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Materials and Methods

Study Design. Participants for our project were from the
greater San Diego area (Protocol No. HLI 2015-001, West-
ern Institutional Review Board, Puyallup, WA); they were
recruited by ads, social media, posting signs on university
campuses, and by word-of-mouth. Inclusion criteria included
both male and female and ≥ 18 years of age; exclusion criteria
included intravenous drug usage, positive for Hepatitis A, Hep-
atitis B, HIV-1, and/or HIV-2; mustache and/or beard; and
pregnant at the time of participation. The participants were
provided with copies of the study protocol, consent, and the
California Experimental Subject’s Bill of Rights. Participants
were asked to review these materials and to ask any questions.
Individuals who met the inclusion criteria and agreed to the
terms of the study were allowed to participate. In addition,
participants agreeing to the use of their image and/or likeness
in publications and presentations signed a photo release.

Participants reported sex, age or date of birth, eye color,
ancestry, and approximate hours since last shave on an iPad
Mini. Weight was measured in kilograms (kg) and height
in centimeters (cm), both without shoes, using the MedVue
Digital Eye-Level Physician Scale with attached height rod
(DETECTO Scale Company, Webb City, MO).

The face was photographed using the 3dMDtrio System
with Acquisition software (3dMD LLC, Atlanta, GA); this is a
high-resolution three-dimensional (3D) system equipped with
nine machine vision cameras and an industrial-grade synchro-
nized flash system; the 3D 200-degree face was captured in
approximately 1.5 milliseconds. If necessary, the participants’
hair was pulled away from the face by the use of hairbands
and hairpins in order to expose significant facial landmarks.
Further, the participants were asked to remove all makeup
and facial jewelry, e.g., earrings and nose studs. Each partici-
pant sat directly in front of the camera system on a manually
controlled height stool; they were asked to focus their eyes on
a marking 6” above the center camera and maintain a neutral
expression.

In addition, the participants’ voices were recorded with
both scripted text and a 2-minute minimum non-scripted
free speech using The Olympus Digital Voice Recorder WS-
822 (Olympus Imaging Corp., Tokyo, Japan) with attached
RadioShack Unidirectional Dynamic Microphone (RadioShack,
Ft. Worth, TX).

A minimum of 5ml EDTA-anticoagulated blood was col-
lected for all 1,061 participants. The blood was stored at room
temperature during the day and at the end of each collection
session, they were placed in 4°C storage until extraction.

Genome Sequencing. The genome was extracted, quantified,
normalized, sheared, clustered, and sequenced. TruSeq Nano
DNA HT Library Preparation Kit (Illumina, Inc., San Diego,
CA) for next generation sequencing library preparation was

used following the manufacturer’s recommendations. Deoxyri-
bonucleic acid (DNA) libraries were normalized and clustered
using the HiSeq SBS Kit v4 (Illumina, Inc.) and HiSeq PE
Cluster Kit v4 cBot (Illumina, Inc.) and sequenced on HiSeq
X Ten System sequencers (Illumina, Inc.) using a 150 base
paired-end single index read format following the manufac-
turer’s recommendations. The whole-genome sequencing work-
flow requires 100ng of DNA. In practice, we have collected
1.25µg per sample. We sequenced the full genome of each
participant at an average depth of 41X.

Estimating Ancestry Information from Genome. We con-
structed a reference panel from the Human Genome Diversity
Project (HGDP) (1) and the 1000Genome Project (2), and
used it for ancestry admixture analysis. We used the two
references to estimate ancestry proportions for each individual
in our data. Genotype data from HGDP (52 populations)
and the 1000Genome Project (26 populations) were merged
based on dbSNP rsid positions. SNPs with discordant forward
strand alleles between genome build 36 and 38 were removed
to avoid assembly inconsistency because they are likely to be
assembly errors. In total, 3,444 individuals with 636,698 SNPs
were compiled; 116,990 SNPs were then pruned due to linkage
disequilibrium (LD) using PLINK 1.9 with the parameters
--indep-pairwise 50 10 0.8; that is, 50k base pair (bp) win-
dow with 10k bp step, and all variants with pairwise R2 greater
than 0.8 were pruned. Allele frequencies were calculated for
each population, and the 3,000 most informative SNPs for each
population (ranked based on the absolute Z-score for each
allele’s frequency against the whole panel of populations) were
extracted. The resulting collection of 57,214 unique ancestry
informative SNPs were used for ancestry admixture analysis
using ADMIXTURE 1.23 (3). We predicted five ancestry com-
ponents, European (EUR), African (AFR), East Asian (EAS),
Central South Asian (CSA), and native American (AMR).

Quantitative Genotyping. For the 1,069 individuals from the
study cohort, we extracted a set of SNPs from the genome-
VCF (variant call format) files of high quality full sequencing
data. We accepted the calls for the SNPs that passed the
standard quality score threshold (PASS variants) of the Isaac
variant caller. All other variants were treated as missing.
From this initial set of variants, we filtered to a smaller set of
SNPs which we used to compute genomic principal components
(PCs) by excluding non-autosomal SNPs, SNPs with a minor
allele frequency (MAF) f < 5%, SNPs with a missing rate
≥10%, or SNPs found to be in Hardy-Weinberg disequilibrium
(P ≤ 10−4) on the 1,061 individuals from our cohort. The
final set of variants used for computation of PCs consists of
6,147,486 SNPs.

We then constructed the SNP matrix of minor allele dosage
values (represented as minor allele counts of 0, 1, or 2). In
this matrix, rows represented the individuals and columns
represented the SNPs. Missing variants were imputed to
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the mean dosage.a c Each SNP column was scaled by the
probability density function of a symmetric Beta distribution
evaluated at the MAF f (4).

Beta(f |α) = fα−1(1− f)α−1∫ 1
0 t

α−1(1− t)α−1dt

We chose a shape parameter α of 0.8 for the symmetric
Beta distribution. This choice of α was made to yield a
U-shaped distribution that up-weights low frequency variants,
but in a less extreme manner than the common practice of
standardizing the weights (i.e., division by the standard de-
viation). Intuitively, such a weighting derives from the fact
that, for well-studied traits, associated low-frequency variants
have been found to have larger effect sizes than common vari-
ants (4). After imputation and scaling, the genomic PCs were
computed from the matrix of dosages of the 1,061 individuals
in the study cohort.

Estimating Telomere Length from WGS Data. We estimated
telomere length from WGS data as the product of the size of
the human genome and the putative proportion of the telomeric
read counts out of total read counts. We considered a read
to be telomeric if it contained k or more telomere patterns
(CCCTAA or its complement TTAGGG), where k is the telomere
enrichment level. Thus, the estimated telomere length of
individual x, denoted as tk(x) was computed as:

tk(x) = rk(x)S
R(x)Nt

, [1]

where rk(x) is the count of putative telomeric reads ob-
tained for telomere enrichment level k, S is the size of the
human genome (gaps included), R(x) is the individual’s total
read count, and Nt is fixed at 46 for human, the number of
telomeres in the genome.

To identify an optimal telomere enrichment level k, we
performed measurement error analysis on 512 WGS runs of
the reference individual NA12878 (5). These 512 WGS runs
used the same reagent chemistry and were made around the
same dates as our CV dataset. We estimated telomere lengths
with expression 1 for all runs and enrichment levels. For
the measurement error analysis, we compare repeatability
between different values of k. Repeatability was estimated as
the variance derived from genetic and environmental effects
divided by the total phenotypic variance, or 1− vi/vp, where
vp is the telomere length variance over our dataset and vi
is the length variance computed on the NA12878 individual
only. In general, repeatability can also be interpreted as the
proportion of total variance attributable to among-individual
variation. We considered the most repeatable of these runs
as our best solution based on the assumption that the true
telomere length was constant across all the runs of NA12878.
Fig. S1A shows repeatability index curves versus k over all
NA12878 sequencing runs. We found that the curve reached its
maximum value of 0.73 for k = 4. Fig. S1B shows the Pearson
correlation coefficient between telomere length estimates and
annotated age for our CV set and for all values of k. As
highest correlation was also obtained at k = 4, evidencing that
repeatability provides a good criterion for selecting k.

We tried to assess the cause for the increased absolute cor-
relations between estimated telomere length and age observed
on our study cohort, compared to the R = −0.24 that had

been reported by Ding et al. (6) for 240 leukocyte samples from
the TwinsUK cohort. First, we checked if coverage affected
estimation of telomere length. To test this, we performed a
simulation by uniformly subsampling the reads in the .bam
files of the study cohort to achieve various average depths.
Measuring quality of the estimate by correlation with age, we
confirmed the observation by Ding et al. (6) that the correla-
tion between the telomere length estimate and age plateaus at
a read depth of about 2.5X (see Fig. S2). From this analysis
we conclude that differences in read depth did not explain the
difference in correlation.

Other hypotheses are that the deviation in results may
be due to differences in the cohorts, including differences in
sample preparation, storage and treatment. We used a set
of 1,950 females from the TwinsUK cohort that recently had
been sequenced using the same sequencing pipeline as our
study cohort (7, 8) to check these hypotheses. If the sequenc-
ing pipeline had an influence, then on these individuals we
would expect to obtain a higher absolute correlation between
estimated telomere length and age, than the correlation re-
ported in Ding et al. (6). However, as shown in Fig. S3, on
these individuals we obtain an R = −0.19 between estimated
telomere length and age, a value that is comparably low, and
even slightly lower, in absolute value than the R = −0.24 that
had been reported in Ding et al. (6). This result indicates
that the results are dependent on the used cohort and its
representativeness.

Computing Chromosome Copy Number Variation from WGS
Data. We used chromosomal copy number (CCN) to quantify
the mosaic loss of chromosomes. Naturally, read depth at a
chromosome could be used to compute the CCN. However,
a large proportion of ChrY is paralogous to some autosomal
regions. Many of the reads that mapped to ChrY originate
from autosomes. For this reason, prior to computing the copy
number of ChrY, we filtered the reads to those that mapped
uniquely to ChrY.

More generally, given the HG38 reference genome (RG),
we produced a set of uniquely mappable regions, i.e., regions
where any 150-mer can be mapped only once throughout the
RG. We first simulated 150bp-long reads from the RG at each
base position of the genome, and then mapped them to the RG
using BWA-mem. Next, we collected the source regions from
where the reads originated and mapped only once. Lastly, we
removed some repetitive regions annotated by RepeatMasker
as low_complexity, retroposon, satellite and SINE due to
lower region coverage as these regions are more difficult to
align. Our approach of generating uniquely mappable regions
would work for any version of the RG.

We then selected uniquely mappable regions with length
> 5kb. The length threshold was determined so that each
chromosome contained at least 200 bp of each region. We com-
puted read depth of each region using the samtools mpileup
command, and grouped the regions by the their Guanine and
Cytosine (GC) content. As can be seen in Fig. S4, genomic
regions that have an extreme value in their GC content tend to
achieve lower read depth during sequencing. We accounted for
this effect, called GC bias, which is known to affect coverage
substantially (9) as follows: For a particular GC content group,
the median value of the read depth at autosomal regions was
used as the baseline value denoted as rdGC. Here, we assumed
a healthy person to have a diploid genome and no detectable
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Fig. S1. Repeatability and held-out age correla-
tion of telomere length estimates obtained over
different values of telomere enrichment level k.
Both NA12878 and the study cohort used the same
reagent chemistry for sample preparation. We found
that the optimal value of k depends on the chem-
istry used (data not shown). (A) For this chemistry,
the highest repeatability is achieved at k = 4. For
values of k > 18 the estimates for telomere length
become unreliable to the extent that the telomere
length variance among individuals is smaller than
the variance for NA12878. (B) Pearson correlation
coefficient between telomere length and age esti-
mates for our CV set; the best correlation is also
obtained at k = 4.
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Fig. S2. Evaluation of telomere length estimate as function of read depth. We used
samtools to randomly sub-sample the reads in our study population to simulate
telomere length estimation at varying read depth. As a measure of quality, we used
the Pearson correlation coefficient (R) between telomere length and age on our study
cohort. Lower R is better. Our cohort R plateaued above a coverage of 2.5X, similar
to previously reported results by Ding et al. (6) on a cohort that had been sequenced
at an average coverage of 6.5X.
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Fig. S3. Correlation between age and telomere length on 1,950 deeply sequenced
females from the TwinsUK cohort. The correlation is in line with the correlation of
R = −0.24 reported by Ding et al. (6) on individuals from the same cohort that had
been sequenced at an average coverage of 6.5X.
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Fig. S4. Read depth vs. GC content. Each dot is the average read depth for a 1kb
window in chromosome 22, as a function of the GC content in the window. The median
line is computed over each one percent bin in GC content. Data is taken from one
NA12878 reference sample that had been sequenced at an average read depth of
27.7X and median read depth of 34.5X.

mosaic loss of autosomes. For a region in this GC group, CCN
was computed as twice the observed read depth divided by
rdGC. For a given chromosome c, the CCN was computed as
the median CCN of all the regions contained within c.

Extracting Single Joint T-cell Receptor Excision Circles. Sev-
eral studies have reported that specific somatic DNA rear-
rangements, called single joint T-cell receptor excision circles
(sjTRECs) in T lymphocytes were correlated with age (10, 11).
Existing assays based on qPCR on a specific sjTREC (δRec-
ψJα site) demonstrated that a log-linear relationship between
individual age and normalized sjTREC abundance explains a
significant portion of the total age variance (12). Therefore,
we investigated whether sequences from the sjTRECs could be
reliably detected in our genome sequencing data and used as
a marker for age. In our investigation, sjTRECs did not show
significant signal for age discrimination and we did not use
it for our age prediction model. Zubakov et al. (10) reported
the signal to be between 2-17 to 2-4 compared to the level of
single-copy genes, suggesting that the TRECs are only seen in
trace amounts, even in young individuals. This is consistent
with our observation that most individuals show no TREC
reads at all. Consequently, our read depth at ∼30X WGS
does not provide the power to detect significant correlation of
sjTRECs with age.

We extracted specific structural signatures derived from
the somatic excision events at the δRec-ψJα site. Specifically,
we identified the reads that aligned across the junction of
the circular sjTREC, as well as the reads that aligned across
the junction of the site of deletion. These junction reads
were mapped to two genomic locations on chr14 at a distance
of ∼88Kb apart. For better sensitivity, the junction reads
included both “split reads” as well as the “discordant read
pairs” (12) with two paired ends mapped to the two distinct
locations of interest. The number of junction reads ranged
from zero to three across the individuals that we selected from
different age groups. Due to the relatively weak signal that we
observed in these selected individuals, the sjTREC signatures

Fig. S5. 36 landmarks overlaid on the face of a participant. Landmarks were manually
annotated for all participants in our dataset. The landmarks were placed in order from
top, going downward in the center, to the right, then left, and bottom. All landmarks
in this study were identified visually, i.e., no palpation; the analyst relied upon the
3dMDvultus™ Software v2.3.02 to turn the image and applied the wireframe render
mesh of triangles features to annotate each landmark.

identified from our whole genome sequencing did not provide
sufficient discriminative power for age prediction. Instead,
this particular marker worked well in qPCR assays, perhaps
due to the amplification step that exponentially increased
the abundance of non-replicated circular sjTRECs which are
serially diluted with each cellular division.

Quantitative Phenotyping

Landmarking 3D Images and Extracting Landmark Distances.
Facial landmarking is an important basic step in our face
modeling procedure as they are used to align face images,
and to compute landmark distances (e.g., distance between
the inner edges of left and right eyes and width of the nose).
A total of 36 landmarks for each 3D image was measured
using 3dMDvultus™ Software v2.3.02 (3dMD LLC). Each
measurement is precise to 750 microns. The landmarks and
their definitions were adopted from www.facebase.org (13),
with the addition of the laryngeal prominence (Table S1).
Fig. S5 illustrates facial landmarks overlaid on a face image.

We manually annotated the landmarks in the 3D images
using 3dMDvultus™ Software (3dMD LLC). The landmark
annotations were carefully determined; some of the landmark
positions required careful examination at different angles. For
example, pronasale is the most protrusive point on the tip
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Table S1. Facial landmarks. 36 landmarks were manually placed on each of the 3D images.

Landmark Label Definition

Trichion TR Point where the normal hairline and middle line of the forehead intersect.
Glabella G Mid-point between the eyebrows and above the nose; underlying bone which is slightly depressed,

and joins the two superciliary ridges; cephalometric landmark that is just superior to the nasion.
Nasion N Intersection of the frontal bone and two nasal bones of the human skull; distinctly depressed

area directly between the eyes, just superior to the bridge of the nose; just inferior to the glabella.
Eyebrow Right (or Left) EB_R or L Lower corner of where the eyebrow begins.
Endocanthus Right (or Left) EN_R or L Innermost corner of the eye where where tear duct and the skin meet
Palpebrale Superious Right (or Left) PS_R or L Highest point of the upper eyelid, directly above the iris landmark and on the eyelash line.
Ectocanthus Right (or Left) EX_R or L Outermost corner of the eye
Palpebrale Inferious Right (or Left) PI_R or L Highest point of the lower eyelid, directly below the iris landmark and on the eyelash line.
Iris Right (or Left) IR_R or L Center of the pupil.
Pronasale PRN Tip of the nose.
Alar Right (or Left) AL_R or L Midpoint of the outer flaring cartilagnious wall of the outer side of each nostril.

The ala of the nose (wing of the nose) is the lateral surface of the external nose.
Subalar Right (or Left) SBAL_R or L Lowest point where the nostril and the skin on the face intersect;

located inferior to the “alar” landmark.
Subnasale SN Lowest point of the nasal septum intersects with the skin of the upper lip.
Labiale Superious LS Midline, between the philtral ridges, along the vermillion border of the upper lip;

uppermost point in the center of the upper lip where the lip and skin intersect.
Crista Philtri Right (or Left) CPH_R or L Highest point of the philtral ridges, or crests that intersect with the vermillion border of the upper lip.
Chelion Right (or Left) CH_R or L Outermost corner, commissure, of the mouth where the upper and the lower lips meet.
Labiale Inferius LI Midline along the vermillion border of the lower lip; lowermost point in the center of the lower lip

where the lip and skin intersect; midline along the inferior vermillion border of the lower lip.
Stomion STO Center point where upper and lower lips meet in the middle; easily identified when lips are closed,

point can still be identified when the lips are apart by placing the landmark along the inferior free
margin of the upper lip.

Sublabial SL Most superior point of the chin, above the pogonion; verify with lateral view.
Pogonion PG Most projecting median point on the anterior surface of the chin; verify with lateral view.
Gnathion GN Inferior surface of the chin/mandible;

immediately adjacent to the corresponding bony landmark on the mandible.
Tuberculare Right (or Left) TU_R or L The slight depression of the jawline somewhere between the gnathion and the gonion.
Tragion Right (or Left) TG_R or L Small superior notch of the tragus (cartilagnious projection just anterior to the auditory meatus).
Gnathion GN Inferior surface of the chin/mandible;

immediately adjacent to the corresponding bony landmark on the mandible.
Tuberculare Right (or Left) TU_R or L The slight depression of the jawline somewhere between the gnathion and the gonion.
Tragion Right (or Left) TG_R or L Small superior notch of the tragus (cartilagnious projection just anterior to the auditory meatus).

The name of the landmark, the label used in our studies, and the definition of each landmark are provided. _R and _L signify the same landmark
on the right and left side of the face.
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of nose; the image must be turned 90° to accurately place
this landmark. Given the annotated landmarks, we defined
27 facial landmark distances between a pair of landmarks
(Table S2 for the details of the landmark distance definitions).

Extracting Facial Embedding. To predict facial structure from
genome effectively, we used a low dimensional numerical repre-
sentation of face, which adequately represents intra-individual
variation. For this purpose various algorithms have been used
including PC analysis (14), linear discriminant analysis (15),
neural networks (16), and others (17, 18). In this study, we
used PC analysis because it allows us to discriminate different
faces, and importantly, to reconstruct predicted faces.

Our pipeline for 3D face phenotyping is similar to the work
of Turk et al. (19). We start from a neutral 3D face template
and align this template in a non-rigid manner to the 3D scans
using an expectation maximization (EM) algorithm. At each
iteration, we approximate correspondences between the 3D
scan and the deformed version of the template mesh (E-step)
and optimize deformation parameters to bring the established
correspondences as close to each other as possible (M-step).
Because the deformation is a global operation and it applies to
the entire face images, the set of correspondences might change
after the M step. We iterate until the error (i.e., distance
between the template face and the 3D scan) is minimized. Our
deformation model is 3D thin plate splines where the degrees
of freedom are the weights of knots manually placed on the
template mesh (19).

Once the template model was deformed to match the 3D
scan, we computed a displacement over the template mesh to
capture the fine scale surface details in our 3D scans. Specifi-
cally, we traced rays along the normal vectors of the template
mesh and displaced template vertices to the intersection points
of these rays with the 3D scans, as illustrated in Fig. S6. Align-
ment of 3D scan of face images to the template face model.
This also allowed us to copy the colors from 3D scans onto the
template mesh. The areas on the template mesh where the
rays do not intersect the scan (either due to noise or scanning
problems) were filled using Poisson image editing (20).

Using these procedures, we obtained the deformed template
mesh and aligned it to every 3D scan. Because the purpose of
facial embedding is not to capture variations in position and
orientation of the head at the time of the scan, we aligned
the deformed version of the template to the original template
mesh. This final alignment was performed using a rigid body
transform computed using the work of Horn (21).

Methods similar to the ones used in the paper have pre-
viously been employed by Belongie et al. (22) in computer
vision, Amberg et al. (23) in computer graphics, and by Guo
et al. (24) in bioinformatics. Similar to our method, these
methods warp a template mesh onto a 3D scan surface using
nonlinear deformations (similar to Amberg et al. (23) and Guo
et al. (24), we use thin plate splines). The result of the warping
process is a displacement vector over the set of template mesh
which is suitable for quantitative phenotyping.

The observed color of the face is a product of the skin
reflectivity and the incident lighting from the environment.
Skin reflectivity is a measurement we attempted phenotype;
however, we do not have the precise measurement of incident
illumination. Thus, we created a first order approximation by
assuming that skin reflectivity is diffuse (incident light at a
point is scattered equally in all outgoing directions) which is

A B C

Fig. S6. Alignment of 3D scan of face images to the template face model. To minimize
the noise due to face image misalignment between different faces of individuals, we
aligned face 3D images by matching the vertex of the average template face and
each individual face. (A) The vertices of the average template face and their normal
vectors. (B) Gray vertices represent the vertex in the average template. Red solid lines
represent the scanned face surface for the observed individuals. (C) Average face
template vertices are displaced along their normal vectors to the closest observed
scanned surface. If there is no scanned surface near the template vertices, the closest
scanned surfaces are estimated using the Poisson method.

approximated by albedo, or reflection coefficient. Albedo (25),
which models face under different lighting conditions, yields a
bilinear form used similarly in the work by Yu and Ahuja (26),
and we solved it by iterating the following steps alternatively
until convergence: (1) estimate the albedo term while keeping
incident lighting fixed; (2) estimate incident lighting which we
assume to be constant across the face images while keeping
the albedo constant. Finally, we obtained our face embedding
that consists of PCs from all vertex positions on the deformed
template (shape PCs) and the solved surface albedo at every
vertex (color PCs).

Extracting Eye Color. To extract eye color, we used the 2D
face images. To speed up manual annotation of eyes in the
images, we employed a LeNet convolutional neural network
(CNN) (27) to locate eyes in facial images and extracted the
left and right eyes. First, we manually extracted an initial
set of 500 eye patches from 250 facial images. An example of
an extracted eye position is shown in Fig. S7A. Additionally,
we extracted 500 random patches of the same size as negative
examples. Using these eye patches and negative examples, we
trained a CNN with the following LeNet architecture:

• Input patch 260× 120 pixels

• Convolution layer 11× 11, stride 1, 10 channels

• max pooling layer 2× 2

• Convolution layer 11× 11, stride 1, 20 channels

• max pooling layer 2× 2

• fully connected hidden layer size 50

• 1-hot encoded output variables with logistics variables
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Table S2. Calculated facial landmark distances.

Landmark Distance Symbol Definition

TGL_TGRpa Measurement from TG_R through the PRN to TG_L; it is actually a diarc with two arcs combined;
curved line from left ear to right ear through the pronasale.

TR_GNpa Measurement from TR through the PRN to the GN; diarc of two arc measurements combined;
curved line from the hairline to just underneath the chin through the pronasale.

EXR_ENR Width of the right eye.
PSR_PIR Height of the right eye.
ENR_ENL Distance from inner left eye to inner right eye.
EXL_ENL Width of the left eye.
EXR_EXL Distance from outer left eye to outer right eye.
PSL_PIL Height of the left eye.
ALL_ALR Width of the nose.
N_SN Height of the nose.
N_LS Distance from top of the nose to top of upper lip.
N_ST Distance from top of the nose to center point between lips.
TGL_TGR Straight distance from left ear to right ear.
EBR_EBL Distance from inner right eyebrow to inner left eyebrow.
IRR_IRL Distance from right iris to left iris.
SBALL_SBALR Width of the bottom of the nose.
PRN_IRR Distance from the tip of the nose to right iris.
PRN_IRL Distance from the tip of the nose to left iris.
CPHR_CPHL Distance separating the crests of the upper lip.
CHR_CHL Width of the mouth.
LS_LI Height of lips.
LS_ST Height of upper lip.
LI_ST Height of lower lip.
TR_G Height of forehead.
SN_LS Distance from bottom of the nose to top of upper lip.
LI_PG Distance from bottom of the lower lip to the chin.

Of the 36 landmarks in Table S1, distances could be calculated from any two landmarks; using three landmarks, a polyarc (pa) curved line distance
across three landmarks was calculated. Above is a partial list of the distances measured.
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Fig. S7. Automatic extraction of the iris area from 2D eye images. (A) An eye image
extracted from a face image. (B) Blue area showing the identified iris by the proposed
iris extraction method.

We repeated the following process twice, until all eyes where
located correctly: After the model had been trained with a
batch size of 10, we predicted each image patch in a sliding
window fashion with a stride of 2 × 2 pixels. After visual
inspection of the top two predictions per image, we generated
a larger training set by adding correctly predicted eye locations
to the positive examples and false positives to the negative
examples. After augmenting the negative examples by random
patches to match the number of positive examples, we re-
trained the classifier. We performed the following procedure
to extract iris pixels: (1) converted each eye image to gray scale
and performed OpenCV histogram normalization to improve
the contrast of the image; (2) detected edges using radial
edge detector based on the Sobel operator (28) and chose
the iris circle by finding the locations that best match the
detected edge signal; (3) located the convex hull of the iris
circle; (4) eliminated the pupil area by blocking a fixed radius
of size around the center of the circle; and, (5) calculated
the brightness histogram for the points in the iris circle, and
retained the points in the middle 80% of the histogram, which
eliminated reflections and any remaining black pupil points.
The result is a set of identified iris pixels (Fig. S7B). We
represent these pixels in the RGB color space and calculate
the mean value for each R, G, and B parameter to obtain an
overall iris color for the eye. We found that the measured
eye color for the two eyes was very close, as expected; thus,
we used an average of both eyes as the raw color values for
the subject. As a subset of our images used three flashes,
while the remaining data used two flashes, we performed
brightness correction by converting the extracted eye colors
to hue (H), saturation (S), and value (V) color space and
used 40 individuals that had been photographed under both
illumination conditions to estimate a linear function to adjust
the V channel such that they matched between conditions.
All extracted eye colors underwent this adjustment and were
converted back to RGB color space.

Extracting Skin Color. To obtain skin color from the 2D im-
age scan, we extracted three skin patches (patches from the
forehead and two from the cheek just below each eye) from
albedo-normalized and aligned face photos (Fig. S8). To
remove the outliers in the skin color, we used k-medoid clus-
tering (k = 3) and chose the RGB values for the cluster center
with the medium lightness to account for non-uniform light
reflection from the skin surface.

Extracting Voice Embedding. We used the Spear open-source
speaker recognition toolkit to create low-dimensional voice
feature vectors, referred to as identify-vectors or i-vectors,
obtained by a joint factor analysis (29). The Spear toolkit is
a state-of-the-art open source toolbox developed for speaker

Fig. S8. Three skin patches used for skin color estimation. The three rectangular skin
patches are superimposed onto an albedo normalized face image.

Fig. S9. Pipeline for i-vector generation. The Spear toolbox transforms voice samples
into i-vectors through a multi-step pipeline process. After a voice sample is collected,
it uses an activity detector based on audio energy to trim out silence from the sam-
ple. Next, the Spear toolbox applies a Mel-Frequency Cepstrum Coefficient feature
extractor (30) that converts successive windows of the sample to Mel-Frequency Cep-
strums. Finally, it projects out the universal background model (UBM) to account for
speaker- and channel-independent effects in the sample, and computes the i-vector
corresponding to the original sample.

recognition. We chose i-vector for our voice representation
because it models both speaker and channel variability simul-
taneously, and can extract the speaker’s voice in a compact
representation. Full pipeline for generating i-vectors is illus-
trated in Fig. S9.

Experimental Setup

In the following, we provide details on the experimental setup
used to train and evaluate predictive models, as well as match-
ing algorithms. We generally employed nested l-fold CV pro-
cedures, where the outer loop was used to evaluate models
out-of-sample, whereas nested inner loops where used to obtain
any tuning parameters.

l-Fold Cross-Validation Scheme. Individuals were determinis-
tically assigned to one of l CV sets based on a hash function
computed on an anonymized subject identifier. This assign-
ment procedure was deterministic, assuring that the assign-
ment of individuals to sets is the same for each experiment.
The process is equivalent to uniform assignment of a set and,
while it did not guarantee that all sets have exactly the same
size, the expected size per fold is the same.

Closely related relatives may share not only a large por-
tion of the genome but also environmental factors. To avoid
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splitting related individuals between training and test sets
and thus to avoid environmental confounding between training
and test sets, we post-processed the cross-validation sets as
follows: We first computed the transitive closure for all groups
of related individuals and then re-assigned all individuals in
such a group to the CV set that had initially been assigned
to the individual in the group with the lexicographically first
identifier. For details on how we determined relatedness, see
the section on “Identifying Related Individuals”.

Training predictive models using cross validation. We eval-
uated each predictive model using l-fold CV. Unless noted
otherwise, ridge regression was used as a predictive model for
each trait, and l was set to be 10. For each of l CV folds, we
used the union of l − 1 CV sets as the training set and the
remaining set as the test set such that each individual was used
for training exactly nine times and used for testing exactly
once. For each repetition, we chose any tuning parameters
for the predictive models by performing a nested 5-fold CV
within the training set only (i.e., within the union of the nine
CV sets of individuals used for training). After the tuning
parameters had been determined, the model was retrained
using the whole training set. The trained model is then used
to predict on the test set. Finally, for each fold the predictions
are evaluated using a quality metric that is evaluated on the
test set.

The result of this procedure is l trained models and a set of
predictions for each of the l CV sets, such that each individual
had been predicted exactly once. Unless otherwise noted, the
final evaluation score was returned as the average of the l
scores obtained on each CV set.

Setup for Evaluating Re-Identification Performance. The fol-
lowing is the experimental setup for training and evaluating
both sN and mN algorithms. For details on how we learn a
similarity function, as well as definitions, see Supplemental
Section “Learning a Similarity Function”.

We perform the following procedure to learn and evaluate
similarity metrics for a lineup size N using 3-fold CV, to ensure
that CV sets contain more individuals than the lineup sizes.

For each of 3 folds:

• We define the test data to be the current CV set and the
training data to be the remaining nine CV sets.

• For the training data, we obtain a set of embedded phe-
notypes ψP (pntr ) and genomes φP (gntr ) using the CV
scheme for training predictive models (l = 10) described
in the previous section on the training data and taking the
union of all predicted values. This way, we obtain a set of
predictions that may be considered out-of-sample for each
individual ntr in the training data, without involving any
individuals in the test data.

• We randomly assign each individual in the training data
to exactly one of floor(Ntr/N) training lineups of size N .
This implies that Ntr mod N individuals are discarded.

• We train an optimal distance metric on the training line-
ups using YASMET, a maximum entropy model (31).

• We generate test lineups, by forming all possible lineup
combinations in the test data.

• We generate the embedded phenotypes ψP (pnte ) and
genomes φP (gnte ), for all individuals nte that belong to
the current test data, re-learning the models using 10-fold
CV on the current training data as described above.

• We compute the similarity function that had been esti-
mated on the current training data for all pairs of embed-
ded phenotypes ψP (pnte ) and genomes φP

(
gn′te

)
within

each test lineup and evaluate sN and mN . In sN , we
simply pick the entity in the pool that has the highest
probability of matching the probe. For mN , we choose
all pairs so as to maximize the total probability of match-
ing within the set of N pairs. This is performed using
the blossom method (32), as implemented by the “max
weighted matching” function from the Python package
NetworkX.

Models and Evaluation Metrics

In the following, we provide details on the various models we
employed and the evaluation metrics used in the manuscript.

Ridge Regression for Trait Prediction. Unless stated otherwise,
we fit a ridge regression on the training data set, where the
regularized sum of squares was minimized over an offset c and
a set of regression coefficients βd. For a given individual with
index n out of Ntrain training individuals, the residual rn is
defined as the difference between the phenotype value yn and
a linear regression in the covariates xnd:

rn = yn −

(
c+

D∑
d=1

xndβd

)
.

The optimal coefficients are given by

arg min
β,c

(
Ntrain∑
n=1

r2
n

)
+ α

(
D∑
d=1

β2
d

)
.

For each repetition, an optimal regularization parameter α
was estimated by a standard nested 5-fold CV over the train-
ing data. Given the α, we predicted the phenotype on the
remaining set of test individuals.

We measured prediction accuracy using the out-of-sample
measure

R2
CV = 1−

∑Ntest
n=1 r2

n(∑Ntest
n=1 yn − ȳtest

)2 ,

where ȳtest is the in-sample mean of the test phenotypes.
Note that this measure has a negative expectation for random
predictions. In fact, it is negative whenever the in-sample
mean of the test data ȳtest has a smaller squared error than
the model that had been trained on the training data. Also, in
contrast to an in-sample R2, R2

CV is not expected to increase
by adding more covariates to the model, because the model
has been fit to the training data set.

Identifying Related Individuals. The realized relationship ma-
trix (33) is an unbiased estimator of the kinship between any
two individuals n and n′. The realized relationship between
two individuals is defined as the inner product of their stan-
dardized SNP dosages divided by the number of SNPs S.

Lippert et al. 10.1073/pnas.1711125114 9 of 40



k(n, n′) = 1
S

S∑
s=1

znszn′s,

where zns denotes the dosage for the n-th individual and
the s-th SNP and standardized to have zero mean and unit
variance over all individuals.

We computed the realized relationship matrix for each of
the three different genetic ancestries (European, African, East
Asian). Fig. S10 displays the empirical distribution for realized
relatedness between all pairs of individuals in each population.
We used 0.3 as the relatedness threshold by evaluating at the
empirical distribution of the coefficients in each population.

Evaluation Metrics for Individual Re-identification. To as-
sess the effectiveness of our models for the individual re-
identification task, we evaluated our predictions via two per-
formance metrics, referred to as select at N (sN ) and match at
N (mN ). sN is defined as the accuracy in picking a genomic
query’s corresponding phenotype entity out of a pool of size
N . mN represents the task of uniquely pairing N queries to
N corresponding phenotype entities.

In both settings, sN and mN , it is assumed that the indi-
vidual is already known to be part of a lineup. The related
problem of determining whether an individual is part of the
lineup, or not, (in contrast to our task of identifying a given
individual within a lineup) is beyond the scope of this paper.
This related setting is considered, for example, in Craig et
al. (34), where summary statistics are used to derive a statis-
tical test for whether an individual is part of a cohort (i.e.,
the lineup), or not. In the context of phenotypic prediction,
a corresponding statistical test could in principle be derived
based on the same integrated similarity measure proposed in
this paper, but would require further research.

The features for sN and mN are the average absolute dif-
ferences between each observed trait set and each predicted
traits set generated by the predictive models. Between feature
sets (e.g., face shape, eye color, etc.) the number of individual
variables may be quite different. Residuals are averaged across
the variables of a feature set to ensure that the influence of a
feature set was not correlated with the number of variables
within it.

Supplementary Results

Face Prediction from Genome. The shape of the human face
is largely genetically determined as evident from the facial
similarities between monozygotic twins or closely related indi-
viduals. The heritability estimates of craniofacial morphology
range from 0.4 to 0.8 in families and twins (35, 36). De-
spite that, the genetic features responsible for craniofacial
morphology remain largely unexplored. Liu et al. (37) re-
ported 12 SNPs influencing facial morphology in Europeans.
Claes et al. (38) employed a partial least squares (PLS) regres-
sion method, called “bootstrapped response-based imputation
modeling”, to model variation of the face, and found 24 SNPs
from 20 craniofacial genes in individuals from three West
African/European admixed populations correlated with face
shape. However, in a subsequent study (39) the authors re-
ported that most of the signal came from the genetic ancestry
and sex provided, while the effect of the SNPs was marginal.

In this section, we present the results of our prediction of
the face from the genome, and discussion on the SNPs asso-
ciated with facial shapes. We developed a predictive model
for face prediction (i.e., predicting face shape and color PCs)
using genetic features, sex, and predicted age from genome
and BMI on a set of unrelated individuals of ethnically diverse
background. In principle, any regression method could be
used to predict face shape and color PCs. However, after a
preliminary comparison of various regression models, including
ridge regression, lasso, ridge regression with stability selection,
extreme boosted trees, support vector regression, feed-forward
neural networks, and k-nearest neighbor regression, we con-
cluded that on our data set the choice would have little impact
on the results. We chose ridge regression for our face predic-
tion since it is simple and computationally efficient. The
cross-validated results for different combinations of covariates
that either had been predicted from the genome, or ground
truth covariates, are given in Table S3 (Shape) and Table S4
(Color). Sex, genomic ancestry, and age provide the largest
contributions to the accuracy of the models. We report both
as well as s10 numbers. True faces next to predicted faces by
both Ridge and k-Nearest Neighbor methods for 24 consented
individuals that were assigned to the holdout set are given
in Fig. S11. 3D faces of three selected individuals from the
holdout set scanned and predicted using Ridge regression are
provided in Fig. S12.

To examine the effect of ancestry on variability in face
shape predictions, we created a group of individuals with
> 80% AFR ancestry and > 80% EUR ancestry. Table S5
presents the AFR:EUR ratio of the standard deviation for
each of the first ten face shape PCs. Taken together, these
ten PCs explain 91.5% of the variance of face shape in our
study cohort. For individuals with > 80% AFR ancestry, these
explain 88.9% variance in face shape and for individuals with
> 80% EUR ancestry these explain 90.0% of the variance in
face shape. Even though the features describe comparable
amounts of phenotypic variance in Africans and in Europeans,
the predictions were more variable for those with high African
ancestry than those with high European ancestry. To visualize
the regions in the face that are most differentiated between
individuals of African and European descent, we trained a PLS
model that included five regions of ancestry (EUR, AFR, EAS,
CSA, and AMR) and sex as PLS dimensions. Fig. S13 shows
the pixel-wise absolute differences between individuals that
are of 100% AFR ancestry and individuals that are of 100%
EUR ancestry (Fig. S13A for males, Fig. S13B for females).

To investigate SNPs associated with the face shape and
color, we have performed association testing between the top
ten PCs from our face shape and color embedding and the
reported SNPs. When we tested for the associations having
sex, BMI, and age as covariates, the genomic control inflation
factor λgc on this set of tests was 5.96, which indicates strong
confounding effects in the tests. The λgc statistic is defined
as the ratio of the median of observed statistic to the median
of the expected statistic under null distribution, and λgc > 1
indicates an inflation of statistics due to confounding. In
our analysis, we found strong indication for confounding by
population structure. After adding five ancestry proportions as
covariates, λgc dropped to 1.15. At an alpha level of 0.05, none
of the 36 candidate SNPs were significant after Bonferroni
correction (P < 7 × 10−5). The corresponding Quantile-
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Fig. S10. The distribution of coefficients in realized relatedness matrix for three different populations. (A) European, (B) African, (C) East Asian. The coefficients in realized
relatedness matrix represents the amounts of the relatedness between pair of individuals. The histogram is truncated in order to show the tail of the distribution. Based on this
empirical distribution, we decided to use the relatedness threshold of 0.3.

Table S3. Evaluation of face shape prediction using predicted and observed covariates.

Predicted Covariates Observed Covariates
s10 R2 s10 R2

Covariate Set Male Female All Male Female All Male Female All Male Female All

PCs 0.26 0.25 0.35 0.17 0.13 0.29 0.26 0.25 0.35 0.17 0.13 0.29
PCs + Age 0.26 0.26 0.36 0.18 0.14 0.30 0.30 0.29 0.39 0.20 0.15 0.31
PCs + Age + BMI 0.26 0.26 0.36 0.18 0.14 0.30 0.35 0.35 0.44 0.25 0.23 0.36
PCs + Age + Height 0.28 0.26 0.37 0.19 0.14 0.30 0.32 0.30 0.41 0.25 0.18 0.35
PCs + Age + BMI + Height 0.28 0.26 0.37 0.18 0.14 0.30 0.36 0.36 0.46 0.30 0.26 0.40

Cross-validated results for different combinations of covariates (age, sex, BMI and height are phenotyped) for ten face shape PCs for Ridge
Regression. “PCs” are the top 1,000 genomic PCs. PCs and sex are responsible for most of the performance gain, age (observed), BMI (observed)

and height (observed) added small improvement in performance.

Table S4. Evaluation of face color prediction using predicted and observed covariates.

Predicted Covariates Observed Covariates
s10 R2 s10 R2

Covariate Set Male Female All Male Female All Male Female All Male Female All

PCs 0.34 0.34 0.34 0.81 0.70 0.74 0.34 0.33 0.34 0.17 0.13 0.74
PCs + Age 0.34 0.35 0.35 0.80 0.70 0.74 0.38 0.36 0.37 0.20 0.15 0.75
PCs + Age + BMI 0.34 0.35 0.35 0.80 0.70 0.74 0.38 0.37 0.37 0.80 0.70 0.75
PCs + Age + Height 0.37 0.34 0.36 0.81 0.81 0.75 0.38 0.36 0.37 0.80 0.70 0.75
PCs + Age + BMI + Height 0.37 0.34 0.36 0.81 0.70 0.75 0.38 0.37 0.37 0.80 0.70 0.75

Cross-validated results for different combinations of covariates (age, sex, BMI and height are phenotyped) for ten face shape PCs for Ridge
Regression. “PCs” are the top 1,000 genomic PCs. PCs have the largest contribution to the model performance, sex and then age (observed) add

incremental gains.
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Fig. S11. Holdout set of 24 individuals who consented public view for their face image. Left most face: true face, middle face: Ridge regression predicted face, right most face:
Ridge for Shape PCs, k-Nearest Neighbor for Color PCs.
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Fig. S12. 3D scan vs. 3D prediction for three selected individuals from holdout set. Top row in each panel represents observed face (0 degrees, 45 degrees and 90 degrees
rotated), and bottom row in each panel represents predicted face (0 degrees, 45 degrees and 90 degrees rotated).

Fig. S13. Difference between European and African face
predictions. Absolute values of the differences (in cm)
along the horizontal, vertical, and depth dimensions of
predicted face shape between an individual of 100% Euro-
pean ancestry, and an individual of 100% African ancestry.
Predictions where performed using a PLS model trained on
five ancestry components (AFR, AMR, CSA, EAS, EUR)
and sex. (A) Differences for male individuals (B) Differ-
ences for female individuals.
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Table S5. The ratio of standard deviation of African ancestry (σAFR)
to standard deviation of European ancestry (σEUR) for ten face
shape PCs.

Predicted face shape PC σAF R/σEUR

PC 5 2.80
PC 2 1.61
PC 8 1.57
PC 9 1.46
PC 10 1.27
PC 3 1.26
PC 7 1.22
PC 4 1.12
PC 1 1.01
PC 6 0.89

Among ten PCs, nine of the σAF R/σEUR are > 1.00, which indicates a
larger facial variability in African ancestry than European ancestry.

Quantile (Q-Q) plots are shown in Fig. S14.

Landmark Distance Prediction from Genome. Researchers
have studied landmark distances for various purposes includ-
ing craniofacial anomaly detection and facial growth analy-
sis, and have attempted to relate landmark distances to the
genome (37, 40, 41). Paternoster et al. (41) have found an
association between the nasion position and a SNP in the
PAX3 gene on 2,185 adolescents, which has been replicated on
another set of cohorts comprising 1,622 individuals. Further-
more, genome-wide association studies (GWAS) have identified
five candidate genes affecting normal facial shape variation in
landmark distances for Europeans, PRDM16, PAX3, TP63,
C5orf50, and COL17A1 combined 12 SNPs, were identified as
genome-wide significant (41, 42). However, the SNP explains
only 1.3% of the variance of nasion position, and associations
between diverse landmark distances and genome are largely
unknown.

We have evaluated the performance of prediction of 26
landmark distances from genomic information, predicted sex
from the genome, predicted age from the genome, and the top
1,000 genome PCs, in terms of R2

CV between observed and
predicted landmark distances. In Fig. S15, ALL_ALR (width
of nose) and LS_LI (height of lip) are the most predictable,
while TGL_TGR (straight distance from left ear to right ear)
and PSL_PIL/PSR_PIR (height of the left/right eye) are the
least predictable. The results agree with our observation that
the width of the nose and the height of the lip are excellent
features to distinguish between different ethnicities (compare
also Fig. S13). However, the length of the nose and the height
of the eyes vary greatly within ethnicities. Thus, it is difficult
to predict them from genome given our limited sample size
(Fig. S15).

Age Prediction from the Genome. Age is a critical phenotypic
trait for forensic identification. Accurate genomic prediction
of age is especially important in our context, as age was used
as a covariate for the prediction of other phenotypes. The
maximum depth of the tree and the minimum number of indi-
viduals per leaf were tuned by cross-validation (CV) within
each training fold. Since we aim to evaluate this model for
forensic casework using only genomic information, we substi-
tuted genome predicted age for actual age in every applicable
phenotype model.

Table S6. Prediction quality for age.

Covariate Set R2
CV

Telomere length (TL) 0.29
Chr[X|Y] copy number 0.31
TL + Chr[X|Y] copy number 0.44

Ridge regression was used with different combinations of covariates.

To predict age from the genome, we fit a random forest
regression model that used a person’s average telomere length
estimate and estimates of chromosome X and Y copy numbers
as covariates for predicting age. During training, we removed
individuals that were considered outliers. For our purposes, an
outlier was defined as any male individual with an estimated Y
copy number below 0.95 or above 1.05 or any female individual
with an estimated X copy number below 1.95 or above 2.05.

Table S6 shows the held out variance explained (R2
CV ) for

the regression against age of telomere length and chr[X|Y]
CCN, both individually and combined. Fig. S16D shows the
predicted versus expected age for all our individuals using our
final model.

Continuous Eye Color Prediction from the Genome. For eye
color prediction, we divided our experiments into two separate
analyses: 0/1/2 SNP encoding and two-variable SNP encoding
using the ridge regression model based on different covariates.
First, we applied conventional SNP encoding of the minor
allele dosage as 0/1/2. However, some variants associated
with eye color exhibit significant dominance effects (43). If a
set of SNPs has dominance effects on eye color, the prediction
was improved when we modeled the SNPs with two different
features: one representing the heterozygous SNP and another
representing the homozygous alternate. This model is known
as the two-variable SNP encoding. We observed that two-
variable SNP encoding representations improve the prediction
accuracy (Table S7).

We built three independent prediction models for the red
(R), green (G), and blue (B) channels from the RGB color space
for the two different encodings. Table S7 shows our prediction
accuracy results for each R, G, and B with different covariates,
including literature reported SNPs for eye color (Table S8).
We also performed a GWAS to discover additional significantly
associated variants beyond these published results. We did
not test for additional variants other than those previously
reported.

We initially considered age, sex, genomic PCs, and SNPs as
predictive features in our model. While a correlation between
age and eye color has been found for younger subjects in a
specific population (46), our study includes only subjects ≥ 18
years of age, and we did not find that age was a significant
determinate. Thus, we dropped age as a feature from our
model. Since eye color clearly varies between different ethnic
groups, we included 1,000 genomic PCs in our prediction
model as covariates to capture ancestry differences and genome-
wide SNP variation. The “Self-reported eye color” covariate
represents the average eye color for each self-reported eye color
category. Our results suggest that eye color is more accurately
predicted from genomic data than by asking people to report
their own eye color (see Table S7). This difference in accuracy
may be explained by the fact that predictions are performed
on an expressive continuous scale, compared to the limited
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Fig. S14. Quantile-quantile (Q-Q) plots for association
tests between all tests of 36 candidate SNPs vs. top 10
PCs for face color data and top 10 PCs for face shape data.
(A) Association statistics are computed using age, sex and
BMI as covariates, and (B) Association statistics are com-
puted using age, sex, BMI, and five ancestry proportions
(AFR, EUR, EAS, CSA, AMR) as covariates. Comparison
of these QQ plots shows that these 36 previously identified
SNPs are highly correlated with ancestry.

Fig. S15. Evaluation of landmark distance predictions.
The measured performance in R2

CV (observed vs. pre-
dicted) of predicted landmark distances using sex, pre-
dicted age, and top 1,000 genome PCs. ALL_ALR (the
width of the flaring of the nostril) is the highest performing
landmark in our study. See Table S2 for the descriptions of
each of these distances.

Table S7. Prediction quality (R2
CV ) for RGB Eye Color in ridge regression.

0/1/2 Two-variable
SNP encoding SNP encoding

Covariate Set R G B R G B

Age 0.04 0.03 0.02 0.04 0.03 0.02
Sex 0.02 0.02 0.01 0.02 0.02 0.01
Self-reported eye color 0.55 0.72 0.76 0.55 0.72 0.76
Ancestry (1,000 PCs) 0.74 0.67 0.58 0.73 0.67 0.58
5 SNPs (44) 0.73 0.73 0.67 0.74 0.79 0.78
21 SNPs (45) 0.74 0.74 0.67 0.75 0.79 0.78
List A (65 SNPs) 0.63 0.56 0.49 0.63 0.58 0.52
List B (98 SNPs) 0.76 0.74 0.67 0.77 0.79 0.77
List C (241 SNPs) 0.74 0.69 0.60 0.71 0.74 0.70
1,000 genomic PCs, 5 SNPs, 9 interactions (44) 0.79 0.79 0.74 0.80 0.82 0.80

Using the two-variable SNP encoding and 1,000 genomic PCs, five known eye color SNPs, and nine interactions was the best model for eye color
prediction in the RGB space. The lists of the SNPs used in these models are provided in Table S8.
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Fig. S16. Correlation plot between true age and other variables including telomere length, chromosome X copy number, chromosome Y copy number, and predicted age. (A to
C): Regression plots for telomere length and X or Y chromosomal copy number against age; (D): Held out predictions vs real age for all individuals.
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Table S8. Lists of literature reported SNPs for Eye Color that have been tested in the prediction models.

List A rs10765198 rs10852218 rs11074304 rs11568820 rs11572177 rs11631195 rs11636232 rs12324648 rs12520016 rs12592307 rs1375164
rs1448481 rs1448490 rs1470608 rs1498509 rs1498519 rs1498521 rs1562592 rs1603784 rs17084733 rs17673969 rs17674017 rs1800404
rs1800410 rs1800411 rs1800416 rs1800419 rs1874835 rs1973448 rs2015343 rs2254913 rs2290100 rs2311843 rs2594902 rs2594938
rs2681092 rs2689229 rs2689230 rs2689234 rs2703922 rs2703969 rs2871875 rs3002288 rs3782974 rs4253231 rs4278697 rs4778137
rs4778177 rs4778185 rs4778190 rs4778220 rs4810147 rs6785780 rs7170989 rs7173419 rs7175046 rs7176632 rs7176759 rs728404
rs7643410 rs7975232 rs9476886 rs9584233 rs977588 rs977589

List B rs1042602 rs10765198 rs10852218 rs11074304 rs1126809 rs1129038 rs11568820 rs11572177 rs11631195 rs11636232 rs12203592
rs12324648 rs12520016 rs12592307 rs12896399 rs12913832 rs1375164 rs1393350 rs1408799 rs1448481 rs1448485 rs1448490
rs1470608 rs1498509 rs1498519 rs1498521 rs1540771 rs1562592 rs1597196 rs1603784 rs1667394 rs16891982 rs17084733 rs17673969
rs17674017 rs1800401 rs1800404 rs1800407 rs1800410 rs1800411 rs1800414 rs1800416 rs1800419 rs1805005 rs1874835 rs1973448
rs2015343 rs2238289 rs2254913 rs2290100 rs2311843 rs2594902 rs2594938 rs26722 rs2681092 rs2689229 rs2689230 rs2689234
rs2703922 rs2703969 rs2733832 rs2871875 rs3002288 rs3782974 rs3794604 rs4253231 rs4278697 rs4778137 rs4778138 rs4778177
rs4778185 rs4778190 rs4778220 rs4778232 rs4778241 rs4810147 rs6058017 rs6785780 rs683 rs7170852 rs7170989 rs7173419
rs7174027 rs7175046 rs7176632 rs7176759 rs7179994 rs7183877 rs728404 rs7495174 rs7643410 rs7975232 rs8024968 rs916977
rs9476886 rs9584233 rs977588 rs977589

List C rs10001971 rs10007810 rs1003719 rs10108270 rs1015362 rs10209564 rs10235789 rs10236187 rs1040045 rs1040404 rs1042602
rs10496971 rs10510228 rs10511828 rs10512572 rs10513300 rs1074265 rs10839880 rs10954737 rs1105879 rs1110400 rs11164669
rs11227699 rs1126809 rs1129038 rs11547464 rs11631797 rs11652805 rs12130799 rs12203592 rs12439433 rs12452184 rs12544346
rs12592730 rs12593929 rs12629908 rs12657828 rs12821256 rs1289399 rs12896399 rs12906280 rs12913823 rs12913832 rs1296819
rs1325127 rs1325502 rs13267109 rs13400937 rs1357582 rs1369093 rs1393350 rs1407434 rs1408799 rs1408801 rs1426654 rs143384
rs1448485 rs1471939 rs1500127 rs1503767 rs1510521 rs1513056 rs1513181 rs1533995 rs1540771 rs1569175 rs1597196 rs1635168 rs
1667394 rs16891982 rs16950979 rs16950987 rs1760921 rs17793678 rs1800401 rs1800407 rs1800414 rs1805005 rs1805006 rs1805007
rs1805008 rs1805009 rs1837606 rs1871428 rs1879488 rs192655 rs1950993 rs199501 rs2001907 rs200354 rs2030763 rs2033111
rs2069398 rs2070586 rs2070959 rs2073730 rs2073821 rs2125345 rs214678 rs2228479 rs2238289 rs2240202 rs2240203 rs2252893
rs2269793 rs2277054 rs2278202 rs2306040 rs2330442 rs2346050 rs2357442 rs2397060 rs2416791 rs2424905 rs2424928 rs2504853
rs2532060 rs2594935 rs260690 rs2627037 rs26722 rs2702414 rs2709922 rs2724626 rs2733832 rs2835370 rs2835621 rs2835630
rs2899826 rs2946788 rs2966849 rs2986742 rs3118378 rs316598 rs316873 rs32314 rs35264875 rs35414 rs37369 rs3737576 rs3739070
rs3745099 rs3768056 rs3784230 rs3793451 rs3793791 rs3794604 rs3822601 rs3829241 rs385194 rs3935591 rs3940272 rs3943253
rs4458655 rs4463276 rs4530349 rs4666200 rs4670767 rs4673339 rs471360 rs4738909 rs4746136 rs4778138 rs4778232 rs4778241
rs4781011 rs4798812 rs4800105 rs4821004 rs4880436 rs4891825 rs4900109 rs4908343 rs4911414 rs4911442 rs4918842 rs4925108
rs4951629 rs4955316 rs4984913 rs507217 rs5768007 rs6058017 rs6104567 rs6422347 rs642742 rs6451722 rs6464211 rs647325
rs6493315 rs6541030 rs6548616 rs6556352 rs6759018 rs683 rs7029814 rs705308 rs7170852 rs7174027 rs7179994 rs7183877
rs7219915 rs7238445 rs7277820 rs728405 rs731257 rs734873 rs7421394 rs7495174 rs7554936 rs7657799 rs772262 rs7745461
rs7803075 rs7844723 rs798443 rs7997709 rs8021730 rs8024968 rs8028689 rs8035124 rs8041209 rs8113143 rs818386 rs870347
rs874299 rs881728 rs885479 rs892839 rs916977 rs9291090 rs9319336 rs946918 rs948028 rs9522149 rs9530435 rs9782955
rs9809104 rs9845457 rs9894429 rs989869

List A, List B, and List C of the SNPs are mentioned in Table S7.
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expressiveness of discrete self-reported values.
Previous research found a set of genetic variants associated

with eye color. For example, Mushailov et al. (44) identified
five SNPs and Walsh et al. (45) identified 21 SNPs significantly
associated with eye color. We identified 65 SNPs in the litera-
ture that produced fair predictions (see List A; they include
all of the SNPs in List B minus the five SNPs of Mushailov et
al. (44) and overlapping SNPs in List C); 98 SNPs that pro-
duced good results (see List B); and 241 SNPs that produced
good predictions (see List C) (Table S8).

Mushailov et al. (44) found that there exist significant in-
teractions between variants associated with eye color. For
the combination of covariates which produced the best predic-
tion, we included 1,000 genomic PCs, five eye color associated
SNPs (rs12896399, rs6119471, rs16891982, rs12913832, and
rs12203592) (44), nine specific interactions among these five
SNPs as reported by Mushailov et al. (44), and excluded age
and sex.

Skin Color Prediction from Genome. Skin pigmentation varies
with latitude, suggesting that skin color variation is likely
driven by natural selection in response to UV radiation lev-
els (47). While the principal genes influencing eye and hair
color are now largely identified, our understanding of the ge-
netics of skin color variation is still far from complete (42),
especially since fair skin color of European and East Asian
populations seem to have arose independently (48–50).

In GWAS and other analyses a number of distinct genes
were implicated in skin color variation, including: the MC1R,
its inhibitor ASIP, OCA2, HERC2, ALC45A2, SLC24A5, and
IRF4 (51–56). A number of skin color prediction models were
built using different subsets of SNPs, including: a six-SNP
model (57), a seven-SNP model (58) and a ten-SNP model (59).
However, all of the predictive models used discrete qualitative
phenotypes (skin color binned as “light”, “medium” and “dark”
or some variation thereof) and the number of individuals and
their ancestry variation was limited. In addition, the appli-
cability of some of the models was limited to homozygous
genotypes, whereas heterozygous genotypes were not consid-
ered at all (57, 58). Here, we sought to determine genetic
features predictive for skin color across ancestries.

For the skin color prediction model, we included age and
sex (both predicted from the genome), the first 1,000 PCs,
which capture the ancestry information, and seven previously
identified SNPs (rs12913832, rs1545397, rs16891982, rs1426654,
rs885479, rs6119471, rs12203592) (58) as covariates. Unlike
the model by Spichenok et al. (58), seven SNPs used in the
skin color prediction model are encoded as minor allele counts
instead of homozygous allele representation, as in preliminary
experiments the latter representation yielded a 0.02 reduction
in R2

CV ; these SNPs along with their annotation are listed in
Table S9.

We mainly compared two prediction approaches: ridge
regression and extreme gradient boosting. Table S10 shows
the results from extreme gradient boosting (XGBoost), which
outperformed ridge regression. The number of estimators
(n_estimators), maximum depth of a tree (max_depth),
subsample proportion of instances chosen to grow a tree
(subsample) and step size shrinkage to prevent overfitting (eta)
were tuned using CV; the best performance was obtained when
parameters were set to n_estimators=1000, max_depth=2,
subsample=0.9, and eta=0.01.

While reported SNPs themselves are highly predictive of
skin color, their independent contribution on top of a baseline
of 1,000 genomic PCs is still marginal even in our best per-
forming model (≈1 to 3%) and most skin color variation was
captured by the first three genomic PCs. True versus predicted
skin color for 1,022 participants are given in Fig. S17.

Height/BMI/Weight Prediction from the Genome. We included
age, sex, the first 1,000 genomic PCs, and associated SNPs
from other studies in our height prediction model. We used 696
SNPs that previously had been associated to height on a large-
scale GWAS meta-analysis (60) to build a height prediction
model (we excluded one SNP rs2735469 among 697 previously
identified SNPs in Wood et al. (60) since it did not pass
our MAF threshold of 0.1% in our data set). For the BMI
prediction model, we included 96 previously identified as BMI-
associated SNPs (61) (we excluded one SNP rs12016871 among
the reported SNPs by Locke et al. (61) because its MAF <
0.1%). For the weight prediction model, we used both the
height-associated 696 SNPs and BMI-associated 96 SNPs. We
used self-reported age and predicted sex from the genome as
covariates.

The underlying effect size of each of the selected SNPs
for height/BMI/weight was expected to be small (62) and it
would be difficult to accurately estimate these effect sizes on
our cohort. Thus, instead of estimating the effect size of 696
SNPs + 96 SNPs on individuals from our database, we used
the previously estimated effect sizes from a large scale meta-
analysis of 253,288 individuals of the GIANT consortium for
height SNPs (60) and 339,224 individuals for BMI SNPs (61).
Then, for height and BMI predictions, one aggregated feature
was created for height and BMI which is the sum of 696
SNPs and 96 SNPs weighted by their effect sizes, respectively.
The prediction performances are summarized in Tables S11
and S12.

Regarding height, Tables S11 and S12 and Fig. S18 show
the R2

CV and mean absolute error (MAE) between the ob-
served and predicted heights by our model with different
features. The prediction model including only age as a feature
(Fig. S18A) has an MAE of 7.4cm and R2

CV of 0.02 (males:
MAE = 5.5cm, R2

CV = −0.01, females: MAE = 5.3cm,
R2
CV = 0.01). The prediction model with age and sex

(Fig. S18B) has an MAE of 5.4cm and R2
CV of 0.44. The

prediction model with age, sex and the first 1,000 genomic PCs
(Fig. S18C) has anMAE of 5.1cm and R2

CV of 0.50. When we
replaced genomic PCs by 696 height-associated SNPs in the
previous model (Fig. S18D), we achieved the best predictive
model, having an MAE of 4.9cm and R2

CV of 0.53. Adding
both, SNPs and genomic PCs into the same model yielded
an identical performance (Fig. S18E), indicating that the the
height-associated SNPs sufficiently tag relevant ancestry vari-
ation and genome-wide SNP variation that is represented by
the genomic PCs. Corresponding predictions stratified by
both sexes (leaving out the sex covariate) yield an MAE and
an R2

CV of 5.3cm and 0.07 in males, and 4.7cm and 0.20 in
females, respectively (Fig. S19).

Regarding BMI, Tables S11 and S12, and Fig. S20 show the
R2
CV and MAE between the observed and predicted BMI by

our model with different features. When the BMI predictive
model includes only age as a feature (Fig. S20A), the MAE
is 5.60kg/m2 and R2

CV of 0.07. The prediction model with
age and sex (Fig. S20B) has an MAE of 5.53kg/m2 and R2

CV
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Table S9. List of variants used for skin color prediction with annotations.

Gene SNP ID Variation Type Annotation

HERC2 rs12913832 Predicted transcription factor binding site for OCA2 Blue/brown eye color (in European and East Asian population);
Reduced melanin content in cultured human melanocytes.

OCA2 rs1545397 Intron East Asian population.
SLC45A2 rs16891982 Missense European population; Blue/brown eye color (in European population);

Reduced melanin content in cultured human melanocytes.
SLC24A5 rs1426654 Missense European population;

Reduced melanin content in cultured human melanocytes.
MC1R rs885479 Missense East Asian population.
ASIP rs6119471 Near 5’-end, predicted transcription factor binding site African population.
IRF4 rs12203592 Intron Blue/brown eye color (in European population).

Fig. S17. Observed and predicted skin colors for
1,022 individuals. The top circle shows observed, the
bottom circle shows predicted skin color from an Ex-
treme Boosted Tree model with 1,000 PCs, predicted
age, predicted sex and seven SNPs as covariates.
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Fig. S18. Scatter plots between predicted height and observed height with different features in ten-fold CV.(A) Age; (B) Age + Sex; (C) Age + Sex + 1,000 genomic PCs; (D)
Age + Sex + height SNPs (696 height associated SNPs); (E) Age + Sex + 1,000 genomic PCs + height SNPs (696 height associated SNPs).
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Fig. S19. Height prediction with different covariates stratified by sex. Covariates are age, age + 1,000 genomic PCs, age + SNPs, and age + 1,000 genomic PCs + SNPs from
top to bottom rows for male (left column) and female subjects (right column).
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Table S10. Regression results by extreme gradient boosting on skin
color using different covariate sets.

Covariate Set R G B

Age 0.13 0.15 0.14
Sex -0.01 -0.01 -0.01
PCs 0.71 0.76 0.78
Age + Sex + PCs 0.76 0.79 0.80
Age + Sex + PCs + SNPs 0.77 0.79 0.81
SNPs 0.68 0.71 0.75

Values are R2
CV . Phenotypes are represented in RGB space. Covariates

are different combinations of age, sex, top 1,000 genomic PCs and
seven SNPs listed in Table S9.

of 0.09. The prediction model with age, sex and first 1,000
genomic PCs (Fig. S20C) has an MAE of 5.30kg/m2 and
R2
CV of 0.17. When we also add 96 BMI associated SNPs to

the above model, we achieved a model of equivalent quality
in terms of MAE. Prediction models with age, sex, 96 BMI-
associated SNPs, without (Fig. S20D) or with (Fig. S20E)
genomic PCs, also achieved an MAE of 5.30kg/m2 and R2

CV

of 0.17, indicating that on our data SNPs do not add relevant
independent genomic variation to a model containing PCs
or vice versa. Corresponding predictions stratified by both
sexes (leaving out the sex covariate) yield MAE and R2

CV

of 3.94kg/m2 and 0.11 in males, and 6.15kg/m2 and 0.15 in
females, respectively (Fig. S21).

Regarding weight, Tables S11 and S12, and Fig. S22 show
the R2

CV andMAE between the observed and predicted weight
by our model with different features. The prediction model
with only age as a feature (Fig. S22A) has anMAE of 16.57kg
and R2

CV of 0.04. The prediction model with age and sex
(Fig. S22B) has an MAE of 16.40kg and R2

CV of 0.05. The
prediction model with age, sex, and the first 1,000 genomic
PCs (Fig. S22C) has an MAE of 15.54kg and R2

CV of 0.15.
Replacing genomic PCs with 696 height-associated SNPs and
96 BMI-associated SNPs (Fig. S22D) did not improve pre-
diction accuracy and even slightly reduced prediction quality,
with an MAE of 15.59kg and an R2

CV of 0.14. Re-adding
genomic PCs left the results unchanged (Fig. S22E). These
results reflect the fact that SNP effect sizes had been estimated
on different phenotypes. Corresponding predictions stratified
by both sexes (leaving out the sex covariate) yield MAE and
R2
CV of 13.53kg and 0.10 in males, and 16.77kg and 0.15 in

females, respectively (Fig. S23).

Sex Prediction from the Genome. To predict sex from the
genome, we first estimated the copy number for chromosome
X (CCN_chrX) and Y (CCN_chrY) (see Materials and Meth-
ods). Males are expected to have one copy of chromosome X
and one copy of chromosome Y and females are expected to
have two copies of chromosome X. Fig. S24 shows the distri-
butions for CCN_chrX vs CCN_chrY computed for all the
individuals in our dataset. Sex chromosome copy numbers are
predictive of sex, as can be predicted in Fig. S24. We per-
formed rule-based sex prediction as follows: individuals with
CCN_chrY ≤ 0.25 were predicted as female, regardless of the
value of CCN_chrX. Individuals with CCN_chrY > 0.25 were
predicted as male. Among male individuals in our dataset, we
identified a putative case with XXY aneuploidy, also known
as Klinefelter’s syndrome (63). This case was identified using

the following rule: 1.5 < CCN_chrX ≤ 2.5. Note, that a
single case is not sufficient to perform a rigorous statistical
assessment of the proposed rule. As sex chromosome aneu-
ploidy is expected to appear in the general population, the
individual has been included in all further analysis. If neces-
sary, these rules could be extended to address other cases of
sex chromosome aneuploidy.

When predicting self-reported gender from sex, our chromo-
some copy number (CCN)-based rules achieved an accuracy
of 99.6%. Four inconsistencies and two missing annotations
were observed in 1,061 individuals. For the four errors, three
female individuals were predicted as male and one male indi-
vidual was predicted as female. A closer look at these cases
indicated that for all of them the self-reported gender did in
fact not reflect their sex. The individual with Klinefelter’s
syndrome, karyotype 47, XXY, was annotated and predicted
as male, as expected. Our sex prediction from CCN of the
genome is highly accurate and could be used to identify gender
missmatches.

Predicting Age, Sex and Ancestry from the Face and Voice.
To quantify how well face and voice capture information about
age, sex and five regions of ancestry, we predicted these traits
from observed face shape, face color, landmark distances, and
voice i-vectors using ridge regression. As input features for
prediction from face shape and color we used 1,000 of the
corresponding PCs. As input features for prediction from
voice, we used all 100 available i-vectors and voice pitch.
Similarly, we used all landmark distances for prediction. This
approach is helpful for extracting demographic information
from face and voice where such information is useful but not
otherwise accessible. In addition, it leads to higher select
and performance compared to directly matching observed to
predicted values for face and voice.

Predicting Male Pattern Baldness from the Genome. We
trained a model to predict Male Pattern Baldness (androgenic
alopecia), which has an estimated heritability of 80% (64).
We did not collect a baldness phenotype during the sample
collection phase, so we assigned a phenotype by inspecting
the facial images. For each image, we assigned a degree of
baldness on a scale of one through seven using the Norwood-
Hamilton scale for androgenic alopecia, with one representing
no hair loss. Our data did not have many bald samples (see
distribution of the phenotype in Fig. S25). Further, were not
able to distinguish true baldness from cosmetic effects like
head shaving based on the face images. We trained a model
on this phenotype using SNPs associated with androgenic
alopecia in GWAS (65–67). The most predictive covariate
was the age of a person, achieving an R2

CV of 0.29 in male
individuals. We did not observe an improvement over age
from using genetic information in the form of reported SNPs
or genomic PCs. However, when using age predicted from the
genome (R2

CV of 0.05 in males), we did see an improvement
from reported SNPs (R2

CV of 0.09 in males) and PCs (R2
CV

of 0.08 in males) over predicted age alone. See full results in
Table S13. Such low values of R2

CV are expected to only yield
marginal improvements in re-identification performance, as
can be seen from Figs. S33 and S34.

Hair Color Prediction from the Genome. We were not able
to generate usable models for hair color from this subject
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Table S11. R2
CV for height, BMI, weight with different covariates in ridge regression.

Height (R2
CV ) BMI (R2

CV ) Weight (R2
CV )

Covariate Set male female all male female all male female all

Age -0.01 0.01 0.02 0.08 0.05 0.07 0.05 0.04 0.04
Age (+ Sex) -0.01 0.01 0.44 0.08 0.05 0.09 0.05 0.04 0.05
Age + 1,000 PCs (+ Sex) 0.04 0.12 0.50 0.11 0.16 0.17 0.09 0.16 0.15
Age + 696 SNP Height (+ Sex) 0.07 0.20 0.53 – – – 0.10 0.15 0.15
Age + 96 SNP BMI (+ Sex) – – – 0.11 0.15 0.17 0.09 0.15 0.14
Age + 1,000 PCs + 696 SNP Height (+ Sex) 0.07 0.20 0.53 – – – 0.10 0.15 0.15
Age + 1,000 PCs + 96 SNP BMI (+ Sex) – – – 0.11 0.15 0.17 0.09 0.15 0.15
Age + 1,000 PCs + 696 SNP Height + 96 SNP BMI (+ Sex) – – – – – – 0.10 0.15 0.14

Sex has been used only in the analysis of “all” samples.

Table S12. Mean absolute error for height, BMI, weight with different covariates in ridge regression.

Height (MAE, cm) BMI (MAE, kg/m2) Weight (MAE, kg)
Covariate Set male female all male female all male female all

Age 5.5 5.3 7.4 3.99 6.57 5.60 13.82 18.15 16.57
Age (+ Sex) 5.5 5.3 5.4 3.99 6.57 5.53 13.82 18.15 16.40
Age + 1,000 PCs (+ Sex) 5.4 4.9 5.1 3.92 6.13 5.30 13.57 16.68 15.54
Age + 696 SNP Height (+ Sex) 5.3 4.7 4.9 – – – 13.50 16.70 15.54
Age + 96 SNP BMI (+ Sex) – – – 3.94 6.15 5.30 13.57 16.74 15.59
Age + 1,000 PCs + 696 SNP Height (+ Sex) 5.3 4.7 4.9 – – – 13.50 16.70 15.54
Age + 1,000 PCs + 96 SNP BMI (+ Sex) – – – 3.94 6.15 5.30 13.57 16.74 15.54
Age + 1,000 PCs + 696 SNP Height + 96 SNP BMI (+ Sex) – – – – – – 13.53 16.77 15.59

Sex has been used only in the analysis of “all” samples.

Table S13. Regression results by ridge regression for male pattern baldness in male individuals.

Self-Reported Age Predicted Age
Covariate Set R2

CV MAE R2
CV MAE

SNPs 0.06 0.54 0.06 0.54
1,000 PCs 0.07 0.53 0.07 0.53
Age 0.29 0.47 0.05 0.57
Age + 1,000 PCs 0.28 0.47 0.08 0.53
Age + SNPs 0.29 0.47 0.09 0.53
Age + 1,000 PCs + SNPs 0.29 0.47 0.09 0.53

R2
CV and mean absolute errors (MAE) for models using different covariate sets. PCs refer to genomic PCs, predicted age is age predicted from

the genome.
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Fig. S20. Scatter plots between predicted BMI and observed BMI with different features in ten-fold CV with 4,082 individuals. (A) Age; (B) Age + Sex; (C) Age + Sex + 1,000
genomic PCs; (D) Age + Sex + height SNPs (96 height associated SNPs); (E) Age + Sex + 1,000 genomic PCs + 96 BMI SNPs.
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Fig. S21. BMI prediction with different covariates stratified by sex. Covariates are age, age + 1,000 genomic PCs, age + SNPs, and age + 1,000 genomic PCs + SNPs from top
to bottom rows for male (left column) and female subjects (right column).

Lippert et al. 10.1073/pnas.1711125114 25 of 40



0 50 100 150 200 250

Observed weight (kg)

65

70

75

80

85

90

95

100

P
re

d
ic

te
d
 w

e
ig

h
t 

(k
g)

R 2
CV = 0.038

0 50 100 150 200 250

Observed weight (kg)

65

70

75

80

85

90

95

100

105

P
re

d
ic

te
d
 w

e
ig

h
t 

(k
g)

R 2
CV = 0.046

(A) (B)

0 50 100 150 200 250

Observed weight (kg)

40

50

60

70

80

90

100

110

120

130

P
re

d
ic

te
d
 w

e
ig

h
t 

(k
g)

R 2
CV = 0.15

0 50 100 150 200 250

Observed weight (kg)

40

50

60

70

80

90

100

110

120

130

P
re

d
ic

te
d
 w

e
ig

h
t 

(k
g)

R 2
CV = 0.14

(C) (D)

0 50 100 150 200 250

Observed weight (kg)

40

50

60

70

80

90

100

110

120

130

P
re

d
ic

te
d
 w

e
ig

h
t 

(k
g)

R 2
CV = 0.14

(E)

Fig. S22. Scatter plots between predicted weight and observed weight with different features. (A) Age; (B) Age + Sex; (C) Age + Sex + 1,000 genomic PCs; (D) Age + Sex +
height SNPs (696 height associated SNPs) + 96 BMI SNPs; (E) Age + Sex + 1,000 genomic PCs + height SNPs (696 height associated SNPs) + 96 BMI SNPs.
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Fig. S23. Weight prediction with different covariates stratified by sex. Covariates are age, age + 1,000 genomic PCs, age + SNPs, and age + 1,000 genomic PCs + SNPs from
top to bottom rows for male (left column) and female subjects (right column).
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Fig. S24. Distributions for chromosome X vs chromosome Y copy number estimates.
We obtained the final rules for predicting sex, as detailed in the supplementary text,
by inspecting this plot.

population. The population was not selected for hair color, and
after eliminating individuals with over 50% African ancestry
and subjects who did not have a usable hair color value due
to their age, use of artificial hair color, or baldness we were
left with 198 subjects, including 19 red heads and 20 blonds,
which we found insufficient to reliably train predictive models
of hair color.

Metric Learning for Individual Identification. To measure sim-
ilarity between a de-identified genome g ∈ G and a set of
phenotypic measurements derived from an image and basic de-
mographic information p ∈ P for an individual whose identity
is known, we propose the following two-step approach. First,
we find a mapping of phenotypes, ψP : P → EP , and a map-
ping of genomes, φP : G → EP , into a common D-dimensional
embedding-space EP ∈ RD. Finding such mappings consists
of a combination of PC analysis and predictive modeling. The
second step is to learn an optimal similarity δP : EP ×EP → R
that allows numeric comparison of mapped phenotypes ψP (p)
and genomes φP (g).

Learning a Similarity Function. For any given phenotypic measure-
ment, we have defined suitable embeddings. Phenotypes that
are a single number, such as height, weight, or age, are simply
represented by their phenotype value. For phenotypes that
comprise high-dimensional objects, such as images, or voice
samples, we have defined embeddings to capture a maximum
amount of information relevant for matching. For example,
facial images provide information on the shape and the color
of the face. Additionally, a facial image may also provide
information about sex, ancestry, and the age of the person in
the image. Consequently, we embedded images into a set of
PC dimensions that capture shape and color information, and

additional dimensions for sex, ancestry, and age.
Given ψP : P → EP , the function for embedding a pheno-

type, and φP : G → EP , the function for embedding a genome,
we learn an optimal similarity δP , that takes embedded phe-
notype ψP(p) and genotype φP(g) and outputs a similarity.
A list of all embeddings is given in Table S14. As not all
dimensions of the embedding space EP can be expected to
yield equal amounts of information for judging similarity be-
tween phenotypes and genomes, we learned optimally weighted
similarity functions δP to improve re-identification.

δP (ψP(pn), φP(g)) =
D∑
d=1

wd |ψP(pn)d − φP(g)d| , [2]

where the weights wd reflect the importance of d-th dimension
of EP .

To obtain on optimal δP , we define the probability that a
genome g belongs to the same person as the n-th phenotype
profile p ∈ S out of a lineup S = [p1, . . . , pN ] of size N , to be
by expression 3 for η(g, pn,S).

η(g, pn,S) = exp (δP (ψP (pn) , φP (g)))∑
pn′∈S

exp (δP (ψP (pn′) , φP (g)))
. [3]

Plugging in the expression for δP given in expression 2, we
obtain

η(g, pn,S) =
exp
(∑D

d=1 wd
∣∣ψP (pn)d − φP (g)d

∣∣)∑
pn′∈S

exp
(∑D

d=1 wd
∣∣ψP (pn′)d − φP (g)d

∣∣) .
For a training data set D consisting of combinations of

lineups S and corresponding genomes g, we can maximize the
resulting log-likelihood L with respect to the weights wd using
the YASMET (31) software∗.

L =
∑

(g,S)∈D

(∑
pn∈S

lnη(g, pn,S)

)
.

In Fig. S28, we compare m10 and s10 using YASMET and
the cosine distance for different combinations of phenotypes.
Fig. S26 shows the corresponding receiver operator charac-
teristic (ROC) curves, for all individuals and stratified by
gender. For 25 out of 26 settings, YASMET showed better
performance than cosine (one-sided binomial P = 4.0× 10−7),
demonstrating that our proposed metric learning approach
properly adjusted the weights to achieve high identification
performance.

In Fig. S29 we show m10 and s10 using YASMET for indi-
viduals stratified by (A) male and (B) female sex. Fig. S32
shows m10 and s10 using YASMET for an analysis that in-
cluded 277 SNPs reported by Qiao et al. (68). We did not
observe an improvement in re-identification performance.

Select Performance Simulation. We simulated independent
Gaussian distributed traits yn for 1,000 individuals as the sum
of a Gaussian distributed predictor pn and an unpredictable
Gaussian noise component εn:

∗http://www.fjoch.com/yasmet.html
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Fig. S25. Histogram of male pattern baldness on the
Norwood-Hamilton Scale in male individuals.

Table S14. List of models used for Identification.

Label Target Phenotype Source Genome Source

D
em

og
r. Gender Gender = self-reported Gender = Sex (∼ XY)

Age Age = self-reported Age ∼ Telomeres + XY
Ethnicity Ethnicity = self-reported Ethnicity ∼ Genome PCs

A
dd

’l

Height/Weight/BMI Height = measured Height ∼ SNPs + Genome PCs + Sex (∼ XY) + Age (∼ Telomeres, XY)
Weight = measured Weight ∼ SNPs + Genome PCs + Sex (∼ XY CCN) + Age (∼ Telomeres, XY)
BMI = Weight/Height2 ∼ SNPs + Genome PCs + Sex (∼ XY) + Age (∼ Telomeres + XY)

Voice Voice i-vectors = Voice i-vectors ∼ SNPs + Genome PCs + Sex (∼ XY) + Age (∼ Telomeres + XY)
Gender ∼ Voice i-vectors = Sex (∼ XY)
Age ∼ Voice i-vectors ∼ Telomeres + XY
Ancestry ∼ Voice i-vectors = Ancestry

A
ll

Fa
ce

Eyecolor Eyecolor = measured Eyecolor ∼ SNPs + Genome PCs
Skincolor Skincolor = measured Skincolor ∼ SNPs + Genome PCs
Landmarks Landmarks = manual annotation ∼ SNPs + Genome PCs + Sex (∼ XY) + Age (∼ Telomeres + XY)

Gender ∼ Landmarks = Sex (∼ XY)
Age ∼ Landmarks ∼ Telomeres + XY
Ancestry ∼ Landmarks = Ancestry

3D Face Shape PCs = Shape PCs ∼ Genome PCs + Sex (∼ XY CCN) + Age (∼ Telomeres + XY)
Color PCs = Color PCs ∼ Genome PCs + Sex (∼ XY) + Age (∼ Telomeres + XY)
Gender ∼ Shape PCs + Color PCs = Sex (∼ XY)
Age ∼ Shape PCs + Color PCs ∼ Telomeres + XY
Ancestry ∼ Shape PCs + Color PCs = Ancestry

To
ge

th
er All Face 3D Face ∪ Landmarks ∪ Eyecolor ∪ Skincolor

All Face + Add’l 3D Face ∪ Landmarks ∪ Eyecolor ∪ Skincolor ∪ Voice ∪ Height/Weight/BMI
All Face + Demogr. 3D Face ∪ Landmarks ∪ Eyecolor ∪ Skincolor ∪ Ethnicity ∪ Age ∪ Gender
Full 3D Face ∪ Landmarks ∪ Eyecolor ∪ Skincolor ∪ Voice ∪ Height/Weight/BMI ∪ Ethnicity ∪ Age ∪ Gender

For each embedding, “Label”, all “Target” variables that are compared are listed. Each “Target” variable is predicted from a “Phenotype Source”
and a “Genome Source”. “=” refers to use of observed values and “∼” refers to predictive models learned from data. For model covariates that are

inferred from a model involving other variables, we show the model in parentheses. The embeddings under “Together” are unions of other
embeddings. “Gender” is self reported gender. “Sex” is the genetic sex. “Ethnicity” is self-reported ethnicity. “Genome PCs” refers to 1,000 PCs
inferred from common variation. “Ancestry” refers to five-region genomic ancestry proportions (AFR, EUR, EAS, AMR, CSA). “Telomeres” refers
to estimated telomere length. “XY” refers to estimated CCNs for the sex chromosomes. “Voice i-vectors” refer to the voice i-vector embedding of

voice samples. “Landmarks” refers to the XYZ values of 36 landmark locations (see Table S1). “Eyecolor” refers to RGB values of eyecolor
estimated from the images. “Skincolor” refers to RGB values of facecolor estimated from the images. “Shape PCs” refers to the 3D image

embedding of face shape. “Color PCs” refers to the 3D image embedding of face texture.
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Fig. S26. ROC curves comparing YASMET and cosine in identification of individuals with different sets of features on individuals from all ethnicities. Features are learned
between observed and predicted variables for (A) YASMET on both genders, (B) cosine on both genders, (C), YASMET on male individuals (D) cosine on male individuals, (E)
YASMET on female individuals, and (F) cosine on female individuals.

yn = pn + εn.

pn ∼ N(0, R2).
εn ∼ N(0, 1−R2).

This way we achieve an expected variance explained of R2

for each trait. Fig. S33 shows how s10 changes for a single
trait that can be predicted at a given R2 between 0 and 1.
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Fig. S27. ROC curves comparing identification between African American individuals and European individuals with different sets of features using YASMET. Features are
learned between observed and predicted variables for YASMET on (A) African Americans of both genders, (B) Europeans of both genders, (C), male African Americans (D) on
male Europeans, (E) female African Americans, and (F) female Europeans.

The figure indicates that for a single Gaussian distributed
trait 55% R2 corresponds to roughly 1 bit of information and
achieves an s10 of 0.2 (similar to perfect prediction of a single

binary trait like gender). Fig. S34 shows s10 as a function of
the number of traits that each can be predicted at a given
expected R2 between 1% and 90%.
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A

B

Fig. S28. Select and match comparison between the similarity learned using YASMET and the cosine similarity on different combinations of phenotypes. (A) m10 and (B) s10.
In the x-axis, “Demogr.” represents the combined ancestry, age, and sex, “Add’l” represents the combined voice and height/weight/BMI, “All Face” represents the combined 3D
face, landmarks, eye color, and skin color, and “Full” represents the combined sets of phenotypes including “Demogr.”, “Add’l”, and “All Face”.
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A B

Fig. S29. Select and match results stratified by sex. Results are based on the YASMET similarity. Shown are different numbers of pool sizes from two to 50 within (A) male and
(B) female subjects.
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African European

A B

Fig. S30. Select and match results stratified by Ethnicity. Results are based on the YASMET similarity. Shown are different numbers of pool sizes from two to 50 within (A)
African and (B) European subjects.
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Fig. S31. Select and match results stratified by sex and ethnicity. Results are based on the YASMET similarity. Shown are different numbers of pool sizes from two to 50 within
(A) African American males, (B) European males (C) African American females, (D) European females. “nan” values indicate that the size of the test sample sets were too small
to run the lineup size.
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Fig. S32. Select and match results for models with 277 SNPs reported by Qiao et
al. (68) for different numbers of pool sizes from two to 50 on all subjects.

Fig. S33. Simulation of s10 as a function of R2 for a single trait. The plot shows
simulation results for a single independently Gaussian distributed trait as a function of
expected R2 (blue solid line). A random prediction (green dashed line) would achieve
an s10 performance of 10%.

Fig. S34. Simulation of s10 as a function of number of traits. The plot shows how s10
performance changes as a function of the number of traits for different expected R2.
Random predictions (green dashed line) would achieve an s10 performance of 10%
irrespective of the number of traits.
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Landmark Genome-wide Association Analysis. We have per-
formed a GWAS of all pairwise distances (630 in total) for
36 facial landmarks in Table S1 on 1,036 individuals. We
expect to have family relatedness and cryptic relatedness due
to the particular characteristics of the study. Consequently,
we attempted to remove related individuals from the landmark
GWAS to help us to alleviate the problem of inflated associ-
ation statistics due to related individuals in the GWAS. To
remove the related individuals, we excluded related individuals
iteratively so that the degree of relatedness between remaining
individuals was preserved a certain degree. We computed
the relatedness using the KING (69) algorithm on 11 million
autosomal variants. After excluding individuals with a relat-
edness larger than 0.177 (corresponding to filtering out 1st
degree relatedness) and individuals with missing or outliers in
particular landmark distance measurements, we obtained data
sets with 824-873 (870 average) individuals across different
landmark distances. The exact number of individuals differed
between traits because the traits had different numbers of
missing and outlier values. To determine outlier values in a
given landmark distance, we attempt to use the prediction
landmark distances and distribution of the measured landmark
distances. For a given landmark distance, we built ridge regres-
sion models using other landmark distances as features. The
landmark distances used as features are the distances between
the remaining 34 landmarks and each one of the two landmark
points from the landmark distance, resulting in a total of 68
landmark distance features. A trait value was considered to
be an outlier if the measured landmark distance was more
than three standard deviations away from the out of sample
predicted value in a 10 fold CV, or four standard deviations
away from the distribution of measured values.

We filtered SNPs and indels to have a maximum missing
call rate of 1%. We also included a set of 38 candidate SNPs
from Adhikari et al. (40), for which we relaxed this constraint
to a maximum of 10% missingness. We filtered variants whose
frequency of the most frequent dosage value (0, 1, or 2) is less
than 2% among the non-missing variants. Note that this is
similar to a minor allele frequency filter of 1%, except that
it also filters out presumably erroneous variants that are het-
erozygous in a majority of the individuals. After filtering,
11,441,529 autosomal variants remain. Finally, we performed
LD pruning within 500kb windows, filtering out variants with
a correlation of larger than 0.64, resulting in a set of 2,147,867
variants that we used for GWAS testing. In addition to stan-
dard GWAS testing, we separately performed association tests
in male and female samples and combined the corresponding
test statistics in a random effects meta-analysis.

We included sex and five genomic PCs as covariates to
capture population structure and sex effects within remain-
ing individuals. Dataset S1 shows SNPs that had P -values
smaller than 5 × 10−8 in at least one of the two tests. 166
associations were significant in the combined association test,
351 associations were significant in the meta-analysis, with
an overlap of 51 associations between the two approaches.
Since we tested 630 phenotypes, we also computed estimates
of the false discovery rate (FDR) for the combined GWAS.
The lowest FDR was estimated as 0.28. Thus we could not
find significantly associated SNPs when considering an FDR
threshold of 5%.

Table S15 shows the list of candidate SNPs from a previ-

ously published GWAS on human facial variation (40) that
achieved a P -value smaller than 5× 10−4 on our data. Note
that the replication study with 501 individuals within Adhikari
et al. (40) also used 6 × 10−3 as the significance threshold
when comparing the original results with replication study
results. We used a less stringent reporting threshold on this
set of SNPs as we have a lower number of individuals (870
on average) compared to the original study of Adhikari et
al. (40) (6,000 individuals). A total of six SNPs was replicated,
which are associated with six facial phenotypes (Brow ridge
protrusion, Upper lip thickness, Columella inclination, Nose
protrusion, Nose tip angle, Nose wing breadth) as shown in
Table S15.

Equivalence between a model using large numbers of princi-
pal components and a ridge regression on common variants.
In the following, we will show that a ridge regression on the
matrix of all common SNPs is equivalent to a ridge regression
on the top Ntr (or more) PCs of the training data, where Ntr
is the size of the training data set. In all of our experiments
the size of the training data set is less than 1,000 (due to CV).
This is sufficient to show that the common SNP PC models
trained in our paper are mathematically equivalent to a ridge
regression on the matrix of SNPs that had been used to com-
pute PCs. We further note that such a ridge regression fit with
regularization parameter γ is equivalent to BLUP prediction
using a realized relationship matrix determined from the same
set of SNPs and ratio of environmental variance over genetic
variance σ2

e/σ
2
g equal to γ, a model known as G-BLUP (70).

Let X ∈ RNtr×S be the matrix of common variants in the
training data set, with the training data set size Ntr less than
the number of SNPs S. Let the vector of predictions for the
test data set given the matrix of SNPs for the test data set
Xtests be ŷtest.

ŷtest = XtestβRidge.

Plugging in the ridge estimate for βRidge, we get

ŷtest = Xtest

βRidge︷ ︸︸ ︷(
XTX + γIS

)−1
XT y,

where γ is the ridge penalty and IS is the S × S identity
matrix.

Further, let the singular value decomposition of X be X =
UΛV T , where U ∈ RNtr×Ntr is the orthogonal matrix of left
singular vectors, V ∈ RS×S is the orthogonal matrix of right
singular vectors and the Ntr × S dimensional diagonal matrix
Λ holds the Ntr singular values of X.

ŷtest = Xtest
(
V ΛTUTUΛV T + γIS

)−1
V ΛTUT y

= Xtest
(
V ΛTΛV T + γV V T

)−1
V ΛTUT y,

= XtestV
(
ΛTΛ + γIS

)−1
V TV ΛTUT y,

= XtestV
(
ΛTΛ + γIS

)−1 ΛTUT y,

We observe that XtestV is the matrix of all S projected PCs
for the training data. Further, even though

(
ΛTΛ + γIS

)−1

is a full rank S × S diagonal matrix, it is being multi-
plied by the S × Ntr matrix ΛT , which can be written
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Table S15. List of replicated SNPs from previous human facial variation GWAS (40).

rsid chr Position Associated Trait P -Value Reported association (40)

rs2235371 1 209790735 SL_PG 6.7× 10−4 Brow ridge protrusion (1.8× 10−3?)
Upper lip thickness (6.6× 10−3?)

rs2045323 4 153910747 ALL_LI 3.5× 10−4 Columella inclination (3× 10−9)
ALL_SL 9.5× 10−4 Nose protrusion (1× 10−9)
ALL_ST 2.6× 10−4 Nose tip angle (2× 10−8)
ALR_LI 1.0× 10−4

ALR_SL 2.1× 10−4

ALR_ST 4.3× 10−5

CPHR_STO 4.2× 10−4

CPHL_STO 1.0× 10−1

SBALL_LI 9.8× 10−4

SBALR_LI 2.9× 10−4

SBALR_SL 5.4× 10−4

SBALR_STO 7.5× 10−4

SBALL_STO 1.8× 10−1

rs12651681 4 154328210 EBL_ENL 5.9× 10−5 Columella inclination (2.4× 10−8)
EBL_IRL 1.1× 10−4

EBR_IRR 3.8× 10−3

EBL_PIL 8.5× 10−4

EBL_PIL 6.3× 10−3

EBR_ENR 3.4× 10−4

rs12644248 4 154314240 SBALL_PG 3.4× 10−4 Columella inclination (6.6× 10−9)
SBALR_PG 1.3× 10−3

rs12543318 8 87856112 CPHR_CHL 7.8× 10−4 Brow ridge protrusion (2.9× 10−2?)
CPHL_CHR 3.4× 10−1 Columella inclination (1.5× 10−2?)

rs927833 20 22060939 ALL_LI 3.4× 10−4 Nose wing breadth (1× 10−9)
ALL_SL 7.2× 10−4

ALR_LI 2.1× 10−4

ALR_SL 6.8× 10−4

We have used a less stringent threshold of 1.0 × 10−3 as we have fewer individuals (870 on average) than this study (6,000 individuals). P -value
with ? represent Bonferroni-adjusted P -values reported by Adhikari et al. (40). A total six SNPs were replicated, which are associated with six
facial phenotypes (brow ridge protrusion, Upper lip thickness, columella inclination, nose protrusion, nose tip angle, nose wing breath). Gray

marks opposite (L/R) results that are above the reporting threshold of 1.0 × 10−3.
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as
[

ΛNtr ; 0(S−Ntr)×(S−Ntr)
]T , where ΛNtr is the symmet-

ric Ntr × Ntr diagonal matrix holding all non-zero singular
values of X and 0(S−Ntr)×(S−Ntr) is an (S −Ntr)× (S −Ntr)
matrix of all zeros. It follows that only the top Ntr diag-
onal entries of

(
ΛTΛ + γIS

)−1 are relevant for the matrix
multiplication with ΛT whereas the lower part becomes zero.

It follows that we can rewrite the expression for the predic-
tion above using only the top Ntr × Ntr part of Λ, denoted
by ΛNtr and using the Ntr ×Ntr identity matrix INtr and the
vector of zeros 0(S−Ntr)×(S−Ntr):

ŷtest = XtestV

[ (
ΛTNtr ΛNtr + γINtr

)−1 ΛTNtrU
T y.

0(S−Ntr)×(S−Ntr)

]
.

Dropping zeros, the expression finally can be reduced to
one using only the first Ntr columns of V , denoted as VNtr ∈
RS×Ntr .

ŷtest = XtestVNtr

(
ΛTNtr ΛNtr + γINtr

)−1 ΛTNtrU
T y

= XtestVNtr

(
ΛTNtrU

TUΛNtr + γINtr

)−1 ΛTNtrU
T y,

where re-introducing UTU yielded the desired result. UΛNtr is
the Ntr×Ntr matrix holding the top Ntr principal components
of the training SNP matrix and XtestVNtr is the Ntest ×Ntr
matrix of projections for the test SNPs on the training PCs.
This completes our proof (q.e.d.).

Assessing baseline re-identification accuracy. In the follow-
ing, we will theoretically analyze the performance of several
baseline strategies for re-identification and performance. These
strategies may not utilize any genomic (or other) information
on the individual of interest, but may use any information
that is available on the lineup (i.e., phenotype data), and even
on the study cohort as a whole. Additionally, any baselines
may use summary information for the cohort, such as sample
proportions (e.g., breakdowns of ethnicity, age or sex).

For a given lineup of size N , which has N1 ≥ N2 ≥ · · · ≥
NC individuals from each of C discrete subgroups or classes
(e.g., all individuals that have the same ethnicity and/or sex),
with

∑C

c=1 Nc = N , the probability of any person n in the
lineup matching the (unknown) genomic sample is equal to
1/N .

P (n) = 1
N

∀ n ∈ [1, . . . , N ] .

Under this setup we can compare two baseline strategies,
picking an individual at random, or picking an individual
that belongs to a particular strata in the data, for example
the largest/smallest strata. We will see that both of these
strategies have an expected accuracy of 1/N . Consequently,
we use 1/N as a baseline accuracy for each re-identification
experiment.

Strategy 1: Pick a random individual from the lineup.. This is the
baseline strategy that we chose. It has an expected accuracy
of 1/N .

Strategy 2: Always pick a random individual that originates from the
majority/minority class in the lineup.. Another baseline strategy
may always pick from a specific class, typically the class with
either the most, or the least members. In the following, we
will see that this strategy has an identical expected accuracy
of 1/N .

It follows that the probability that the genomic sample
comes from one class c is proportional to the number of indi-
viduals that belong to that class.

P (k) = Nc
N

∀ c ∈ [1, . . . , C] .

The complement, namely that the genomic sample comes
from a different class follows as

P (c) = 1− P(k) ∀ c ∈ [1, . . . , C] .
The probability that the genomic sample belongs to a single

selected individual from that class, given that the genomic
sample belongs to any individual from that class follows by
conditioning

P (n|c) = P (n)
P(c) = 1

Nc

On the other side, the probability that the genomic sample
belongs to a single selected individual from that class, given
that the genomic sample belongs to an individual from a
different class, is equal to 0.

The marginal probability is then

P (n|c) P (c)︸ ︷︷ ︸
1/N

+ 0 · P
(
k
)︸ ︷︷ ︸

0

= 1
N
.

We can see that this strategy has the same expected accu-
racy of 1/N .
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