Supporting Information Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags

Dorothee Wasserberg, Jordi Cabanas-Danés, Jord Prangsma, Shane O'Mahony, Pierre-Andre Cazade, Eldrich Tromp, Christian Blum, Damien Thompson, Jurriaan Huskens, Vinod Subramaniam, Pascal Jonkheijm.

Scheme S1	S 6
Scheme S2	S7
Table S1	S 3
Table S2	S4
Table S3	S5
Table S4, S5, S6	S19
Table S7	S20
Figure S1	S2
Figure S2	S9
Figure S3, S4	S10
Figure S5, S6	S11
Figure S7	S12
Figure S8	S13
Figure S9	S14
Figure S10	S15
Figure S11	S16
Figure S12	S17
Figure S13	S18
Figure S14	S20
Figure S15	S21
Equation S1, S2, S3, S4, S5	S 8

Figure S1. (Left) Fluorescence image ($\lambda_{ex} = 535 \text{ nm}$, $\lambda_{em} = 600 \text{ nm}$) of a native PAGE-gel loaded with relevant mutants and variants of TagRFP as indicated. (Middle) Color image of an SDS-PAGE-gel loaded with relevant mutants and variants of TagRFP as indicated, included are the bands of the prestained protein ladder used (marker). (Right) Bioluminescence (luminol) image of a Western blot from a PAGE-gel, loaded with digestion products of enterokinase (EK) digests of different TagRFP variants (as indicated), stained with primary mouse anti-His₆ antibody (Ab) and secondary HRP-conjugated antimouse Ab. 0xEK, 1xEK and 4xEK denote the equivalents of enterokinase used to cleave the proteins' N-terminal His₆-tag at the DDDDK enterokinase recognition site.

Table S1. Spectroscopic and mass spectrometric data for TagRFP variants: absorption and emission maxima in nm, fluorescence lifetimes in ns, calculated masses in g/mol, and masses determined by MALDI-TOF MS in m/z.

protein variant	absorption maximum	emission maximum	fluorescence lifetime	mass calculated	mass measured
	(nm)	(nm)	(ns)	(g/mol)	(m/z)
^N His ₆ - ^{wt} TagRFP	555	582	2.4	30309	30350
^N His ₆ -TagRFP (1H)	555	579	2.4	30277	30000
^N His ₆ - ^C His ₆ -TagRFP (2H)	555	582	2.4	31100	30400
^N His ₆ - ^{S128C} His ₆ -TagRFP (1+1H)	555	585	2.4	31116	30800
^N His ₆ - ^C His ₆ - ^{S128C} His ₆ -TagRFP (2+1H)	-	-	-	32164	31700

Table S2. Fitted parameters of the mono-exponential fit to the anisotropy decay in time from integrated fluorescence polarization lifetime images: lifetime in ns and sum of the peak intensities of the parallel and perpendicular time traces in 10^4 cts.

Data set	Lifetime (ns)	Peak Intensities (10 ⁴ cts)		
2H sample 1	0.84	12		
2H sample 2	6.5	14		
2H sample 3	1.1	9.3		
2H sample 4	0.86	15		
2+1H sample 5	25.5	1.34		
2+1H sample 6	20.9	1.6		
2+1H sample 7	17.9	1.7		
2+1H sample 8	17.1	2.98		
2+1H sample 9	43.4	3.09		
2+1H sample 10	17.6	1.68		
2+1H sample 11	34.9	1.58		

Table S3. Dimensionless experimental and expected (calculated) ratios of relative abundances (averages of fits to three separate scans) from XPS of sulfur to carbon (S/C) and where present sulfur to nitrogen (S/N) in monolayers on gold covered glass substrates.

XPS samples		S/C	S/N
1. MUA	experimental	0.050	n.a.
	calculated	0.090	n.a.
2. NHS-activated MUA	experimental	0.067	1.62
	calculated	0.056	1.00
3. NTA-NH ₂ -functionalized MUA	experimental	0.051	2.70
	calculated	0.047	0.50
4. Ni ²⁺ :NTA-functionalized MUA	experimental	0.040	10.7
	calculated	0.047	0.50

Scheme S1. Schematic representation of the functionalization of gold substrates with Ni²⁺:NTA for protein immobilization via a 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) on gold, activation with NHS/EDC, subsequent immobilization of N_{α} , N_{α} -bis(carboxymethyl)-L-lysine (NTA-NH₂), complexation of Ni²⁺ and immobilization of His₆-tagged proteins.

Scheme S2. Schematic representation of the patterning procedure using nanoimprint lithography (NIL) to generate Ni²⁺:NTA/PEG-line-patterns on poly(methyl methacrylate) (PMMA)-spincoated glass substrates. After NIL and removal of the residual PMMA layer the exposed areas of the glass substrate are functionalized with N-[3-(trimethoxysilyl)propyl]ethylenediamine (TPEDA, step 1) and the resulting amine-terminated monolayer reacted with p-phenylene diisothiocyanate (ITC, step 2). The resulting isothiocyanate layer is then functionalized with N_{α},N_{α}-bis(carboxymethyl)-L-lysine (NTA-NH₂, step 3). Then, the remaining PMMA is stripped and the exposed areas of bare glass are backfilled with 2-[methoxy(polyethyleneoxy)propyl]trimethoxysilane (PEG-silane, step 4) to prevent non-specific protein interactions with the bare substrate. Finally, NTA-terminated areas are complexed with Ni²⁺ and His₆-tagged proteins are immobilized (step 5).

As an example, the following equilibrium (Equation S1) and mass balances (Equation S2, S3) were used for a doubly His₆-tagged TagRFP variant (**2H**):

$$2\mathbf{H} + \text{NiNTA} \xrightarrow{\mathbf{K}_{l}} 2\mathbf{H} \cdot \text{NiNTA} + \text{NiNTA} \xrightarrow{\mathbf{K}_{2}} 2\mathbf{H} \cdot (\text{NiNTA})_{2} \qquad (Equation S1)$$

$$\theta_{\text{NiNTAtot}}/\theta_{\text{tot}} = \theta_{\text{NiNTAfree}}/\theta_{\text{tot}} + \theta_{2\mathbf{H}} \cdot \frac{1}{\text{NiNTA}}/\theta_{\text{tot}} + \theta_{2\mathbf{H}} \cdot \frac{1}{(\text{NiNTA})^{2}}/\theta_{\text{tot}} \qquad (Equation S2)$$

$$[2\mathbf{H}]_{\text{tot}} = [2\mathbf{H}]_{\text{free}} + [2\mathbf{H}]_{\text{tot}} \theta_{2\mathbf{H}} \cdot \frac{1}{\text{NiNTA}}/\theta_{\text{tot}} + [2\mathbf{H}]_{\text{tot}} \theta_{2\mathbf{H}} \cdot \frac{1}{(\text{NiNTA})^{2}}/\theta_{\text{tot}} \qquad (Equation S3)$$

where Θ is the absolute surface coverage in mol/unit area, while species in solution are given as concentrations in mol/L and with the corresponding equilibrium constants as follows:

$$K_{I} = \frac{\theta_{2\mathbf{H}\cdot\mathrm{NiNTA}}/\theta_{\mathrm{tot}}}{[2\mathbf{H}]\cdot\theta_{\mathrm{NiNTA}}/\theta_{\mathrm{tot}}} = 2K_{i,His_{6}}$$
(Equation S4)

$$K_{2} = \frac{\frac{\theta_{2\mathbf{H}\cdot(\mathrm{NiNTA})_{2}}}{\theta_{2\mathbf{H}\cdot\mathrm{NiNTA}}} - \frac{\theta_{\mathrm{NiNTA}}}{\theta_{\mathrm{tot}}} = \frac{1}{2} C_{eff} K_{i,His_{6}}$$
(Equation S5)

Substituting Equations S4, S5 into Equations S2, S3 yields a set of numerically solvable equations with $\theta_{Ni(II)}$ ·NTAtot/ θ_{tot} as variable. Since the experiment was carried out under continuous flow conditions, [2H] is assumed to be constant and equal to [2H]_{tot}. The equations were solved in a spreadsheet approach.^{S4}

Initially, $K_{i,His6}$ and the maximum SPR resonance angle shift ($\Delta \alpha_{max}$) were iteratively optimized to fit the theoretical to the experimentally obtained values of SPR resonance shifts for **1H** binding to the Ni²⁺:NTA-functionalized surface. This $K_{i,His6}$ value (obtained for **1H**) was used as a fixed parameter for all the other variants during optimization, as it is assumed intrinsic to all His₆-tags, while $\Delta \alpha_{max}$ and C_{eff} were iteratively optimized for the other variants.

Figure S2. Schematic representation of TagRFP variants with the His₆-tags that adsorb in each model (**3H** is the same as **2+1H**).

Figure S3. The computed Ni²⁺:NTA-functionalized SAM viewed from the side (left) and top (right) with atoms shown as space-filling spheres. Ni²⁺ ions are colored in orange, oxygen atoms are red, nitrogen atoms are dark blue, carbon atoms are light blue, sulfur atoms are yellow and gold atoms are pink.

Figure S4. The computer mixed Ni²⁺:NTA/acid-functionalized SAM viewed from the side (left) and top (right) with atoms shown as space-filling spheres. Ni²⁺ ions are colored in orange, oxygen atoms are red, nitrogen atoms are dark blue, carbon atoms are light blue, sulfur atoms are yellow and gold atoms are pink.

Figure S5. Computed timelines for number of complexed histidine residues and His₆-tag-SAM interaction energy, for **1H** adsorbed on the mixed SAM in side-on and end-on orientations.

Figure S6. Computed timelines for number of complexed histidine residues and His₆-tag-SAM interaction energy, for **2H** adsorbed on the mixed SAM in side-on and end-on orientations.

Figure S7. Computed timelines for number of complexed histidine residues and His₆-tag-SAM interaction energy, for **3H** (**2+1H**) and **1+1H** adsorbed on the mixed SAM. Both use His tags at opposite ends of the protein and can only bind in a side-on orientation.

Figure S8. Final snapshots of the **1H** and **1+1H** His₆-tags adsorbing onto the uniform Ni²⁺:NTA SAM. The SAM is in liquorice representation, the His₆-tag is in CPK representation, Ni²⁺ ions are in spacefilling representation. End-on oriented 1H is named "perp1H" in this Figure.

Figure S9. Final snapshots of the **2H** His₆-tags adsorbing onto the uniform Ni²⁺:NTA SAM. The SAM is in liquorice representation, the His₆-tag is in CPK representation, Ni²⁺ ions are in space-filling representation. End-on oriented 2H is named "perp2H" in this Figure.

Figure S10. Final snapshots of the **3H** (**2+1H**) His₆-tags adsorbing onto the uniform Ni²⁺:NTA SAM. The SAM is in liquorice representation, the His₆-tag is in CPK representation, Ni²⁺ ions are space-filling spheres.

Figure S11. Final snapshots of the **1H** and **1+1H** His₆-tags adsorbing onto the mixed Ni²⁺:NTA SAM. The SAM is in liquorice representation, the His₆-tag is in CPK representation, Ni²⁺ ions are in spacefilling representation. End-on oriented 1H is named "perp1H" in this Figure.

Figure S12. Final snapshots of the **2H** His₆-tags adsorbing onto the mixed Ni²⁺:NTA SAM. The SAM is in liquorice representation, the His₆-tag is in CPK representation, Ni²⁺ ions are in space-filling representation. End-on oriented 2H is named "perp2H" in this Figure.

Figure S13. Final snapshots of the **3H** (**2+1H**) His₆-tags adsorbing onto the mixed Ni²⁺:NTA SAM. The SAM is in liquorice representation, the His₆-tag is in CPK representation, Ni²⁺ ions are space-filling spheres.

Table S4. Calculated interaction energies for the uniform and mixed Ni ²⁺ :NTA S	AMs.
---	------

Variant (orientation)	Protein-SAI Waals (kc	M van der :al/mol)	Proteir Electrostatio	n-SAM c (kcal/mol)	Total Prot (kcal/	ein-SAM 'mol)	Protein-Wat	er (kcal/mol)	Tag-SAM	(kcal/mol)	Tag-Water (kcal/mol)		Total Interaction Energy (kcal/mol)	
	Uniform	Mixed	Uniform	Mixed	Uniform	Mixed	Uniform	Mixed	Uniform	Mixed	Uniform	Mixed	Uniform	Mixed
1H (side-on)	-44±7	-11±6	-875±48	-187±71	-919±47	-198±73	-6666±211	-6921±206	-201±35	-201±35	-186±28	-186±28	-7972±221	-7506±223
2H (side-on)	-59±8	-12±5	-1118±51	-149±76	-1177±52	-161±74	-6458±172	-7024±204	-402±49	-402±49	-372±40	-372±40	-8409±190	-7959±226
2+1H(side-on)	-62±8	-31±7	-1057±82	-394±42	-1119±80	-425±42	-6814±260	-6527±177	-603±57	-603±57	-570±48	-570±48	-9104±204	-8090±200
1+1H(side-on)	-40±8	-32±7	-673±56	-274±68	-713±57	-306±69	-6519±179	-6913±187	-402±49	-402±49	-372±40	-372±40	-8006±198	-7980±200
1H (end-on)	-0.02±0.01	-0.1±0.1	0.08±0.9	6±11	0.06±0.9	6±10	-7231±252	-6882±167	-201±35	-201±35	-186±28	-186±28	-7618±256	-7263±173
2H (end-on)	-0.3±0.2	-0.9±0.9	3±5	-17±19	3±5	-18±19	-7662±186	-7108±177	-402±49	-402±49	-372±40	-372±40	-8433±197	-7900±189
Ref. His ₆ tag	-178±34	-178±34	-23±5	-23±5	-201±35	-201±35	-186±28	-186±28	-201±35	-201±35	-186±28	-186±28	-387±45	-387±45

Table S5. Number of water molecules within 10Å of the protein when bound to the mixed SAM.

Variant	Solvated	Side-on	Side-on	Side-on	Side-on	End-on	End-on
	Protein	1H	2H	2+1H	1+1H	1H	2H
No. of Water Molecules	3720	3350	3550	3400	3370	3570	3700

Table S6. Conformational energies and protein radii of gyration when bound to the uniform SAM (excluding the His₆-tags) and the corresponding values for reference unbound protein.

	Solvated Protein	Side-on 1H	Side-on 2H	Side-on 2+1H	Side-on 1+1H	End-on 1H	End-on 2H
Energy (kcal/mol)	4720±40	4770±50	4800±50	4750±50	4770±50	4750±50	4730±50
Radius of gyration (Å)	18.5±0.1	18.4±0.1	18.3±0.1	18.4±0.1	18.3±0.1	18.1±0.1	18.9±0.1

Table S7. Conformational energies and protein radii of gyration when bound to the mixed SAM (excluding the His₆-tags).

	Side-on 1H	Side-on 2H	Side-on 2+1H	Side-on 1+1H	End-on 1H	End-on 2H
Energy (kcal/mol)	4770±40	4700±40	4700±50	4690±40	4680±40	4690±40
Radius of gyration (Å)	18.1±0.1	18.3±0.1	18.4±0.0	18.4±0.1	18.2±0.1	18.4±0.1

Figure S14. The starting bound configurations used for SMD simulations of 2H unbinding from (a)

end-on and (b) side-on orientations on a mixed SAM.

B) 2+1H

Figure S15. Anisotropy decay (top) and time traces for parallel and perpendicular polarization for immobilized protein **2H** (A) and **2+1H** (B).