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S1 Overview

We provide here more details and analysis of the three models considered in the main text; the sequential MJ
model, the PIRA approach and the RICE construction. We begin in section S2 with a expanded discussion
of the general framework of this class of models, followed with a detailed description of the Chakraborty
MJ model in Section S3. In Section S4 we specify our modification of this model, the sequential MJ (S-MJ)
model and present the details of our calculations of the selection curve and potency distribution in this
model. We then define in Section S5 the PIRA model and present the parallel analysis of this model. In
Section S6 we detail the RICE model, which forms the main focus of this work, again presenting the analysis
of the selection curve and potency distribution. In Section S7, we present the details of our analysis of the
recognition of neoantigens and foreign peptides in the RICE model, and Section S8 treats the problem of
allogeneic response in this context. In these sections, we use both Gaussian distributed interactions as well
as those drawn from a uniform distribution, just to show the generality of the findings. In the last section
S9 we investigate changes that would ensue had we used a smaller amino acid alphabet, so as to take into
account the chemical similarity between different residues.

S2 General TCR-MHC Interaction and Thymic Selection

We discuss the overall model-building framework which has been widely adopted [1–4]. Our focus is on
MHC-I, in the context of CD8+ T-cell recognition. MHC-I comes in 3 varieties, HLA A-C. Each individual
has 2 subvarieties of each molecule. The total number of known subvarieties of HLA A, B, and C molecules
are 3657, 4459, and 3290, respectively [5].

For a given individual, let M = {Mr : r = 1, ..., 6} denote the collection of MHC-I molecules, which
are classified into three groups A, B, and C, and are distributed in the following manner: M1,M2 ∼ DA,

M3,M4 ∼ DB , and M5,M6 ∼ DC . Let m =
{
m

(j)
M : j = 1, ..., N,M ∈ M

}
be a collection of MHC-loaded

peptides with distributions m
(j)
M ∼ DM , T =

{
T (j) : j = 1, ..., Nt

}
be a collection of variable TCR CDR1,2

(MHC-contacting) regions of various thymocyte receptors, and τ =
{
t(j) : j = 1, ..., Nt

}
be a collection of

variable TCR CDR3 (peptide-contacting) regions of various thymocyte receptors.

Elements of T represent variety in the TCR CDR1,2 regions, while elements of τ represent variety in
the TCR CDR3 regions. These segments are generated from separate mutational events in VDJ recombi-
nation, and are thus considered statistically independent here. We identify each TCR by the ordered pair
(T (j), t(j)). A given MHC-I molecule may be restricted in the variety of peptides it can bind. Peptide-
bound MHC therefore depends on the particular molecule, Mr. We identify each MHC-peptide complex by
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(Mr,m
(j)
Mr

). Interactions between the TCR and p-MHC are quantified below, and may represent a relevant
quantity, such as binding energy or MHC-receptor lifetime. Here, we do not focus on any precise molecular
mechanism of activation.

Let f1 denote the interaction contribution from TCR CDR1,2 regions contacting MHC directly, and
f2 denote the interaction contribution from the TCR CDR3 region interfacing with an an MHC-bound
peptide, which are assumed to add linearly. It is customary [1–4] to make the simplification that TCR-

CDR3 interactions are independent of the TCR-CDR1,2 regions. That is, f2 = f2

(
m

(j)
Mr
, t(l)

)
(dependencies

of f1 on m
(j)
Mr
, t(l) allow for the possibility that peptide-CDR3 combinations may alter the interaction strength

of MHC-CDR1,2). Then,

E
(
T (l),Mi, t

(l),m
(j)
Mr
,
)

= f1

(
T (l),Mr, t

(l),m
(j)
Mr

)
+ f2

(
t(l),m

(j)
Mr

)
. (S1)

This then represents the general way in which a TCR (labeled by l) interacts with a given MHC-peptide
complex, of HLS type r and sequence j.

S3 Chakraborty MJ Model

Working within the approach presented in Section S2, Chakraborty et al. introduced a more restricted frame-
work, which we adopt throughout this work. They focused only on a single MHC molecule per individual
and hence dropped the index r (M = {M}). For definiteness, they assumed that each MHC-loaded peptide

is represented as a decamer peptide so that m =
{
m(j) =

(
m

(j)
i

)k
i=1

, j = 1, ..., N
}

with k = 10. Moreover,
there is only one type of MHC-contacting CDR1,2 region (T = {T}) considered. Each peptide-contacting

TCR CDR3 region is also modeled as a decamer peptide (τ = {(t(j)i )ki=1, j = 1, ..., Nt}). Both m
(j)
i and ti(k)

are distributed according to Ph(a), a ∈ A, where A represents the set of 20 naturally-occurring amino acids,
(|A| = 20) and Ph represents the probability mass function (pmf) for the amino acids found in the human
proteome (Table S2).

In this model, MHC-TCR interactions, E, are interpreted as total binding energy. The MHC-CDH1,2

binding energy is taken to be a constant value independent of the specific peptide and peptide-binding CDR3

so that
f1

(
T (l),Mi, t

(l),m
(j)
Mi

)
= Ec. (S2)

The peptide-CDH3 binding energy is taken to equal a sum of k pairwise amino acid interaction energies,
giving

f2

(
t(l),m(j)

)
=

k∑
i=1

f i2
(
t
(l)
i ,m

(j)
i

)
. (S3)

Chakraborty further assumed that f i2 is independent of the site i and takes the values of pairwise amino
acid binding energies captured in the MJ matrix (see Table S1). Thus, for a given TCR t ∈ τ and p-MHC
m(j) Eq. S1 becomes:

E
(
T,M, t,m(j)

)
= E

(
t,m(j)

)
= Ec +

k∑
i=1

MJ(ti,m
(j)
i ), (S4)

where MJ(ti,m
(j)
i ) represents the pairwise interaction between amino acids of TCR t and peptide m(j) at

position i. A T-cell must survive both positive and negative selection to emerge unscathed from the thymus.
In the Chakraborty model, positive and negative selection both take place on the same collection of self-
peptides m . Positive selection occurs if E

(
t,m(j)

)
≥ Ep, for at least one m(j) in m , whereas negative selection

is avoided if E
(
t,m(j)

)
< En, for every m(j) in m . Using this framework, Chakraborty and colleagues were

able to formulate selection as an extreme value problem and provided quantitative estimates on the amino
acid compositions of those TCRs surviving selection, as well as the number of residues important for T-cell
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recognition [1–4].

S4 Sequential MJ (S-MJ) Model

S4.1 Model Specification

In this section we present our modification of the Chakraborty MJ model. The main difference is that in
our model selection occurs sequentially with positive selection followed by negative selection, to better agree
with the biology. Developing thymocytes must pass two separate selection processes in order to become a
functional T-cell [6,7]. These thymocytes first pass through the outer thymic cortex where they must receive
a sufficient survival signal from cortical self-p-MHC molecules (positive selection). Surviving thymocytes
then migrate through the thymic medulla. Binding any medullary self-p-MHC molecule with too high an
affinity results in negative selection. The event that a particular TCR survives selection against self-p-MHC
is independent from that of other TCRs.

To this end, we partition m into (disjoint) subsets, P and N , that represent the collection of posi-
tively selecting thymic cortical and negatively selecting medullary peptides, respectively. Formally, P ={(
p

(j)
i

)k
i=1

, j = 1, ..., Np
}

and N =
{(
q

(j)
i

)k
i=1

, j = 1, ..., Nn
}

such that p
(j)
i , q

(j)
i are IID according to pmf Ph,

P ∪̇N = m , and typically we will take Np = Nn = 104. In this way, positive and negative selection due to each
m are independent of one another. In a similar manner as before, positive selection occurs if E

(
t, p(j)

)
> Ep,

for at least one p(j) in P , while negative selection is avoided if E
(
t, q(j)

)
≤ En, for every q(j) in N . In order

to maintain contact with prior work, for the S-MJ model, we construct self-peptides and TCRs with amino
acids selected according to Ph, the pmf of amino acids in the human proteome (Table S2).

S4.2 Selection Curve

Here we derive the probability that a given TCR t survives both positive and negative selection, referred
to subsequently as the selection curve. Let Pt denote the event that thymocyte t = {t1, t2, ..., tk} survives
positive selection, and similarly let Nt denote the event that t survives negative selection. In set-theoretic
notation, these events are given by

Nt =

Nn⋂
j=1

[
E
(
t, q(j)

)
≤ En

∣∣∣ t = {ti}ki=1

]
,

=

Nn⋂
j=1

[ k∑
i=1

MJ
(
ti, q

(j)
i

)
≤ En − Ec

∣∣∣ {ti}ki=1

]
;

Pt =

Np⋃
j=1

[
E
(
t, p(j)

)
> Ep

∣∣∣ t = {ti}ki=1

]
,

=

Np⋃
j=1

[ k∑
i=1

MJ
(
ti, p

(j)
i

)
> Ep − Ec

∣∣∣ {ti}ki=1

]
.

The key to the analysis is the approximation of the set of interaction energies by an appropriate normal
distribution. We will thus have much need of the standard normal cumulative distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt. (S5)

Given the heterogeneity of the interaction strengths of the |A| = 20 different amino acids, we introduce here
the sample mean and variance of the interactions of each, given by

µα =

|A|∑
β=1

Ph(β)MJ(α, β); σ2
α =

|A|∑
β=1

Ph(β)(MJ(α, β))2 − µ2
α, (S6)
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We first consider the distribution of the interaction energy for a fixed t. Since each t is composed of a

particular set of amino acids, {t1, ..., tk}, for a random choice of qi the MJ
(
ti, q

(j)
i

)
are independent (but not

identically distributed) random variables. It can be shown via the Lindeberg-Feller Central Limit Theorem

by use of a triangular array with cutoff Z = 2||f ||2∞/ε2σ2
min that sums of the form

∑k
i=1 MJ

(
ti, q

(j)
i

)
, shifted

and scaled by their mean and variance, given by

µt ≡
k∑
j=1

µti ; σ2
t ≡

k∑
i=1

σ2
ti . (S7)

satisfy Lindeberg’s condition. They therefore converge in distribution in the limit of large k to a standard
Normal. Here σ2

min ≡ mini,j∈A Var
(
f(i, j)

)
> 0 and ||f ||∞ ≡ maxi,j∈A f(i, j).

Even for finite k, we observe good agreement between normal approximations and simulations of energies
in the specific case of interest (k = 10). An example of this convergence is given by Fig. S1A where we have
varied k and satisfactory convergence to the normal is already achieved for k ≥ 5. In each k = 1, . . . , 5 case,
normalized cumulative distribution functions are given with respect to the probability space of all k peptide

sequences: (Ω,F ,P) = (Ak, 2A
k

, P kh ). Fig. S1A demonstrates good agreement for a representative choice
of t, and we also observe close agreement over many choices of t. Specifically, ||F ∗(x) − Φ(x)||∞ < 0.05
for over 103 selections of randomly selected t where F ∗ is the empirical CDF of the mean-shifted, variance-

scaled data. Thus, for our value of k = 10, we see that indeed
∑k
i=1 MJ

(
ti, q

(j)
i

)
may be approximated

by a continuous random variable Xt with distribution N (µt, σ
2
t ). From this we can derive an approximate

formula for the probability of a given T-cell surviving negative selection,

P(Nt) = P

(
Nn⋂
j=1

[ k∑
i=1

MJ
(
ti, q

(j)
i

)
≤ En − Ec

∣∣∣ {ti}ki=1

])
,

which by virtue of the fact that each q
(j)
i is independent and identically distributed equals

= P
( k∑
i=1

MJ(ti, qi) ≤ En − Ec
∣∣∣ {ti}ki=1

)Nn
,

≈ P
(
Xt ≤ En − Ec

)Nn
,

= Φ

(
En − Ec − µt

σt

)Nn
. (S8)

where the last line employs the Gaussian approximation. We may similarly consider positive selection,

P(Pt) = P

(
Np⋃
k=1

[ k∑
i=1

MJ
(
ti, p

(j)
i

)
> Ep − Ec

∣∣∣ {ti}ki=1

])
,

recognizing that the complement of surviving positive selection is an analogous event to negative selection,

= 1− P
( k∑
i=1

MJ(ti, pi) ≤ Ep − Ec
∣∣∣ {ti}ki=1

)Np
,

≈ 1− P
(
Xt ≤ Ep − Ec

)Np
,

≈ 1− Φ

(
Ep − Ec − µt

σt

)Np
. (S9)
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For large N ≡ Nn = Np, these are approximately Gumbel distributions. It is useful to utilize a fairly
accurate formula for these asymptotic distributions. We can accomplish this as follows. In general, for large
x, N :

[Φ(x)]N ≈
(

1− 1√
2πx

e−x
2/2

)N
≈ exp

(
−N 1√

2πx
e−x

2/2

)
(S10)

Introducing y ≡ x− xM , where
xM ≡

√
2 ln(N/N0), (S11)

and N0 is an N -dependent constant to be specified later, and assuming y � 1, we have

[Φ(x)]N ≈ exp

(
−N 1√

4π ln(N/N0)
e
−
[
(2 ln(N/N0)+2y

√
2 ln(N/N0)

]
/2

)

≈ exp

(
−N0

1√
4π ln(N/N0)

e−y
√

2 ln(N/N0))

)
(S12)

If we choose N0(N) to satisfy the implicit equation

N2
0 = 4π ln(N/N0) (S13)

we then have
[Φ(x)]N ≈ exp

(
−e−(x−xM )

√
2 ln(N/N0))

)
(S14)

which is precisely the CDF of the Gumbel distribution with mode xM and scale parameter 1/
√

2 ln(N/N0).
Thus, we have

P(Nt) ≈ e−e
−(En−EtNn )/WNn

P(Pt) ≈ 1− e−e
−(Ep−EtNp )/WNp

(S15)

where
EtN = Ec + µt + σt

√
2 ln(N/N0(N)); WN = σt/

√
2 ln(N/N0(N)). (S16)

Roughly speaking, for Nn, Np � 1, the probability of surviving negative selection is a step function
θ(En−EtN ), while the probability of surviving positive selection is approximately θ(EtN −Ep). By virtue of
the independence of Pt and Nt, the probability of thymocyte t surviving both positive and negative thymic
selection as a function of Ec is approximated by

ps(t) ≡ P
(
Nt ∩ Pt

)
≈ Φ

(
En − Ec − µt

σt

)Nn[
1− Φ

(
Ep − Ec − µt

σt

)Np]
(S17a)

≈ θ(Ep < EtN < En) = θ

(
Ep − µt −

σ2
t

WN
< Ec < En − µt −

σ2
t

WN

)
. (S17b)

The overall survival probability, then, as a function of Ec is basically a hat function of width En − Ep,
independent of N , whose center moves to lower values as N increases. We have good agreement between
Eq. S17a for relevant choices of N (Fig. S1B).
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The previous calculation was conditioned on a specific T-cell, t, and we saw that the probability of
surviving selection depending on its values of µt and σt derived from that T-cell’s amino acid content.
We now wish to calculate the survival probability for a randomly chosen developing thymocyte, where we
do not know µt and σt. In theory, this is straightforward given the joint probability distribution of µt and σt.

We first consider just the marginal distribution of µt itself, which as defined in Eq. S7 corresponds to a
sum of k = 10 IID random variables µti , since each ti is IID. We can then estimate the distribution of µt by
the classical Central Limit Theorem,∑k

i=1 µti − kE(µti)√
kVar(µti)

D→ N (0, 1) as k →∞, (S18)

From this, we may well approximate the µt as a random variable using the following distributions (Fig.
S2A):

µt =

k∑
i=1

µti ∼ N
(
µ̄, σ2

)
; µ̄ = kE(µti) ≈ 29.57, σ2 = kVar(µti) ≈ 10.99.

The accuracy of this formula is shown in Figs S2A. Turning now to σt, it turns out, as can be seen in Fig.
S2B, that its primary variation is due to its correlation with µt through their joint dependence on t. We
may approximate σt by its mean value. For Ph, the dependence of the mean value of σt on µt is found to be
approximately linear:

σt ≈ a0 + a1µt; a0 = 1.64, a1 = 0.0608 (S19)

as shown in the figure.

Let us define Etmax as the maximum value of E expected in the full peptide ensemble for a fixed TCR. Eq.
S19 implies that Etmax to good approximation depends only on µt, and in a linear fashion. This prediction
is tested in Fig. S3, which shows a scatterplot of Etmax versus µt for 1000 TCRs. The linear regression to
the data is essentially identical to the predicted linear relation

Etmax ≈ Ec + a0

√
2 ln(N/N0) + µt(1 + a1

√
2 ln(N/N0)) (S20)

Using the linear relation between σt and µt, we have ps(t) = ps(µt), and

P(P ∩N ) ≈
∫ ∞
−a0/a1+ε

ps(µt)fµ(µt)dµt, (S21)

where fµ(µt) is the pdf of µt, and the integral is truncated so that the variance is strictly positive. Thus the
unconditional survival of an average TCR may be approximated by:

ps ≈

∫ ∞

−a0/a1+ε

Φ

(
En − Ec − µt√
a0 + a1µt

)Nn[
1− Φ

(
Ep − Ec − µt√
a0 + a1µt

)Np]e(µt−µ̄)2/2σ2√
2πσ2

dµt. (S22)

As can be seen in the figure, this integral evaluated numerically gives us a very good approximation to
simulations involving various choices of Nn = Np (Fig. S2C).

One can obtain an approximately equivalent result using our step function approximation (Eq. S17b).
Thus the unconditional survival of an average TCR, with the Gaussian approximation for the µt distribution

6



is given by:

ps ≈
∫
θ

(
Ep − µt −

σ2
t

WN
< Ec < En − µt −

σ2
t

WN

)
fµ(µt)dµt

≈ Φ

(
µn − µ̄√

σ2

)
− Φ

(
µp − µ̄√

σ2

)
, (S23)

where

µp,n =
Ep,n − Ec − a0

√
2 ln(Np,n/N0(Np,n)

1 + a1

√
2 ln(Np,n/N0(Np,n)

. (S24)

This agrees with Eq. S22 when the number of selecting peptide is large, showing that is reasonable for this
model to approximate Gumbel distributions as essentially step-like when Np, Nn � 1.

S4.3 Potency

Here, we inquire as to the potency of the various self-peptides in the negative selection process. At present, we
have considered survival probabilities under the S-MJ model. It is also important to characterize the relative
contributions of individual self-peptides to the selection of mature T-cells. For example, some peptides may
influence negative selection behavior to a greater degree than others. We say that these self-peptides are
more potent. This analysis is independent of positive selection effects. Just as µt governs the percentage of
peptides that t recognizes, so µq, the sample mean of µqi , governs the percentage of TCRs that recognize a
given peptide. Arguing similarly to the above, the fraction of TCRs that recognize q is

rq ≈ 1− Φ

(
En − Ec − µq

σq

)
. (S25)

The most potent peptide clearly is the one with the largest µq. Plugging in the actual value of µmax
q =

42.77 and its σq = 4.09, we get, using the actual value of En−Ec = 43.51 for 50% selection, that rmax
q = 0.428,

extremely close to its actual value in our simulation (with Nt = 105, Nn = 104) of 0.431. Thus, we see that
the most potent peptide is responsible for roughly 86% of all TCRs eliminated by the negatively selection.

Since µq has the same statistics as µt, within our Gaussian approximation it is distributed as a Gaussian

with mean µ̄, and variance σ2, and so we can estimate the maximum potency analytically. The maximum
of µq over the Nn peptides has expected value

µmax
q ≈ µ̄+

√
σ2L (S26)

where L =
√

2 ln(Nn/N0(Nn)). For our value of Nn this gives the result µmax
q = 42.0, comparing well to the

simulation result of 42.77 noted above. Plugging this into Eq. (S25), we have

rmax
q ≈ 1− Φ

(
En − Ec − µ̄−

√
σ2L

a0 + a1µmax
q

)
(S27)

If En is chosen so as to give 50% negative selection, then by Eq. (S23) we have

En − Ec = µ̄(1 + a1L) + a0L (S28)

and so putting this together

rmax
q ≈ 1− Φ

(
L

a0 + a1µ̄−
√
σ2

a0 + a1(µ̄+
√
σ2L)

)
. (S29)
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Note that σ = a0 +a1µ̄ corresponds to the average-strength peptide, so it is very close to
√
σ2. Thus the

argument of Φ(·) is essentially zero, giving a value of rmax
q close to 1/2 for all Nn. For example, for Nn = 104,

the formula gives a value of rmax
q = 0.456. This is fairly close what is found by simulation, 0.431, as reported

above, and indicates that the most potent peptide by itself accounts for essentially all the negative selection
in the S-MJ model. This also proves that this anomalous behavior is Nn-independent, as claimed in the
main text.

S5 Position-Independent Random Affinity (PIRA)

S5.1 Model Definition

In this section, we define and analyze an alternate model, motivated by the unrealistic potency spectrum
displayed by the S-MJ model. This model is built on a more randomized T-cell peptide interaction. The
PIRA model is specified as follows: The representation of pMHC remains unchanged from the S-MJ model
with peptides of length k. In this case, however, amino acids are chosen randomly based on an IID probability
distribution, since in any case they are statistically equivalent. We focus only on negative selection by Nn
medullary thymic self-peptides and so m = N =

{
q(j) =

(
q

(j)
i

)j
i=1

, j = 1, ..., Nn
}

. We can set Ec = 0 (this is
true for the following model as well) as it is only relative interaction strengths that are important.

The T-cell is no longer thought of as a specific peptide sequence, but as a set of interaction grooves that
bind specific peptide amino acid with varying affinities. The interaction between each TCR binding groove
and amino acid are taken to be IID standard Gaussian random variables. In this model, TCRs interact with
amino acids in a position-independent manner. For example, an alanine at position 7 in p-MHC contributes
to the total interaction in an identical way as an alanine at position 2. In other words, each TCR is repre-
sented by a |A| = 20-dimensional vector of IID interaction values, describing interactions with each amino
acid type. Thus, τ =

{
t(j)
}
, j = 1, 2, . . . , Nt and a t is characterized by Xt = {Xt

a}, a = 1, 2, . . . , |A|, where
Xt
i is the randomly generated interaction between TCR t and amino acid a.

For this model, Eq. S1 thus becomes:

E(M,m, T, t) = E(X, q) = f2(q,Xt) =

k∑
i=1

Xt
qi . (S30)

En as before represents the negative interaction threshold, so that negative selection of t is avoided if
E
(
Xt, q(k)

)
≤ En, for every q(k) in N .

S5.2 Selection Curve

As with the S-MJ model, we wish to characterize the TCR recognition percentage as a function of En as
well as the self-peptide potency. The key to analyzing the PIRA model is to account for the different mul-
tiplicities of the amino acids comprising a self-peptide interaction region. For example, if a self-peptide had
alanine in all slots, the energy of interaction would be 10EAla. Since EAla has unit variance, the variance
of the interaction strength between this self-peptide over the set of TCRs would be 100, which is vastly
greater than the variance of 10 for the interaction of a self-peptide with no repeated amino acids with the
set of TCRs. Therefore, we first partition the set of self-peptides into subgroups, each with a different
pattern of repeats. One class is self-peptides with no repeats, another one with a single amino acid repeated
10 times, another with a two different amino acids each repeated once and the six others unique, and so
on. The number of possible classes is the number of partitions of 20, the number of different ways that 20
can be constructed as a sum of natural numbers. An explicit listing of these yields a total of 115975 partitions.

Clearly we will not realize all of these classes in a sample of Nn = 104 self-peptides. One can explicitly
calculate the probability of realizing any particular class, and therefore the expected number of representa-
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tives of each class in our set of Nn self-peptides. It turns out that only 20 classes have an expected number
of representatives greater than 1/2. We assume that these are in fact the only classes represented in our
sample. The most highly represented class is that with six singletons and two doubletons, with 3125 expected
representatives. The pure singleton class, in contrast, is expected to have 655 representatives, and is the
fifth most highly represented class.

The problem of calculating the distribution of the maximal interaction strength between any given TCR,
t, and a particular class, C, of self-peptides proceeds along the line of our calculation of the distribution of
maximal interaction energy between a TCR and the entire set of peptides in the S-MJ model. The total
interaction energy is the sum of a random subset (with repeat draws) of the Xt

i ’s. This distribution, a sum
of random variables, is in general approximately Gaussian. Employing a Gaussian approximation, the mean
is just 10µt, where µt is the mean of the Xt

a. The variance is a little more complicated. If the numbers of
singletons, doubletons, tripletons, n-tons is denoted dn, then the variance is

Vart,C ≡ VarqC
(
E(Xt, qC)

)
= σ2

t

(
10∑
n=1

dnn
2 − 5

)
≡ σ2

t σ
2
C (S31)

Here

σ2
t =

|A|
|A| − 1

 1

|A|

|A|∑
a=1

(Xt
a)2 − µ2

t

 (S32)

is the sample variance of the Xt
a. The last, −5 term in the above is due to the fact that the energies be-

tween different peptides are correlated, as they all depend on the same set of |A| = 20 Xt
a. In the general

case of a length k interaction region and a set of |A| amino acids, the last term would read k2/|A|, instead of 5.

To get some feeling as to where this last formula comes from, we can work out a specific example. Imagine
we are dealing with the class of peptides continuing one amino acid repeated five times, one repeated three
times, are two singletons and furthermore let is assume an amino acid alphabet of size 5. Let us assume our
TCR has values {Xa}, a = 1, 5. If we focus on the term in < E2 > that depends on X2

1 , we get a total of 60
= 5x4x3 peptides and a contribution

1

60
× 12× (25 + 9 + 1 + 1) = 36/5

Likewise the contribution from < E >2 is

1

60

2

(122 × 102) = 4

Note that here the second term is proportional to an extra factor of k2/A and the first term the factor∑
n dnn

2 Subtracting gives 16/5. Comparing this to the equations above, the variance is predicted to be 16
multiplied by σ2

t . The term in this last factor that depends on X2
1 equals

5/4× (1/5− 1/25) = 1/5

Given all this, the distribution of the maximum interaction strength for the various amino acids in a
given class is Gumbel, and at least for the well-represented classes, can be taken as a delta-function at

Et,Cmax ≈ 10µt +
√

2σ2
t σ

2
C lnN/N0 (S33)

As a test of this, we present in Fig. S4 a graph of the value of Et,Cmax averaged over 104 TCRs for the twenty
classes present in our sample of 104 self-peptides. We see that Eq. (S33) works quite well in following the
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variation from class to class.

Given the maximum interaction of a given TCR t with a given class, the maximum binding energy over
all classes is just the maximum of Eq. (S33) taken over all classes. We see from Fig. S4 that this is the
Emax of the fourth most populous class, consisting of one tripleton, one doubleton and five singletons, with
an expected number of 961 representatives. For this class, by Eq. (S31), σ2

C = 13. This gives us a prediction
of Etmax of

Etmax = 10µt +
√

2 · 13σ2
t ln 961/N0(961) = 10µt + 11.2σt (S34)

In Fig. S5, we present a scatterplot of Etmax over our sample of 104 self-peptides, for a set of 1000 randomly
generated TCRs, against the prediction Eq. (S34). The line y = x, indicating a perfect prediction, is also
plotted, to ease comparison.

For the PIRA model, the width of the Gumbel distribution governing Etmax for a specific TCR is narrower
than the width of sample parameters µt and σt; hence the former can be treated as precise prediction. Using
this idea, from Etmax(µt, σt), we can obtain a rather rough estimate of the selection curve. The main idea
as described above is clear from examining Fig. S5. Since the scatter parallel to the theory line is so much
greater than that in the perpendicular direction, we may ignore the latter. The former scatter is due to
the variation in µt and σt from TCR to TCR. Since for Gaussian random variables, the sample variance
is uncorrelated with the sample mean, we can examine the two sources of variation separately. The mean,
µt, is Gaussian distributed with mean 0 and standard deviation 1/

√
|A|. The variance, σ2

t is distributed
according to a chi-squared distribution with mean 1 and variance 2/(|A| − 1). Thus σt has mean 1 and
standard deviation

√
2/(|A| − 1) = 0.31. If we approximate the chi-squared distribution by a Gaussian, the

Etmax is Gaussian distributed with mean 11.2 and variance 100 ∗ (1/20) + 11.22 ∗ (0.312) = 17.05, in which
case

ps ≈ Φ

(
En − 11.2

4.1

)
(S35)

This formula is graphed in Fig. S6, together with the result of a simulation with 104 TCRs and 104

self-peptides. We see that the agreement is not that quantitatively accurate. There are a few reasons for
this. For classes such as class #4, the entire behavior of the energy is determined by just six numbers; hence
the Gaussian approximation for the sample mean distribution may not be that accurate. Perhaps more
crucially, there is a spread in values for Etmax arising from the class dependence of the expression S33 and
simulations show there is a fairly wide distribution of classes for the peptide with maximal binding energy.

S5.3 Potency

We now turn to the problem of the selective potency of the various self-peptides. For this, we have to turn
the calculation around, and consider the energy of a random TCR with a given peptide. This of course
depends on the class of the peptide, and is a Gaussian random variable with variance

σ̃2
C =

k∑
n=1

n2dn = σ2
C + 5 (S36)

The expected number of TCRs that recognize a peptide of class C is then

NC = NTCR
(
1− Φ(En/σ̃C)

)
(S37)

This is a decreasing function of σ̃C , so the most potent peptide in our sample is clearly that with the largest
σ̃2
C . For our Nn = 104 sample size, this is most likely to be a peptide with three singletons, one doubleton

and one 5-ton, giving σ̃2
C = 32. For En = 11.195, which as we saw gives 50% selection, this amounts to 2%

of the TCRs. This is a vast improvement over the S-MJ model, but it still implies that of order 100 peptides
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are responsible for the vast majority of the selection. In more detail, since the most potent peptide only
removes 2.4% of the TCRs, it does not significantly impact the statistics of the TCR population. Thus, we
can calculate the additional impact of the next most potent peptide, which is most likely to also be of the
same class. Taking account of the reduction of NTCR due to the most potent peptide, this peptide removes
2.3% of the remaining TCRs. Continuing in this fashion, we can estimate the potency of the other (most
likely 3) members of this class, and proceed to the next most potent class, with σ̃2

C = 30. The result of
this process is presented in Fig. S7, together with the result of simulation. We see that the theory works
reasonably well as long as the cumulative percentage of negatively selected TCRs is sufficiently small such
that the statistical properties of the remaining TCRs is unchanged. In the PIRA model, the 10 most potent
peptides are responsible for rejecting 40% of those ultimately selected out, and the top 125 peptides for
rejecting 80%. These numbers are still unreasonably small, and motivate the choice of our third, RICE,
model.

S6 Random Interaction between Cell receptor and Epitope
(RICE)

S6.1 Model Definition

In this section, we define and analyze our third model. Underlying this model is the observation that it is
unrealistic to expect the TCR interaction strength to be dependent only on the numbers of different amino
acids in the peptide and not at least to some extent on the location. We therefore introduce the RICE model,
fashioned to some extent after the random energy model in molecular biophysics. This last model is specified
as follows: The pMHC representation remains unchanged from the S-MJ and PIRA models with peptides of
length k = 10. As in PIRA, we focus only on negative selection by Nn medullary thymic self-peptides and

so m = N =
{
q(j) =

(
q

(j)
i

)j
i=1

, j = 1, ..., Nn
}

. Again, the set T is conceptualized as a set of binding grooves
and the interaction strength between each TCR binding groove and amino acid are comprised of IID random
variables. In this model, TCRs interact with amino acids in a position-dependent manner. For example, an
alanine at position 7 in p-MHC does not necessarily have the same contribution to total interaction as an
alanine at position 2. τ =

{
t(j)
}
, j = 1, . . . , Nt. Hence, each t is characterized by k|A| random variables

Xt
i,j , i = 1, 2, . . . , k, j = 1, 2, . . . , |A|. Here, Xt

i,j represents the interaction between TCR t and an amino
acid j located at position i.

For fixed peptide q and TCR X, our model will assume that

E(T,M, t,m) = E(X, q) = f2(X, q) =

k∑
i=1

Xi,qi , (S38)

As before, negative selection is avoided if E
(
X, q(j)

)
≤ En for every q(j) in N . We typically assume as in

PIRA that each of the X’s are distributed as a standard mean zero and unit variance Gaussian. We will
also consider the alternate assumption that X is distributed uniformly between zero and one. It will turn
out that none of the important findings are sensitive to this change.

S6.2 Selection Curve

Let us start with the uniform distribution assumption. We approach this formulation as before by considering
selection survival and probabilities taking Xi,j as Uniform[0, 1] random variables, representing individual
amino acid interaction contributions falling between minimal (0) and maximal (1) values. Gaussian random
variables will be used as a convenient approximation for parallel analysis. To this end, we let X = Xi,j ,

i = 1, 2, ..., k, j = 1, 2, ..., |A| represent a (random) TCR,
{
q(j)
}Nn
j=1

a random collection of negative self-

peptides each having length k, and E(Xt, q) the total binding interaction between TCR t and peptide q. We

11



note that E(X, q) =
∑k
i=1Xi,qi ∼ Irwin-Hall(k), since Xi,qi are IID Uniform[0, 1] random variables [8, 9].

The pdf, fk, and cdf, Fk, of Xi,qi , and hence E(X, q), are given by:

fk(x) =
1

(j − 1)!

bxc∑
j=0

(−1)j
(
k

j

)
(x− j)k−1, Fk(x) =

1

k!

bxc∑
j=0

(−1)j
(
k

j

)
(x− j)k. (S39)

Plots of Fk and fk are provided for k = 1, 2, . . . , 10 (Fig. S8). Thus, survival can be approximated from
below by assuming affects from each self-peptide are approximately independent by:

ps = P
( Nn⋂
j=1

[
E
(
X, q(j)

)
≤ En

])

≈
Nn∏
j=1

P
(
E
(
X, q(j)

)
≤ En

)
= Fk

(
En
)Nn

=

[
1

k!

bEnc∑
j=0

(−1)j
(
k

j

)
(En − j)k

]Nn
. (S40)

Empirical simulations (Fig. S11A) have been compared to the estimate given by Eq. S40 . We use these
results to inform a relevant choice of En in subsequent analysis. It is generally agreed upon that survival
rates fall between 20% and 70% [10–15]. For 50% survival, En is equal to 8.32 in this case, close to the
simulated result of En = 8.18.

The above results rely on the precise distribution for the sum of uniformly distributed random variables.
But, because the RICE model constructs energies by summing over k = 10 IID random variables, there
should be no real difference between our uniform distribution assumption and the baseline Gaussian one. In
fact, in the uniform case, Fk above may be approximated by a Gaussian distribution with mean µ = k/2 and
variance σ2 = k/12; there is a trivial changes in the mean and variance if we instead use a sum of Gaussians
centered at zero. Thus, we can proceed to an approximate calculation of the selection curve that would be
valid for either formulation.

For the previous two models, we have argued that the Gumbel distribution governing the maximal energy
for a given TCR is narrower than the variation in the TCR statistical parameters µt and σt; hence the former
can be ignored and the relationship between these quantities and the maximum energy taken as deterministic.
This leads to a selection curve which is given by a Gaussian CDF function. For RICE, the distribution of
interaction strengths of different TCRs are narrowly distributed. We can again analyze the dependence on
the specific TCR through the dependence on µt and σt. Here µt is the sample mean of all k|A| random
variables that characterize t. Similarly, σ2

t is the sum over sites i of the sample variances for the |A| different
Xi,qi . With these definitions, for the Gaussian model, the energies E(Xt, q) for a given t are Gaussian with

mean kµt and variance σ2
t . µt is distributed as a zero-centered Gaussian with width

√
(|A| − 1)/k|A|2,

roughly a factor of 1
√
|A| smaller than in PIRA. The quantity σ2

t is distributed according to a Chi-squared
distribution, with mean k(|A| − 1)/|A| and variance 2k(|A| − 1)/|A|2. Thus, for Nn = 104, the width of
the Gumbel is roughly 1.1. The contribution of the variance of the mean to the variance in En is roughly√

10/20 = 0.7, so here it does not swamp the Gumbel width. Similarly, the contribution of the variance in

σt is roughly
√

2k/|A|/
√
k
√

ln(104/N0(104) ≈ 0.1.
Thus,to zeroth approximation we can consider µt and σt as fixed at their mean values, giving us a pure

Gumbel extreme value distribution, since this sets the non-trivial width of the survival curve. For 50%
survival, En is equal to the median of this distribution. Since for the Gumbel distribution the cumulative
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probability function is exp(−(x−µ)/β), it is easy to see that the median is located at x = µ−β ln(ln 2) and
so

En = µ+ σ
√

2 ln(Nn/N0(Nn))− σ ln(ln 2)√
2 ln(Nn/N0(Nn))

(S41)

This leads to a prediction of En ' 12 for the Gaussian formulation, close to the simulation result of En = 11.5.
The predicted shape of the survival profile is significantly narrower than for the other two models, since here
there is practically no variation in µt as there was for the earlier models. The shape is less symmetric, since
it is a Gumbel distribution and not a Gaussian. A graph of the Gumbel distribution versus the empirical
curve derived by simulation is presented in (Fig. S9A). Also shown is a simulation curve for the unphysical
case of |A| = 80, showing that the major source of disagreement is the finite widths of µt and σt arising from
the finite size of the amino acid alphabet.

To investigate this further, we can consider two different issues with finite A. One is the aforementioned
finite width of the sample mean and variance; when this is taken into account (Fig. S9B) we obtain a curve
which is much closer in shape but still slightly off in parameters from the predicted Gumbel distribution.
The small residual deviation(about 3%) is possibly due to correlations in the peptides reducing the effective
size of Nn but we leave demonstrating this in detail for future work.

S6.3 Potency

The most notable difference between the RICE formulation of TCR binding and the other two is that in
RICE almost all self-peptides take part in selection (Fig. 3). Our hypothesis is that this feature reflects more
accurately the underlying biology as it seems unlikely that a large majority of generated self-peptides would
be extraneous to the selection process. Motivated by this empirical observation, we provide an analysis of
the potency rates under this model, using the Gaussian approximation.

For a collection of Nn peptides and under complete independence between TCR interactions with self-
peptides, the probability of detection of a single self-peptide, pr, by a single TCR is given by

pr = 1− Φ

(
En − µ
σ

)
(S42)

Since in order to survive, a given TCR has to go undetected by all Nn peptides, for Nn large, unless the
TCR survival probability is to be tiny, pr must a very small number. Calling the TCR selection survival
probability ps, we have

ps ≈ (1− pr)Nn ≈ e−Nnpr (S43)

Due to independence, the number of TCRs, S, recognized by a given peptide is Poisson distributed with
mean Ntpr. If the total number of TCRs, Nt � Nn, then since ps is a number of order unity, so is Nnpr,
and so Ntpr � 1. Thus, we may consider the distribution of S to be Gaussian, with mean and variance
Ntpr. The most potent peptide is then given by the extreme value of this distribution over the Nn peptides,
so that

Smax ≈ Ntpr +
√
Ntpr

√
2 ln(Nn/N0(Nn)) (S44)

For 50% selection, Nt = 105 and Nn = 104, this works out to be Smax ≈ 17, a tiny fraction of the total
number of peptides, in contrast to the much higher maximum potency in the MJ and PIRA models. This
results in vastly different fluctuations in overall selection rates across individuals for the various interaction
formulations (Fig. S14). Again, as with PIRA, the small number of TCRs which recognize the most potent
peptide means that the statistical properties of the remaining TCRs is unchanged, and we can calculate the
marginal potency of the next most potent peptide by rehashing the above calculation with the reduced value
of Nt. Formally, for the jth most potent peptide,

Sj ≈ Ntj−1pr +

√
Nt

j−1pr
√

2 ln((Nn − j)/N0(Nn − j)); Nt
j = Nt

j−1 − Sj ; Nt
0 = Nt (S45)

This approximation works well as long as the cumulative percentage of recognizing TCRs remains small, and
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is plotted in Fig. S10.

S7 Neoantigen and Foreign Peptide Recognition in RICE

We now proceed to characterize the recognition rates of (point-mutated) neoantigens and foreign peptides.
We will first perform this calculation using the exact CDF for the uniform distribution and then afterwards
utilize a Gaussian approximation. Let q̃ = q̃(1) be a point-mutated version of self-peptide q = q(1), mutated
at (random) position i∗ ∈ 1, 2, ..., k. All mutation positions are equally likely. The probability in question
takes the form:

p̃ ≡ P
([
E(X, q̃) > En

] ∣∣∣ Nn⋂
k=1

[
E
(
X, q(k)

)
≤ En

])
.

Dependencies involving the interaction of a given TCR t with many peptides that may share common
amino acid positions makes estimating the probability of this event nontrivial. We calculate the probability of
the simpler event that t recognizes a single mutant self-peptide q̃ conditioned on t passing negative selection
with q. That is,

p̃1 ≡ P
(
E(Xt, q̃) > En

∣∣∣ E(Xt, q) ≤ En
)
.

Conditioning on the survival of t by selection with self-peptide q is motivated by the fact that q is most
closely related to q̃, and therefore explains a significant amount of the dependency of TCR t recognition
ability on t’s survival in thymic selection. We observe that

∑k
i=1X

t
i,qi

=
∑
i 6=i∗ X

t
i,qi

+Xt
i∗,qi∗

may be viewed

as a sum of two independent random variables, with
∑
i 6=i∗ X

t
i,qi

having support [0, k − 1]. It will prove
useful to note also that for any k, integrals of Fk(x − y) taken with respect to y over a unit interval are of
the form: ∫ 1

0

Fk(x− y)dy =
1

k!

{∫ a

0

bx−yc∑
j=0

(−1)j
(
k

j

)
(x− y − j)kdy

+

∫ 1

a

bx−yc∑
j=0

(−1)j
(
k

j

)
(x− y − j)kdy

}
, for a = x− bxc,

=
1

(k + 1)!

{
−
bxc∑
j=0

(−1)j
(
k

j

)[
(x− a− j)k+1 − (x− j)k+1

]
−
bx−1c∑
j=0

(−1)j
(
k

j

)
(x− 1− j)k+1 +

bxc∑
j=0

(−1)j
(
k

j

)
(x− a− j)k+1

}
,

= Gk(x)−Gk(x− 1), (S46)

where

Gk(x) ≡
∫ x

0

Fk(y)dy. (S47)

A similar argument can be made for higher order integrals of Fk. Set Yi ≡ Xt
i,qi

, Ỹi ≡ Xt
i,q̃i

, Gk(x) ≡
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∫ x
0
Fk(y)dy, Hk(x) ≡

∫ x
0
Gk(y)dy, and x ≡ En. Then

p̃1 = P
( k∑
i=1

Xt
i,q̃i > En

∣∣∣ k∑
i=1

Xt
i,qi ≤ En

)
,

= P
(∑
i6=i∗

Yi + Ỹi∗ > x
∣∣∣ ∑
i 6=i∗

Yi + Yi∗ ≤ x
)
,

=

∫ 1

0

∫ 1

0

P
(
x− ỹi∗ <

∑
i 6=i∗

Yi ≤ x− yi∗
)
fỸi∗ (ỹi∗)fYi∗ (yi∗)dỹi∗dyi∗

/∫ 1

0

P
(∑
i 6=i∗

Yi ≤ x− yi∗
)
fYi∗ (yi∗)dyi∗ ,

=

{∫ 1

0

Fk−1

(
x− yi∗

) ∫ 1

yi∗

dỹi∗dyi∗ −
∫ 1

0

∫ 1

yi∗

Fk−1

(
x− ỹi∗

)
dỹi∗dyi∗

}/∫ 1

0

Fk−1

(
x− yi∗

)
dyi∗ .

By integrating, we obtain

p̃1 =

{
Gk−1

(
x
)
−Gk−1

(
x− 1

)
+Gk−1

(
x− 1

)
−
∫ 1

0

Gk−1

(
x− yi∗

)
dyi∗

+Gk−1

(
x− 1

)
−
∫ 1

0

Gk−1

(
x− yi∗

)
dyi∗

}/(
Gk−1

(
x
)
−Gk−1

(
x− 1

))
.

Additional rearranging yields

p̃1 = 2

(
Gk−1

(
En
)
−Hk−1

(
En
)

+Hk−1

(
En − 1

)
Gk−1

(
En
)
−Gk−1

(
En − 1

) )
− 1. (S48)

Eq. S48 is compared with simulations involving various values of Nn (Fig. S11C). We would like to
compare this estimate with the probability of X recognizing a randomly generated peptide q̂ conditioned on
X having no thymic selection pressure. This serves as an analogous simpler event for the case of random
peptide interaction since, in contrast to a point-mutated self-peptide, a self-peptide closely related to foreign
peptide is quite rare. This leads to

p̂0 ≡ P
(
E(X, q̂) > En

) ∣∣ Ω
)

= P
( n∑
i=1

Xi,q̂i > En

)

= 1− Fk
(
En
)

= 1− 1

k!

bEnc∑
j=0

(−1)j
(
k

j

)
(En − j)k. (S49)

Eq. S49 is compared with simulations in Fig. S11B. The relative ratio p̃1/p̂0 is presented in Fig. S11D.
From this we observe a minimum on the relevant domain.

We can prove the existence of a minimum analytically. To this end, we first calculate the joint probability,
pJ that q is not recognized by t but q̃ is, again expressing the total interaction strength as the sum over
the total contribution of the nonmutated sites plus that of the mutated site. We denote the total energy of
the nonmutated sites by E0, the energy of the mutated site, in its original and mutated form, by ε and ε′

respectively. Thus we require that E0 + ε < En and E0 + ε′ > En, and since 0 ≤ ε, ε′ ≤ 1, we must have
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En − 1 ≤ E0 ≤ En. We thus have

pJ =

∫ En

En−1

Pk−1(E0)dE0

∫ En−E0

0

P1(ε)dε

∫ 1

En−E0

P1(ε′)dε′

=

∫ En

En−1

Pk−1(E0)(En − E0)(1− En + E0)dE0 (S50)

where P1 is the pdf for a single site (i.e., Uniform[0,1]) and Pk−1 is the distribution for the sum of k − 1
energies. This expression is exact. From this, we can show that pJ(En) is symmetric about k/2. To
accomplish this, we first note that Pk−1(E0) is symmetric about its mean, µk−1 = (k − 1)/2. We write
En = k/2 + z, and define ∆0 ≡ E0 − µk−1. We then have

pJ =

∫ z+1/2

z−1/2

Pk−1(∆0 + µk−1)(z + 1/2−∆0)(∆0 − z + 1/2)d∆0

=

∫ z+1/2

z−1/2

Pk−1(∆0 + µk−1)(1/4− z2 + 2z∆0 −∆2
0)d∆0 (S51)

It is straightforward to show that
∫ z+1/2

z−1/2
f(x)dx is even (resp. odd) in z if f is even(resp. odd) in x. It then

follows immediately from the fact that Pk−1(∆0 + µk−1) is even in ∆0 that pJ is even in z, as we wished to
show. The conditional probability, pC , of t recognizing q̃ given that it does not recognize q, is related to pJ
by

pC =
pJ∫ k

En
Pk(E)dE

(S52)

pC/p̂0 =
pJ(∫ En

0
Pk(E)dE

)(∫ k
En
Pk(E)dE

) (S53)

Now, as we have seen pJ is even about En = k/2. It is also clear that the denominator has the same property.
Thus, pC/p̂0 is even as well, and so k/2 is an extremum.

Using our Gaussian approximation for the k − 1 energies, we can produce a formula for this ratio. We
approximate Pk−1 in Eq. S51 by a Gaussian with mean µk−1 and width σk−1 =

√
(k − 1)/12. Then

pJ ≈ pGJ =
1√

2πσ2
k−1

∫ En

En−1

e
−

(E0−µk−1)2

2σ2
k−1 (En − E0)(1− En + E0)dE0

=
σk−1√

2π

[
(En − µk−1)e

−
(En−µk−1−1)2

2σ2
k−1 − (En − µk−1 − 1)e

−
(En−µk−1)2

2σ2
k−1

]

+
(
(En − µk−1)(En − µk−1 − 1) + σ2

k−1

) [
Φ

(
En − µk−1

σk−1

)
− Φ

(
En − µk−1 − 1

σk−1

)]
(S54)

Then

pC/p̂0 ≈
pGJ

Φ
(
En−µk
σk

)(
1− Φ

(
En−µk
σk

)) (S55)

Our Gaussian approximation of pC/p̂0 captures the minimum at En = µk, where its value is 0.29, which
agrees well with our prior estimates of p̃1/p̂0 using exact values for p̃1 (Fig. 3D).

Simulations of p̃1 and p̂0 are compared alongside these analytical expressions as well as simulations of p̃
and p̃ for larger Nn (Fig. 3B-C). We find that estimates for the Nn = 1 case are close to empirical estimates
of the Nn = 104 (see below; simulations for Nn = 104 averaged over 10 iterations of self-peptide recognized
with Nt = 105, each averaged with 104 non-self peptides).
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Value Minimal (p̃1) or Absent (p̂0) Selection Physiologic Selection (Nn = 104)
Point-mutated peptide p̃1 = 6.6 ∗ 10−5 p̃ = 3.4 ∗ 10−5

Random peptide p̂0 = 9.8 ∗ 10−5 p̂ = 4.8 ∗ 10−5

In the sequential MJ model we found that TCR selection behavior depended almost exclusively on a few
‘extreme’ self-peptides. For the most extreme such peptide, the Nn = 1 case selected the same TCRs as
the Nn = 104 case, which is inconsistent with the underlying biology. In the RICE model, nearly all self-
peptides participate in selection. If we restrict our attention to selection with En chosen to approximate
empirical negative selection survival estimates, we find that TCR recognition probabilities is relatively in-
sensitive to the number of self-peptides (i.e. small changes in the number of self-peptides loaded on various
MHC molecules would become by itself not influence the degree of TCR recognition ability). Moreover, we
find that the recognition rates of point-mutated self-peptides (representing tumor-associated neoantigens)
and random peptides (representing foreign antigens or mislocalized/aberrantly-displayed self-peptides) are
comparable to one another and on the same order of magnitude for Nn ∈ [1, 104] (Fig. 3D).

S7.1 Optimal Selection

We remark that our choice of En was selected based on targeting experimentally-observed negative selection
survival rates. From an optimization standpoint, the thymus functions to produce mature T-cells with
the ability to effectively recognize foreign threats. The VDJ recombination relies on random generation of
TCR sequences to cover epitope space. This, along with cell division and finite resources, places a limit on
thymocyte output. However, selection thresholds (En), in theory, could be controlled by the organism. An
effective adaptive immune system would therefore be able to quickly distinguish foreign threats from self.
Prior to thymic migration, this would require the most efficient production of effective thymocytes (those
able to survive thymic selection and recognize a random, unknown foreign antigen). This is approximated
in the language above by,

P
([
E(X, q̂) > En

]
∩
Nn⋂
j=1

[
E
(
X, q(j)

)
≤ En

])
= P

(
E(X, q̂) > En

∣∣ Nn⋂
j=1

E
(
X, q(k)

)
≤ En

)

· P
( Nn⋂
j=1

[
E
(
X, q(j)

)
≤ En

])
≈ p̂ps
≈ p̂0ps

=
[
1− Fk(En)

]
Fk(En)Nn . (S56)

Let R(x) ≡
[
1− Fk(x)

]
Fk(x)Nn . This is maximized whenever

∂R

∂x
=
∂p̂0ps
∂x

= NnFk(x)Nn−1F ′k(x)− (Nn + 1)Fk(x)NnF ′k(x)

= fk(x)Fk(x)Nn−1
[
Nn − (Nn + 1)Fk(x)

]
= 0.

fk, Fk > 0 implies that,

Fk(x) =
Nn

Nn + 1
,
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which occurs uniquely in the Uniform[0,1] formulation at

E∗n = F−1
k

(
Nn

Nn + 1

)
= 8.197, for Nn = 104.

In both cases, however, optimal selection rates are predicted to occur at

ps = [Fk(x)]Nn =

(
Nn

Nn + 1

)Nn
≈ 1/e. (S57)

Thus, selection is optimal in this sense when roughly 1/3 of the TCRs survive selection. At this level of
selection, by Eqs. S40 and S43, the recognition probability of a peptide is just 1/Nn, and the mean number
of TCRs recognizing a peptide is precisely Nt/Nn, which is the optimal sharing of the selection burden.

This agrees with and reinforces empirical observations on negative selection rates. We would like to make
a statement about the maximizer x∗2 of p̂ps relative to the maximizer x∗1 of p̂0ps, despite not having the
explicit expression for p̂. All hypotheses in the following claim are derived by considering the results of Fig.
S11B for a generous region of the relevant parameter range of interest (En = x ∈ [7.5, 10]).
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Proposition S1. Let p̂0, p̂s ∈ [0, 1] be continuous, nonincreasing functions of x on [7.5, 10], with p̂0, p̂s → 0
as x → 10− such that there exists some nondecreasing α(x) for which 0 ≤ α ≤ 1, α ↑ 1 as x → 10−, and
p̂ = αp̂0 on [7.5, 10]. Let x∗1 be a global maximizer for p̂0ps. Then, there exists a maximizer x∗2 of p̂ps such
that x∗2 ≥ x∗1.

Proof.
Put g1 ≡ ∂(p̂0ps)/∂x, g ≡ ∂(p̂ps)/∂x. Then,

g =
∂ps
∂x

p̂+ ps
∂p̂

∂x

= αp̂0
∂p

∂x
+ ps

∂αp̂0

∂x

= α
(
p̂0
∂ps
∂x

+ ps
∂p̂0

∂x

)
+ psp̂0

∂α

∂x

= αg1 +
∂α

∂x
psp̂0

≥ αg1,

since α is nondecreasing and both p, p̂0 are nonnegative. Therefore,

g(x∗1) ≥ αg1(x∗1) = 0. (S58)

This demonstrates that p̂ps is increasing at x = x∗1. Moreover, p̂ps is a nonnegative function of x such that
p̂(x∗1)ps(x

∗
1) > 0 and p̂p→ 0 as x→ 10−. The existence of x∗2 ≥ x∗1 follows from continuity of p̂ps.

From this we conclude that if thymic selection is indeed optimized with regard to the generation of ‘useful’
TCRs, then we may have confidence that the effective cutoff regime (En) under physiological conditions is
no less than our estimate, in which case we expect differences between p̃1 (resp. p̂0) and p̃ (resp. p̂) are
no more than the above estimate (Fig. S11B-C). We remark that the argument above holds for the general
features of the Gaussian formulation as well (Fig. 4A).

S8 Allogeneic Response in RICE

We finish with a brief application to the allogeneic response present in the setting of MHC-matched HSCT.
Let Y be the number of point-mutated peptides present in an average host cell, where the mutation is
described with respect to Donor T-cells. We consider PA(Y ), the (nondecreasing) fraction of alloreactive
TCRs for increasing values of Y . TCRs surviving the same selection criteria are identically distributed. If
we make an additional approximation that the number of new TCRs that react to peptide y but not to any
prior peptides {1, 2, . . . , y − 1}, is independent of prior peptides, then we may approximate PA(Y ) by

PA(Y ) ≈ 1−
(
1− p̃

)Y
, (S59)

where we recall from Section S7 that p̃ (resp. p̂) represents the probability that a TCR surviving selection
recognizes point-mutated self-peptide (resp. random peptide). A similar argument can be made with p̂
instead for calculating the fraction of CTLs responding to foreign (e.g. pathogenic) antigens. Analytical
predictions of allorecognition percentages from Eq. S59 can be compared against simulations that record the
percentage of responding T-cells with increasing differences in presented antigens, either foreign or point-
mutant self-peptides (Fig. 4).

Our final goal is to characterize the distribution of Y in order to estimate the fraction of allogeneic
TCRs in the setting of MHC-matched (through p̃) and unmatched (through p̂) transplant. Recognition of
point-mutated self-peptide is relevant to minor histocompatibility differences in the form of SNPs between
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MHC-matched host and donor. Assuming that SNPs occur in the genome with frequency 300−1 bp−1,
we can view the number of SNP differences per 10-mer peptide between two individuals (host and donor)
as, X∼Poisson(λ = Nn/10), given that each amino acid is constructed from a trinucleotide codon. Each
SNP position provides an (independent) opportunity for the donor to differ from host, and the likelihood
of this depends on the underlying frequency of DNA base pairs. Given the relative frequencies of base
pairs A,C,G,T in the exome (approximated in this estimate as 1/4) the probability of missense mutations is
pd ≈ 0.6, calculated directly by considering all possible DNA codons. Therefore, the number of self-peptides
that differ conditioned on x SNPs is binomially distributed:

[Y |X = x] ∼ Binomial(x, pd). (S60)

Let X be the number of (random) SNP differences between host and donor. Let GY (z) (resp. GX(z))
be the probability generating function of Y (resp. X). Then, by definition,

GY (z) = E
[
zY
]

=
(
1− pd + pdz

)X
; GX(z) = E

[
zX
]

= eλ(z−1).

Therefore,

GY (z) = E
[
E
(
zY |X

)]
= E

[(
1− pd + pdz

)X]
= GX

(
1− pd + pdz

)
= eλ[(1−pd+pdz)−1]

= eλpd(z−1).

Therefore Y∼Poisson(λpd). From this, we wish to characterize the mean and variance of the fraction of
alloreactive T-cells using Eq. S59. Let mY be the probability mass function of Y . Then,

E
[
PA(Y )

]
=

∞∑
y=0

P (y)mY (y)

=

∞∑
y=0

(
1− ry

)e−ννy
y!

, for r ≡ 1− p̃, ν ≡ λpd,

=

∞∑
y=0

e−ννy

y!
− e−ν(rν)y

y!

= 1−
∞∑
y=0

e−νp̂
e−rν(rν)y

y!

= 1− e−λpdp̂. (S61)
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Additionally,

E
[
PA(Y )2

]
=

∞∑
y=0

P (y)2mY (y)

=

∞∑
y=0

(
1− 2ry + r2y

)e−ννy
y!

= 1− 2e−νp̃ +

∞∑
y=0

e−ν
(

2rp̃+p̃2
)
e−r

2ν(r2ν)y

y!

= 1− 2e−νp̃ + e−νp̃(2r+p̃)

= 1− 2e−λpdp̃ + e−λpdp̃(2−p̃).

Therefore,

Var(PA) = E
[
P 2
A

]
− E

[
PA
]2

= 1− 2e−νp̃ + e−νp̃(2r+p̃) − 1 + 2e−νp̂ − e−2νp̃

= e−ν(2rp̃+p̃2) − e−2νp̃

= e−2νp̃
(
eνp̃

2

− 1
)

= e−2λpdp̃
(
eλpdp̃

2

− 1
)
. (S62)

Using the parameters above, we estimate 2.02%±0.08% (mean ± s.d.) allogeneic TCRs for MHC-matched
individuals with roughly 600 foreign p-MHC. We generally expect that 1-24% of cells are reactive in a typ-
ical allogeneic response [16]. This simple estimate assumes that a sufficient amount of relevant peptides be
successfully displayed to TCRs. Variability in this process may be responsible for increased variance between
individuals.

Although less clinically relevant, the analysis of allorecognition in the context of MHC-unmatched pairs
requires additional assumptions. In theory, one could compare the number of differences in p-MHC as a
result of distinct peptide loading on each MHC. As seen in Fig. 5, these contributions will on average always
contribute more to alloreognition percentages. It is also hypothesized that direct recognition of the MHC
complex by TCRs contributes to GVHD, which is at present not considered. Analogous results for Fig. 5
using the Uniform[0,1] distribution are depicted in Fig. S12.

S9 Reduced amino acid alphabets

The major recognition results obtained above are compared with an identical analysis, this time with a
reduced number of possible amino acids (Fig. S13. This is motivated by the fact that correlations between
functionally similar amino acids may be partitioned into functionally related equivalence classes. While the
number of classes is depends on the application, approximations from the molecular biophysics community
would place realistic numbers at 5-10 amino acids [17,18].

We find predictably that selection behavior approaches the 20 amino acid case as the number of equiva-
lence classes increases (Figure S13A). Under severe restriction (3 amino acid equivalence classes), the extreme
reduction in the variety of allowable TCR binding grooves leads to peptide potency behavior resembling that
found in the PIRA model. This issue is significantly mitigated in the case of 5 equivalence classes, and by 10
equivalence classes resembles the full alphabet case (Figure S13B). Recognition of point-mutated self pep-
tide and foreign peptide effectively remains unchanged in the simulations that were compared to empirical
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estimates p̃1 and p̂0.

We are therefore confident that the above analysis still holds under reasonable assumptions of reduced
amino acid alphabets.
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Figure S1

A B

Figure S1: Properties of S-MJ model conditioned on a fixed TCR, t = {P, R, S, D, E, D, K, R, R, M}. (A)
Lindeberg-Feller Central Limit Theorem convergence of sums of k random MJ interactions in the sequential
MJ formulation. (B) Analytical and empirical overall survival rates conditioned on a single TCR versus
absolute constant energy interaction for the sequential MJ model for various numbers of thymic self-peptides.
Independent peptide populations were used for cortical and medullary selection steps (En = 127, Ep = 122
so that En − Ep = 5KbT as in [1–4]).
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C

BA

Figure S2: Unconditional TCR survival rates in the S-MJ model. (A) Classical Central Limit Theorem
convergence of the distribution of, µt, the mean total interaction energy (averaged over all peptides) for a
TCR, t. (B) Empirical plots of standard deviation versus mean MJ-interactions (n=106). (D) Unconditional
analytical and empirical overall survival rates for the S-MJ model (En = 127, Ep = 122 so that En − Ep =
5KbT as in [1–4]).
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Figure S3: Correlation between µt and total interaction energy in the S-MJ model. The maximum interaction
energy between a given TCR t and a collection of N = 104 peptides, Etmax versus µt, for 1000 different TCRs.
Also show is the linear regression and the straight-line prediction, Eq. (S20).
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Figure S4: Maximum Binding Energy vs. Repetition Class for the PIRA model. The maximum binding
energy of a TCR with elements of a given class present in a randomly generated sample of 104 self-peptides,
averaged over 104 randomly generated TCRs, together with our prediction, Eq. (S33), with µt, σ

2
t replaced

by the average values, 0 and 1, respectively. The classes are numbered in decreasing order of their number
of representative peptides in the sample.
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Figure S5: Maximum Binding Energy for Different TCRs in the PIRA model. The maximum binding energy
for a set of 1000 TCRs with a randomly generated sample of 104 self-peptides, together with our prediction,
Eq. (S34), with µt, σ

2
t replaced by the average values, 0 and 1, respectively.
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Figure S6: Selection Curve for the PIRA model. The probability of selection as measured for a set of 104

TCRs with a randomly generated sample of 104 self-peptides, together with our prediction, Eq. (S35).
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Figure S7: Potency Curve for the PIRA model. The cumulative fraction of negatively selected TCRs due
to the n most potent peptides (out of 104) as a function of n, as measured in simulation with En = 11.195,
resulting in negative selection of 50% of the TCRs.

Figure S5

A B

Figure S8: Statistics of the Total Energy in the RICE model. (A) Cumulative distribution functions (CDFs)
and (B) probability density functions (PDFs) of the Irwin-Hall distribution across all relevant values of RICE
selection thresholds, for various n.
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Figure S9: Gaussian Selection Curve for the RICE model. (A) The probability of selection as measured
for a set of 104 TCRs with a randomly generated sample of 104 self-peptides, together with our prediction.
Deviations from the simulation may be explained by the finiteness of the amino acid alphabet, with agreement
occurring for |A| sufficiently large. (B) Including the effect of the finite width of the sample mean and
variance gives a Gumbel distribution for the maximum energy which is slightly shifted from the best fit
Gumbel distribution of the data (Green curve).

Figure S10: RICE Peptide Potency. Nn = 104 self-peptides were ordered by ‘potency’, or the fraction of
(105) thymocytes recognizing them during selection simulations. ‘Potent’ self-peptides were those that were
recognized most often by the TCRs. The cumulative contributions of each self-peptide to negative selection
was plotted in decreasing order of self-peptide potency for the RICE model. Simulations were compared
with theoretical estimates given by Eqs. S45.
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Figure S11: RICE Survival and Recognition Behavior. Analytical estimations of (A) TCR selection, (B)
Foreign peptide recognition, and (C) point-mutated self-peptide recognition are compared with simulations
for assuming interaction energies selected as IID Uniform[0,1] random variables. (D) The ratio (p̃1/p̂0)
between recognition of point-mutated self-peptide and foreign peptide is never less than 30%.

31



Figure S12: The Effects of Increasing Differences in Host and Donor Thymic Self-Peptides on Alloreactivity
percentages. The results of Fig 5 were repeated here for the IID Uniform[0,1] formulation. For the case of
maximal single amino acid sequence differences in the uniform distirubtion model model with Nn = 104 would
correspond to an alloreactive rate of 26%, while maximal numbers of random peptides would correspond to
rates as high as 38%.
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Figure S13: Key results for systems with reduced amino acid alphabets: Simulations and analytical predic-
tions based on the uniform distribution energy RICE model of (A) survival profiles, (B) potency, (C) TAN
recognition, and (D) foreign peptide recognition are presented for reduced amino acid alphabets of sizes 3,
5, and 10. In each case, Nn = 104, Nt = 105.
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Figure S6
Figure S14: Fluctuations of the Selection Curve: Comparisons between the S-MJ, PIRA and RICE models.
Simulated trajectories of negative selection rates and fluctuations (n=100) for (A) sequential MJ, (B) PIRA,
and (C) RICE formulations. (D) Comparisons of thymocyte survival variability for each formulation overlaid
with shifting selection threshold (variability for relevant selection thresholds indicated). In each case, Nn =
104, Nt = 105.
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A.A. Distribution
A.A. (j) mass, Ph(j)
C 0.0225
M 0.0215
F 0.0359
I 0.0434
L 0.0985
V 0.0598
W 0.0123
Y 0.0263
A 0.0692
G 0.0658
T 0.0536
S 0.0836
N 0.0481
Q 0.0360
D 0.0718
E 0.0476
H 0.0261
R 0.0568
K 0.0576
P 0.0636

Table S2: Distribution of amino acids obtained by their estimate from the human proteome obtained from
[21].
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