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SI Appendix, Fig. S2: Archaeological characteristics of three individuals with shared mtDNA haplotypes from Wehringen-Hochfeld 
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SI Appendix, Fig. S3: Scatter plots of δ O and Sr/ Sr ratios according to the investigated sites. The feature 

numbers of individuals with shared mtDNA haplotypes are highlighted with fat labels in the same colour. 

The hatched lines indicate the local ranges for both isotope ratios (cf. SI Appendix, Fig. S4 and SI Appendix, Fig. 
18

S5). Data plotted on the y-axis lack δ O data (Graphic: C. Knipper).
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SI Appendix, Fig. S4: Box plots of Sr/ Sr ratios of human and faunal samples from the Lech valley

in this study and of teeth and bones from the Bell Beaker Complex cemetery of Augsburg-
Universität (1), of faunal bones from Wehringen, Schwabmünchen, and Pestenacker and cremated 
human bones from Kleinaitingen and Königsbrunn (2) (cf. Dataset S1, Tab. 6 and Dataset S1, Tab. 7; 
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SI Appendix, Fig. S5: Oxygen isotope data of BBC and EBA individuals from the Lech Valley sorted by site, other cemeteries in 
18

Germany (1-4) and weighted annual average values of modern precipitation (5) converted into δ Op values using 

regression equations (6-9) (Graphic: C. Knipper).
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SI Appendix, Text S1: Rationale und laboratory methods of strontium and oxygen isotope 
analyses 

Strontium isotope analysis 

Strontium isotope ratios (87Sr/86Sr) of tooth enamel reflect the geological conditions of the area from 

which food and drink were sourced during childhood (1-6). Provided that the majority of foodstuffs 

were grown locally, the method can identify individuals who were non-local to the site where their 

skeletal remains were found. The alkaline earth metal strontium has four stable isotopes (84Sr, 86Sr, 
87Sr and 88Sr) of which 87Sr is radiogenic and results from radioactive decay of the isotope 87Rb 

(rubidium). Depending on the rubidium content of a rock and its age, the amount of 87Sr – expressed 

as the 87Sr/86Sr ratio – varies among geological units between about 0.7000 and 0.7500 and 

occasionally above. When rocks and soils weather, strontium is released into water and becomes 

biologically available. Due to their similar ionic radii and chemical properties, strontium can 

substitute for calcium and is transferred through food chains without any significant isotope 

fractionation. The analytical method used here corrects against any mass dependent fractionation and 

therefore the presented 87Sr/86Sr ratios do not show any source effects. Depending on the strontium 

concentrations of the ingested matter, plant-based food often contributes more strontium than water 

and meat. In animals and humans, strontium is primarily incorporated into hydroxyapatite 

(Ca10(PO4)6OH2), the inorganic component of teeth and bones. Because the enamel of tooth crowns 

forms during certain time intervals in childhood, does not remodel afterwards and is very resistant to 

post-mortem alteration, it is a persisting archive of strontium that goes back to the early years of a 

person’s or animal’s life. Deviation of 87Sr/86Sr ratios of teeth from the local baseline values or breaks 

in the data distribution from a single site or delimited area can indicate migrant individuals.  

Strontium isotope analysis was carried out on human second permanent molars or on other teeth if 

second molars were not available. Faunal comparison samples were selected depending on 

availability. High-crowned molars of cattle and sheep/goats were sampled near the apex and near the 

cervix to identify possible isotopic variation along the crown. Enamel chips were separated from the 

crowns using a diamond-coated cutting disc attached to a dental drill. All surfaces and adhering 

dentine were removed thoroughly with a diamond-coated burr, and the resulting chips ground in an 

agate mortar. 10-12 mg of enamel powder were then pre-cleaned in an ultrasonic bath using de-

ionised H2O and 0.1 M acetic acid buffered with Li-acetate (pH 4.5) and afterwards ashed (3 h, 

850°C) (7). Sr separation using Eichrom Sr-Spec resin was done under clean-lab conditions following 

the procedures described in Knipper (7). Sr concentrations were determined by Quadrupole-

Inductively Coupled Plasma-Mass Spectrometry (Q-ICP-MS) and 87Sr/86Sr ratios by High-Resolution 

Multi Collector-ICP-MS (Neptune) at the Curt-Engelhorn-Centre for Archaeometry in Mannheim, 

Germany. Raw data were corrected according to the exponential mass fractionation law to 88Sr/86Sr = 

8.375209. Blank values were lower than 10 pg Sr during the whole clean lab procedure. The NBS 987 
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and Eimer & Amend (E & A) standards run along with the human samples yielded 87Sr/86Sr ratios of 

0.71024 ± 0.00003, 2 σ; n = 9 and 0.70801 ± 0.00005, 2 σ; n = 26, respectively. The NBS 987 and 

Eimer & Amend (E & A) standards run along with the faunal comparison samples yielded 87Sr/86Sr 

ratios of 0.71024 ± 0.00001, 2 σ; n = 5 and  0.70802 ± 0.00002, 2 σ; n = 6, respectively.  

 

Oxygen isotope analysis 

Oxygen isotope analysis served as an analytical approach to identify non-local individuals 

independent of the prevailing geological conditions. The method builds on spatial variation of the 

isotopic composition (18O/16O expressed as δ18O in ‰ vs. V-SMOW [Vienna-Standard Mean Ocean 

Water]) of the oxygen bound in meteoric water (δ18Omw), which is taken up by animals and humans 

via drinking water and food. The δ18Omw values in precipitation, ground and surface water depend on 

temperature, altitude, latitude, and distance from the ocean, and therefore differ regionally (8, 9). In 

mammalian teeth and bones, oxygen is bound to the phosphate fraction (δ18Op) or the structural 

carbonate (δ18Oc) of the hydroxyapatite. Its light stable isotopes fractionate during metabolic 

processes and incorporation into the biological hard tissues. However, due to the constant body 

temperatures of mammals, this happens at constant rates and linear regression equations can be used 

to estimate the isotopic composition of the imbibed water from the oxygen isotope ratios found in 

teeth and bones (10-13). In order to identify non-local individuals, the data from a site or study area 

can be tested for outliers, compared with previously existing datasets, or converted to δ18Omw values 

and compared to the isotopic composition of modern meteoric water. Interpretations of δ18O data also 

have to consider that short-term climatic changes (14), breastfeeding in early childhood when the 

analysed enamel was formed (15) and preparation of food and drink (16) may cause isotope data 

similar to what would be considered indication for a non-local origin.   

In this study, we focussed on δ18Op
 values. In order to avoid breast feeding effects, sampling 

concentrated on second permanent molars whose enamel forms between about three and seven years 

of age (17, 18). In all cases, oxygen and strontium isotope analyses were carried out on aliquots of the 

same enamel powder following the procedure described in Knipper (19). 10 mg of enamel were pre-

treated with 1.8 ml of 2.5 % NaOCl for 24 h and rinsed three times with suprapure water. The 

preparation of silver phosphate (Ag3PO4) followed the method described by Dettman (20) and 

modified by Tütken (21). 800 µl of 2 M HF were added to the pre-treated samples, shaken and left to 

react over-night. After vortexing and centrifuging, the solutions were transferred into new sample 

tubes and the CaF residues left behind. A few drops of bromothymol blue indicator were added, and 

the HF neutralized with about 140 µl of 25 % NH4OH solution. The addition of 800 µl of 2 M AgNO3 

solution caused the dissolved phosphate ions to precipitate immediately as yellow Ag3PO4 crystals. 

These were washed and sonicated five times for 10 min and dried over-night at 50°C. Ag3PO4 was 
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analysed in triplicates using a TC-EA at 1450°C coupled to a High Performance Stable Isotope Ratio 

Mass Spectrometer (IsoPrime100) at the Department for Applied and Analytical Palaeontology at the 

University of Mainz. Raw data were normalized against IVA silver phosphate with δ18O = 21.7 ‰ 

(certificate no: BN 180097). Ag3PO4 that was precipitated from NBS 120c prepared along with the 

samples gave δ18O values of 22.2 ± 0.2 ‰ (n = 18), which is in the range of values reported by 

Vennemann (22) and well comparable with earlier published data (19). The in-house standards of 

synthetic hydroxyapatite (HAP) gave 17.1 ± 0.1 ‰ (n = 21) and Roman pig bones from the site of 

Dangstetten (SUS-DAN) gave 14.2 ± 0.2 ‰ (n = 21). 
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