

Fig. S1. Binding curves for the *Lj*LYS6 ectodomain obtained from Microscale Thermophoresis (MST) and used for calculating Kd values shown in Table 1.

Analysis of MST data of *Lj*LYS6 ectodomain binding to different lengths of chitin oligomers, (*A*) Chitopentaose, (*B*) Chitohexaose, (*C*) Chitoheptaose and (*D*) Chitooctaose. The change in fluorescence in a thermal gradient (Δ F) as a function of ligand concentration is plotted. The K_D values ± s.e.m. are indicated together with the R² fit. The binding curves represent measurements where each data point was derived from three (*A*, *C*) or four (*B*, *D*) biological replicates.

Fig. S2. Phylogeny, gene- and protein structures of *Lj*LYS6, *Mt*LYK9 and *Lj*LYS13, *Lj*LYS14 and *Mt*LYR4.

(A) Unrooted maximum likelihood (ML) phylogenetic tree of full length NFR1/LYK3 type LysM receptor kinase proteins from Lotus (Lj), Medicago (Mt) and the Arabidopsis (At) CERK1 and LYK3 proteins. For each node bootstrap values are shown as percentages based on 1000 repetitions. Branch lengths are proportional to the number of substitutions per site (bar). (B) Intron-exon structure of the LjLys6 and MtLyk9 genes. White triangles show the position of LORE1 and Tnt1 retrotransposon insertions respectively. (C) Schematic domain structure of the LjLYS6 and MtLYK9 proteins. LysM1, 2, 3: LysM domains, TM: transmembrane domain, KD: kinase domain, black circle: kinase ATP binding site, black rectangle: Ser/Thr kinase active site. (D) Unrooted ML phylogenetic tree of full length NFR5/NFP type LysM receptor kinase proteins from Lotus (Lj), Medicago (Mt) and the Arabidopsis (At) LYK2, 4 and 5 proteins. For each node bootstrap values are shown as percentages based on 1000 repetitions. Branch lengths are proportional to the number of substitutions per site (bar). Note that LiLys13 and LiLys14 are tandem repeat genes located next to each other on Lotus chromosome 2 of while the corresponding MtLyr4 is a single copy gene in Medicago. (E) Intron-exon structure of the LjLys13, LjLys14 and MtLyr4 genes. White triangles show the position of LORE1 and Tnt1 retrotransposon insertions respectively. (F) Schematic domain structure of the LjLYS13, LjLYS14 and MtLYR4 proteins. LysM1, 2, 3: LysM domains, TM: transmembrane domain, KD: kinase domain. (G) Semiquantitative RT-PCR to detect transcripts of the receptor genes in wild type and mutant plants. Transcripts of the L. japonicus ubiquitin-conjugating enzyme (UBC) and M. truncatula histone H2A respectively were used as control.

Fig. S3. Primary luminescence curves for ROS responses elicited by CO8 and Nod factor treatment of roots. Gifu wild type plants were treated with different concentrations of CO8 or purified *M. loti* R7A Nod factor. (*A*) and (*B*) ROS response after 10^{-12} - 10^{-6} M CO8 treatment. (*C*) and (*D*) ROS response after 10^{-12} - 10^{-6} M Nod factor treatment. Values are plotted as relative light units (RLU) and error bars represent the s.e.m.

Fig. S4. ROS measurements on complemented *Mtlyr4* and *Mtlyk9* mutants.

The complementing genes are shown in brackets. Peak values are plotted as relative light units (RLU) and error bars represent the s.e.m. **P < 0.01 indicate significant difference (*t*-test) between the CO8 treated sample and the respective water treated control.

Fig. S5. The *Nfr1* and *Nfr5* nod factor receptors are not required for a chitin induced release of ROS. (*A*) CO8 induced ROS in *nfr1*, *nfr5* and *nfr1 nfr5* double mutants. (*B*) flg22 induced ROS in *nfr1*, *nfr5* and *nfr1 nfr5* double mutants. Peak values are plotted as relative light units (RLU) and error bars represent the s.e.m. **P < 0.01 indicate significant difference (*t*-test) between the elicitor treated sample and the respective water treated control.

Fig. S6. Chitin induced MAPK3/6 phosphorylation in *Lotus* is dependent on *LjLys6*.

MAPK3/6 phosphorylation in roots of *Lotus* Gifu, *Ljlys6-1*, *Ljlys6-4* and *Ljlys6-5* mutants treated with 1 µM CO4, CO6 and CO8 or 0.5 µM flg22.

Fig. S7. flg22 treatment triggers defense-response gene upregulation in *Ljlys6* mutants similar to wild type. QPCR determination of transcript levels in *Lotus* roots after 1 hour treatment with 0.5 µM flg22 or water. The values shown are geometric means of three biological and three technical replicates relative to the respective water treated control set as 1. Bars represent the 95% CI. Asterisk indicates significant difference compared to the respective water treated control.

Fig. S8. MtLYR4 and MtLYK9 are not required for P. syringae triggered immunity.

Wild type R108 and *lyr4* or *lyk9* mutant *M. truncatula* leaves were infiltrated with *Pst* DC3000 or its type III secretion system mutant strain *Pst hrcC*. Bacterial population (colony-forming units, CFU) in the leaf was measured at the indicated times (error bars represent the s.e.m., n=6). The experiments were repeated three times with similar results.

Fig. S9. Nod factor, CO4, CO8 and flg22 induced ROS response is unaffected in *Ljlys13* and *Ljlys14* single mutants. (*A*) Nod factor, CO4 and CO8 induced ROS in Gifu wild type, *Ljlys13* and *Ljlys14* single mutants. (*B*) flg22 induced ROS in Gifu, *Ljlys13* and *Ljlys14* single mutants. (*B*) flg22 induced ROS in Gifu, *Ljlys13* and *Ljlys14* single mutants. Peak values are plotted as relative light units (RLU) and error bars represent the s.e.m. *P < 0.05, **P < 0.01 indicate significant difference (*t*-test) between the elicitor treated sample and the respective water treated control.

Fig. S10. *Mt*LYR4 is required for CO4 and CO8 induced defense-related gene expression.

Quantitative RT-PCR analysis of two defense-related genes *WRKY* and a *chitinase* in *M. truncatula* wild type R108 and *lyr4* mutants after treatment with 100 nM CO4, CO8, flg22 or DMSO as the negative control (mean+s.e.m., n=8; **indicates significant difference relative to wild type, p<0.01 measured using a Student's *t*-test).

Fig. S11. LjLys6 promoter expression pattern in root nodules and in arbusculated root cells.

(A) and (B) Lack of detectable activity of the *proLys6:NLS-tYFP* reporter in mature root nodules with *M. loti* bacteroids expressing DsRed. (B) Close up of the area marked in (A). (C) and (D) Activity of the *proLys6:NLS-tYFP* reporter in root cells with fungal arbuscules. Autofluorescence of arbuscules is shown in orange-red. Arrows label nuclei of arbuscule containing root cells showing *LjLys6* promoter activity. Scale bars: 100 μ M (A) and 50 μ M (B-D).

Fig. S12. QPCR determination of transcript levels after Nod factor, CO4 and CO8 treatment of *Lotus* roots. (*A*) Nod factor induced LjNin expression in wild type Gifu and Ljlys6 mutants. *LjLys6* gene expression after (*B*) Nod factor and (*C*) CO4, CO8 treatment of Gifu roots. The values shown are geometric means of three biological and three technical replicates relative to the respective water treated control set as 1. Bars represent the 95% CI.

Fig. S13. Long term nodulation test on *Ljlys6* mutants.

Plants were inoculated with *M. loti* NZP2235 (OD*600*=0.02) and grown for 12 weeks in the greenhouse. Bars represent the s.e.m. (n=70). No significant difference was found between Gifu and the *Ljlys6* mutants (*t*-test).

DATA COLLECTION			
PDB accession	5LS2		
Beamline	MAX-lab 1911-3		
Wavelength	0.98		
Resolution range	28.23 - 2.3 (2.38 - 2.3)		
Space group	P 1 21 1		
Unit cell	45.29 130.69 53.63 90 107.702 90		
Total reflections	111281 (11297)		
Unique reflections	26292 (2625)		
Completeness (%)	99.5 (99.8)		
Mean I/sigma(I)	15.07 (2.20)		
Wilson B-factor	44.64		
R-meas	0.0795 (0.977)		
REFINEMENT			
Reflections used in refinement	26273 (2624)		
R-work	0.183 (0.267)		
R-free	0.218 (0.303)		
Number of non-hydrogen atoms	3310		
macromolecules	3000		
ligands	178		
Protein residues	391		
RMS(bonds)	0.002		
RMS(angles)	0.46		
Ramachandran favored (%)	98.2		
Ramachandran allowed (%)	1.8		
Ramachandran outliers (%)	0		
Rotamer outliers (%)	0.89		
Average B-factor	60.17		
macromolecules	59.46		
ligands	77.68		
solvent	52.87		

Table S1.

*Lj*LYS6 data collections and refinement statistics. Values between parentheses are for the last resolution shell.

target gene	<i>L. japonicus</i> v3.0 gene ID	primer orientation	primer sequence (5'-3')	comment	reference
ATP	Lj5g3v2169420	fw rev	CAATGTCGCCAAGGCCCATGGTG AACACCACTCTCGATCATTTCTCTG	qPCR	
PP2A	Lj2g3v0742070	fw rev	GTAAATGCGTCTAAAGATAGGGTCC ACTAGACTGTAGTGCTTGAGAGGC	qPCR	
UBC	Lj1g3v2063210	fw rev	ATGTGCATTTTAAGACAGGG GAACGTAGAAGATTGCCTGAA	qPCR	
Lys6	Lj6g3v1055580	fw rev	CCTGTTGATTCAGTTCGCAAGATGGC GCTTTACTGTCACCATCCTATCTTCC	qPCR	
NIN	Lj2g3v3373100	fw rev	AGGAGCCCAAGTGAGTGCTA GCCATCAAGGTATATGACGAG	qPCR	
peroxidase	Lj1g3v1183610	fw rev	CTCTTTCGGGTTTTGTTCTGTGT CAGAAGCTAACTTGACTTG	qPCR	(76) (76)
chitinase	Lj5g3v1961260	fw rev	GCAGTGTCTGATTAGTTAGTCTCA GAAGTGATCACATACAGTACTCAAC	qPCR	(76) (76)
RbohB-like	Lj6g3v1549190	fw rev	GAAATGGCGTACTGTCTTTAAACCA GGTGGTTTTCCTGGAAAAGTCAAGA	qPCR	(76) (76)
WRKY70-like	Lj1g3v1134110	fw rev	TCTCAATTCCCCAGGAGTTACTTC TTGATCGGAGTGTCTTTGCATG	qPCR	
PRp27-like	Lj5g3v2112200	fw rev	CATGGTTATGATGTTACTGCTCGT GATCACTATAACCAGTCCTCATCT	qPCR	(76) (76)
PAD4-like	Lj4g3v2826720	fw rev	CATAGCAAACCAGGAAACCACTATC CATCACACCAAATTTTGTACCATTC	qPCR	
MPK3	Lj3g3v3087330	fw rev	ATTGATCCCACCAAAAGAATCACAGTTGAA CCAATGCTTCCCTGTAGATCATCTC	qPCR	
WRKY53	Lj3g3v2427550	fw rev	GGAACTTCCCTCTCATGCTAGTTAAG CTCTTGCTATTGCTTGAGCCAGAAG	qPCR	
Lys6	Lj6g3v1055580	fw rev	GAACACCCCAGATTAGGGTTCCCC CAGGTTAAGATGATGAACACG	semi-qPCR	
Lys13	Lj2g3v2899910	fw rev	GCTATGCTCCTCTTCTACAAGC ACGGTGACCATGGTGTCGGTGATG	semi-qPCR	
Lys14	Lj2g3v2899900	fw rev	CAGGAAGAGAAGCCACAAGTAGTGGGG CACAGAATTTATTATGGCTTCAG	semi-qPCR	
target gene	<i>M. truncatula</i> gene ID	primer orientation	primer sequence (5'-3')	comment	
Lyk9	Medtr3g080050	fw rev	ATGGAACATCAACCCAGATTCACCT CTTTTCCCGGAACAAAAACAATGC	semi-qPCR	
Lyr4	Medtr5g085790	fw rev	ACATCTACCTATGCTACTAAC GTTCATTAGCTTCATTAATGC	semi-qPCR	
		fw rev	CAGTGAAGAGAATAAGATTAAAG CAACTTCTCTACCAGAAAGAAGC	semi-qPCR	
WRKY	Medtr3g090860	fw rev	ACCAGGAATGGCAATGGAAGGTC AATAGCCTCTTGGATGCATGGC	qPCR	
chitinase	Medtr2g099450	fw rev	AACACCACCAAGTTTGCCTAGC GGGCACATGTGTACTCTGCATTG	qPCR	
H2A	Medtr4g097170	fw rev	CTTTGCTTGGTGCTGTTTAGATGG ATTCCAAAGGCGGCTGCATA	qPCR	
target gene	species	primer orientation	primer sequence (5'-3')	comment	
CutA	B. cinerea	fw	ATTCCACAATATGGCATGAAATC	qPCR	

rev ATGTTATCTCCAGCGTGACAAAT