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Web Appendix A

[Figure 1 about here.]

In the absence of significant plate replication within subjects, and because we cannot truly

know which vaccine subjects are respondents against which peptides, it is difficult to empir-

ically address whether slide and peptide effects are additive. Our RV144 placebo data can

partially address the additivity of baseline peptide effects and plate effects. As discussed

in the paper, twenty RV144 subjects received placebo and were measured on two separate

slides. Under the paired pepBayes model, differences between peptide averages before and

after placebo treatment (i.e. quantities zip = ȳip1 − ȳip0 as in the paper) should have a

symmetric distribution centered around the difference between the slides’ respective plate

effects, (µi1−µi0). Moreover, if we plot zip as a function of average intensity across the paired

slides 1
2
(ȳip1 + ȳip0), observations should approximately center around a constant difference

(µi1 − µi0). Figure 1 shows this plot for each of the twenty placebo subjects, along with

a scatterplot smoother. In many subjects, the scatterplot smoother is reasonably constant

across most of the range of average intensities, and also in most cases the scatterplot smoother

lies either entirely above or below the horizontal y = 0 line. Although the smoother line is

rarely perfectly horizontal, the additivity assumption of baseline peptide effect and plate

effects at least roughly holds is a useful approximation to explain variability in peptide

intensities.

Web Appendix B

Sum to zero constraint for slide effects

Let S = 2N , the number of slides, and let Jn denote an n × n matrix filled with ones. We

define a positive semi-definite matrix

Σµ = IS −
JS

S
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and let slide effects µ ∼ Normal(0,Σµ). To work with this prior, we represent µ with an

(S−1)-dimensional normal random variable. We define an S×(S−1) matrix Q via the eigen-

decomposition of Σµ, taking the columns of Q to be the eigenvectors of Σµ corresponding to

the positive eigenvalues, i.e.

Σµ = QIS−1Q
T .

Next, we define a design matrix X between the slide effects µ and the observations y. We

denote the total number of probers per slide asNprobe =
∑P

p np, and we define an S∗Nprobe×S

design matrix

X =
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


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Let µ
∗ be an S − 1 random vector with multivariate normal distribution Normal(0, IS−1),

define X∗ ≡ XQ, and let µ = Qµ
∗. When defined as such, µ has a degenerate multivariate

normal distribution with mean 0 and covariance QIS−1Q
T = Σµ, as desired. Also note that

X∗
µ

∗ = XQµ
∗ = Xµ, which is useful for deriving the full conditional distribution of µ∗.

Web Appendix C

Monte Carlo Expectation Conditional Maximization

We find a posterior maximum using an Monte Carlo Expectation Conditional Maximization

(MCECM) algorithm. At iteration k+1, we estimate Q(θ|θ(k)) = E
[

L(X,Z, θ)|X, θ(k)
]

(the

E-step). We then maximize Q(θ|θ(k)) in a cyclic manner, generating θ(k+1) (the M-step).

Incorporating missing data typically eases the E and M steps such that they are fast, closed

form operations that are simpler than directly optimizing the likelihood of the observed data.

Jointly optimizing θ in Q(θ|θ(k)) may remain intractable and parameters may instead be
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updated in blocks, holding the remaining parameters fixed. Described in Meng and Rubin

(1993), this is the Expectation Conditional Maximization algorithm which resembles the

stable cyclical coordinate ascent optimization method. Because we are unable to generate a

closed form expectation E
[

L(X,Z, θ)|X, θ(k)
]

, we approximate it with Monte Carlo methods

(Wei and Tanner, 1990).

The MVT residual error distributions and the univariate-t distributions on random ef-

fects αip0, αip1 are implemented via a Normal-Gamma representation of a Student-t random

variable. For each parameter αip0, αip1, we augment the prior distribution with parameters

uip0, uip1 having Gamma
(

ν
2
, ν
2

)

distributions. Similarly, we augment the prior distribution

for residual errors with parameters wip0, wip1 having Gamma
(

ν
2
, ν
2

)

distributions. Given

these new latent variables, the full conditional distributions of numerous parameters become

familiar, tractable distributions.

The probe responses y are observed data, while parameters γ,u,w are treated as missing

data. We represent the remaining model parameters, except for random effects α, as θ. The

random effects α must be integrated from the likelihood to stabilize MCECM inference, but

doing so causes the E step to lose a closed form solution. We cannot simultaneously integrate

random effects α and the weights (u,w) in a closed form, but we can separately integrate

(u,w) or α from the complete data likelihood to closed forms. We exploit these two separate

forms to complete the E step using Monte Carlo and numerical integration techniques.

Because of conditional independence relations in our model, we need only compute this

expectation on a single observation yip.

E-Step First we apply the Law of Total Expectation to separate the E-step calculation
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into cases γip = 0 or 1:

E
[

l(yip,uip,wip, γip, θ)|yip, θ
(k)
]

=

1
∑

j=0

E
[

l(yip,uip,wip, γip = j, θ)|yip, θ
(k), γip = j

]

π(γip = j|yip, θ
(k)).

The probabilities π(γip = j|yip, θ
(k)) are not available in closed form. We apply scaled, shifted

univariate Gauss-Hermite quadratures to π(yip0,yip1, αip0|γip = 0, θ) and π(yip0,yip1,αip|γip =

1, θ) to compute π(yip|γip = j, θ(k)). The prior for γip is Bern(ωp), and an application of Baye’s

Theorem produces

π(γip = 1|yip, θ) =
π(yip|γip = 1, θ)π(γip = 1, θ)

π(yip|γip = 0, θ)π(γip = 0, θ) + π(yip|γip = 1, θ)π(γip = 1, θ)

=
π(yip|γip = 1, θ)π(γip = 1)π(θ)

π(yip|γip = 0, θ)π(γip = 0)π(θ) + π(yip|γip = 1, θ)π(γip = 1)π(θ)

=
π(yip|γip = 1, θ)ωp

π(yip|γip = 0, θ)(1− ωp) + π(yip|γip = 1, θ)ωp

.

We denote π(γip = 1|yip, θ
(k)) = τ

(k)
ip . As mentioned before, E

[

l(yip,uip,wip, γip = j, θ)|yip, θ
(k), γip = j

]

does not easily admit a closed form expression. We use importance sampling to generate a

Monte Carlo estimate of the expectation, as the distribution (uip,wip|γip = j,yip, θ
(k),αip)

is easily sampled. We first sample a value α
(s)
ip from an instrumental distribution h, and then

we draw (u
(s)
ip ,w

(s)
ip ) from the distribution (uip,wip|yip, θ

(k), γip = j,α
(s)
ip ). In the case γip = 0

(dropping ip subscripts for clarity),

E
[

l(y, u0,w, γ = 0, θ)|y, θ(k), γ = 0
]

=
∫ ∞

−∞

E
[

l(y, u0,w, γ = 0, θ)|y, θ(k), γ = 0, α0

]

π(α0|y, θ
(k), γ = 0)dα0 =

∫ ∞

−∞

∫ ∞

−∞

∫

R2

l(y, θ, u0, γ = 0,w)π(w, u0|y, θ
(k), γ = 0, α0)π(α0|y, θ

(k), γ = 0)dwdu0dα0 =

∫ ∞

−∞

∫ ∞

−∞

∫

R2

l(y, θ, γ = 0, u0,w, )
π(α0|y, θ

(k), γ = 0)

h(α0)
π(w, u0|y, θ

(k), γ = 0, α0)h(α0)dwdu0dα0 ≈

M
∑

m=1

l(y, u
(m)
0 ,w(m), γ = 0, θ)

π(α
(m)
0 |γ = 0,y, θ(k))

h(α
(m)
0 )

.

Although the normalizing constant for π(α
(m)
ip0 |γip = 0,yip, θ

(k)) is available from our previous

numerical integration, in practice we use the unnormalized version of importance sampling
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and use importance weights

q
(l)
ip0 ≡

π(α
(l)
ip0|γip=0,yip,θ

(k))

h(α
(l)
ip0)

∑M

m=1

π(α
(m)
ip0 |γip=0,yip,θ

(k))

h(α
(m)
ip0 )

.

For the case γip = 1, we separately sample the weights and random effects for yip0 and yip1

in a similar fashion to the case γip = 0. Our M-step function is then

Q(θ|θ(k)) ≈

M
∑

m=1

l(yip, u
(m)
ip0 ,w

(m)
ip , γip = 0, θ(k))q

(m)
ip0 (1− τ

(k)
ip )+

l(yip0, u
(m)
ip0 , w

(m)
ip0 , γip = 1, θ(k))q

(m,0)
ip1 τ

(k)
ip +

l(yip1, u
(m)
ip1 , w

(m)
ip1 , γip = 1, θ(k))q

(m,1)
ip1 τ

(k)
ip .

The M-step Q function then yields manageable expressions for conditional maximizations.

Web Appendix D

[Figure 2 about here.]
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Figure 1. A loess scatterplot smoother traces the mean difference in fluorescence intensity
between slide pairs versus the mean fluorescence across slide pairs, separately by each placebo
subject. Under an additivity assumption, the scatterplot smoother should run approximately
horizontally.
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Figure 2. ROC curves for RV144 data with positive peptide positions called at different
family-wise error rate α levels. At a variety of cutoffs, the results remain very similar


