is -0.875 and the p-value is 2.10 × 10−7.
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Fig. S4. Correlation between the length of the longest regulatory path of a TF and sign
consistency between TRN prediction and experimental measurement. The Pearson
correlation coefficient is -0.82 and the p-value is 5.07 × 10−6.
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Fig. S5. Variance explained by principal components. The first 40 principal compo-
nents explain 88% of the variance of the EcoMAC dataset.
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Fig. S6. Regulon enrichment on 40 metagenes identified from EcoMAC. Enrichment on all 147 regulons are shown here.
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Fig. S7. Stability of TF modules as quantified by normalized variation of information
and Jaccard index of when low-confidence interactions were added to the hiTRN from
up to 60 random regulons, 10 times each.
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Fig. S8. Evolutionary conservation of TF clusters.

Fig. S9. Accuracy of expression predictions on training and held-out testing transcrip-
tion units. (A) R2 of predicted expression profile vs. true expression profile using
various regression models from COLOMBOS dataset. (B) R2 value of the testing
dataset predicted by a gaussian kernel SVR, grouped by number of known TFs. Error
bars indicate standard deviation for groups with >3 observations.

Fig. S10. Accuracy of expression predictions on training and held-out testing tran-
scription units using only strong interactions from RegulonDB. (A) R2 of predicted
expression profile vs. true expression profile using various regression models from
EcoMAC dataset. (B) R2 value of the testing dataset predicted by a gaussian kernel
SVR, grouped by number of known TFs. Error bars indicate standard deviation for
groups with >3 observations.
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Fig. S11. Accuracy of expression predictions on training and held-out testing tran-
scription units using only strong interactions from RegulonDB. (A) R2 of predicted
expression profile vs. true expression profile using various regression models from
COLOMBOS dataset. (B) R2 value of the testing dataset predicted by a gaussian
kernel SVR, grouped by number of known TFs. Error bars indicate standard deviation
for groups with >3 observations.

Fig. S12. Number of known regulators per TU.

Fig. S13. Sorted MI values between all pairs of transcription factors. Any TF with
mutual information higher than the 75th percentile (red dashed line) with any known
regulators of each TU were prohibited from being selected as a random regulator
when comparing regression results of a randomized TRN to the known TRN.

Fig. S14. P-values of observing higher mutual information between a TF and its
regulon as compared to null MI distributions. The p-value was calculated by comparing
the mutual information between the TF and its regulated genes with the mutual
information between the TF and non-regulated genes.
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Fig. S15. Clustered heatmap of mutual information between all 147 transcription
factors in the hiTRN.

Fig. S16. Clustered heatmap of Pearson R correlation between all 147 transcription
factors in the hiTRN.

Fig. S17. Surrogate variables identified from SVA, aligned with various possible
sources of expression heterogeneity, including author, growth medium and strain.

Fig. S18. The first and second principal components of the PCA analysis. Each data
point represents an experiment. Data points are separated into 3 distinct groups by
the first and second components.

Fig. S19. The first and second principal components labeled by experimenters. The
experiments done by the Faith lab and other labs are represented by blue and red
dots, respectively.
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Fig. S20. Mean squared error of NMF and SVD of the EcoMAC dataset as a function
of number of dimensions. SVD was also performed on random datasets for compar-
ison. Dimensions between 35-50 are appropriate to describe the dimension of the
data, as the slope of the NMF graph is similar to that of SVD on random matrix.
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Table S1. Number of differentially expressed genes that can be traced back to the knocked out TFs

Experiment # of DEG reachable in RegulonDB # of DEG reachable in hiTRN
narL+Nitrate 20 20
narL/narP+Nitrate 19 19
narP+Nitrate 1 1
narL+NO 5 5
narL/narP+NO 9 9
narP+NO 1 1
arcA 12 141
fnr 4 148
arcA/fnr 0 0
oxyR+fumarate 3 6
oxyR+Nitrate 9 15
arcA 7 140
fnr 1 169
arcA/fnr 7 165
oxyR 2 3
soxS 3 3
crp+nor 30 54
dnaA+nor 0 0
fis+nor 18 27
purR 3 12
purR+adenine 1 14
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