Metal-free direct alkylation of unfunctionalized

allylic/benzylic sp³ C–H bonds via photoredox induced radical cation deprotonation

Rong Zhou,^{a,b} Haiwang Liu,^a Hairong Tao,^c Xingjian Yu^a and Jie Wu^{*a}

^a Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore, 117543. E-mail: <u>chmjie@nus.edu.sg</u>

^b College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, China, 030024.

^c College of Chemistry, Beijing Normal University, Beijing, China.

Table of Contents

I. General Information
II. Survey of Reaction Conditions
III. Typical Procedure for Alkylation of Allylic sp ³ C–H Bonds in BatchS3
IV. Typical Procedure for Alkylation of Allylic sp ³ C–H Bonds in "Stop-Flow Micro
Tubing" Reactor
V. Typical Procedure for Alkylation of Benzylic sp ³ C–H Bonds in BatchS5
VI. Typical Procedure for Alkylation of Benzylic sp ³ C-H Bonds in "Stop-Flow
Micro Tubing" Reactor
VII. Large-Scale Continuous-Flow Synthesis of Compound 7
VIII. Control Experiments for Mechanistic Investigation
IX. Proposed Mechanism Involving Hydrogen Atom Transfer (HAT) Process and the
DFT Calculation Results
X. Analytical Data of the Products
XI. Supplementary References
XII. ORTEP Drawings for the Major Diastereomer of 41
XIII. ¹ H, ¹³ C NMR Spectra of Products
XIV. NOESY, HMQC, and HMBC Spectra of Representative Compounds

I. General Information

Chemicals and solvents were purchased from commercial suppliers and used as received. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker ACF300 (300 MHz), AV-III400 (400 MHZ) or AMX500 (500 MHz) spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: 7.26 ppm ¹H NMR, 77.0 ppm ¹³C NMR). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br s (broad singlet). All high resolution mass spectra (HRMS) were obtained on a Finnigan/MAT 95XL-T spectrometer. All GC analysis was performed on Aglilent 7820A&5977E GC-MS. X-ray crystal diffraction data were collected on a Bruker D8 Venture Single Crystal X-ray diffractometer. The Blue LED strips (2 meter, 20 W) were purchased from Inwares Pte Ltd (Singapore). The Asia Syringe Pump was purchased from Syrris Company (UK) for continuous flow setup. The Tefzel shut-off valves, and HPFA micro tubings were purchased from IDEX Health & Science (Oak Harbor, WA). Further visualization was achieved by staining with iodine.

II. Survey of Reaction Conditions

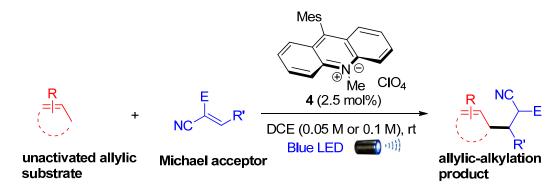

→ 5 +	$NC \xrightarrow{CN} Ph \xrightarrow{\text{cat (5 mol \%)}}_{\text{solvent (0.1 M), rt, 18 h}} \xrightarrow{N} 7$		Mes N Θ 4 e CIO ₄
entry	catalyst	solvent	yield ^{b} (%)
1	4	DCE	72
2	2,4,6-tri(<i>p</i> -tolyl)pyrylium tetrafluoroborate	DCE	70
3	$Ir(ppy)_2(dtbpy)_3PF_6$	DCE	na
4	Ir(ppy) ₃	DCE	na
5	Eosin Y	DCE	na
6	$Ru(bpy_{)3}Cl_2$	DCE	trace
7	$Ru(bpz)_3(PF_6)_2$	DCE	trace
8	4	DCM	54
9	4	acetone	21

Table S1. Survey of conditions for model reaction^a

10	4	MeCN	trace
11	4	DMSO	trace
12	4	DMF	trace
13 ^c	4	DCE	84
$14^{c,d}$	4	DCE	91
15 ^{<i>c</i>,<i>d</i>,<i>e</i>}	4	DCE	90
16	no catalyst	DCE	na
17^{f}	4	DCE	na

^{*a*} Unless otherwise noted, reaction of **5** (95 μ L, 0.8 mmol), **6** (31 mg, 0.2 mmol), and catalyst (0.01 mmol) were carried out in 2.0 mL of the solvent. ^{*b*} Isolated yields. ^{*c*} 4.0 mL DCE was used. ^{*d*} The catalyst loading was changed to 2.5 mol %. ^{*e*} The reaction was conducted using a "stop-flow micro tubing" reactor for 5 hrs. ^{*f*} The reaction was conducted in dark.

III. Typical Procedure for Alkylation of Allylic sp³ C–H Bonds in Batch

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added the corresponding Michael acceptor (0.2 mmol, 1.0 equiv.), and 9-mesityl-10-methylacridinium perchlorate **4** (for **7-31**, and **38-47**, 0.005 mmol, 0.025 equiv.; for **32-37**, 0.01 mmol, 0.05 equiv.). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with argon for three times. Then anhydrous DCE (for **7-31**, and **38-47**, 4.0 mL; for **32-37**, 2.0 mL) was added, and finally allylic substrate (0.8 mmol, 4.0 equiv.) was added. After that, the reaction was placed under a blue LED (2 meter strips, 20 W) with an argon balloon and irradiated for 18-48 hrs. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate

(15:1-3:1) to give the alkylation product.

IV. Typical Procedure for Alkylation of Allylic sp³ C–H Bonds in "Stop-Flow Micro Tubing" Reactor

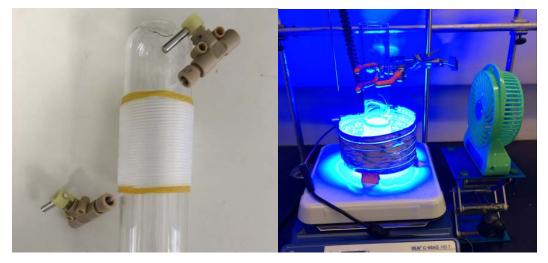
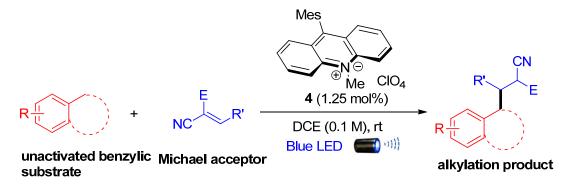



Figure S1. "Stop-flow micro tubing" reactor and reaction set up

Under Argon atomsphere, а solution of Michael acceptor (0.2)mmol), 9-mesityl-10-methylacridinium perchlorate 4 (for 32-37, 0.01 mmol, 0.05 equiv.; for 7, 43, 46, 47 0.005 mmol, 0.025 equiv.), and allylic substrate (0.8 mmol, 4.0 equiv.) in anhydrous DCE (2.0 mL, for 7, 4.0 mL) was introduced into a silicon septa vial. Then the solution was pumped into a stop-flow micro tubing (SFMT) reactor (total volume 1.5 mL) which was made of HPFA tubing (O.D. 1/16", I.D. 0.03", 340 cm) via a syringe. The valves were closed, and the SFMT was placed under a blue LED and irradiated for 5-48 hrs. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (15:1-3:1) to give the alkylation product.

V. Typical Procedure for Alkylation of Benzylic sp³ C–H Bonds in Batch

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added the corresponding Michael acceptor (0.2 mmol, 1.0 equiv.), and 9-mesityl-10-methylacridinium perchlorate **4** (0.0025 mmol, 0.0125 equiv.). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with argon for three times. Then anhydrous DCE (2.0 mL) was added, and finally benzylic substrate (1.0 mmol, 5.0 equiv.) was added. After that, the reaction was placed under a blue LED with an argon balloon and irradiated for 30-48 hrs. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (15:1-3:1) to give the alkylation product.

VI. Typical Procedure for Alkylation of Benzylic sp³ C–H Bonds in "Stop-Flow Micro Tubing" Reactor

Under atomsphere, solution Argon а of Michael acceptor (0.2)mmol), 9-mesityl-10-methylacridinium perchlorate 4 (0.0025 mmol, 0.0125 equiv.), and benzylic substrate (1.0 mmol, 5.0 equiv.) in anhydrous DCE (2.0 mL) was introduced into a silicon septa vial. Then the solution was pumped into a stop-flow micro tubing (SFMT) reactor (total volume 1.5 mL) which was made of HPFA tubing (O.D. 1/16", I.D. 0.03", 340 cm) via a syringe. The valves were closed, and the SFMT was placed under a blue LED and irradiated for 30-48 hrs. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (15:1-3:1) to give the alkylation product.

VII. Large-Scale Continuous-Flow Synthesis of Compound 7

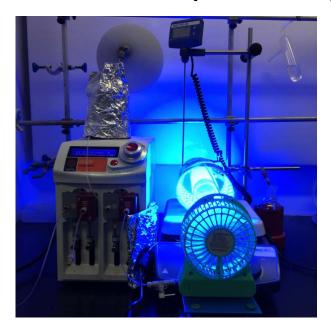
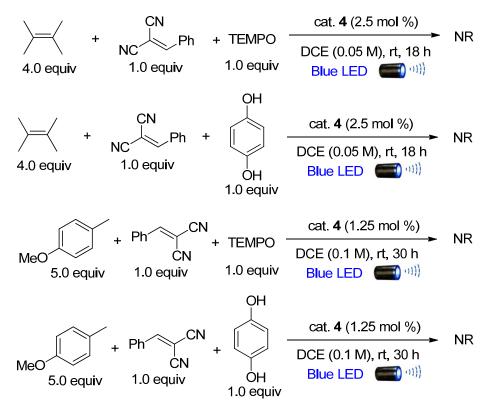
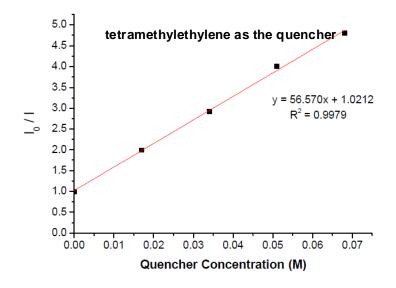
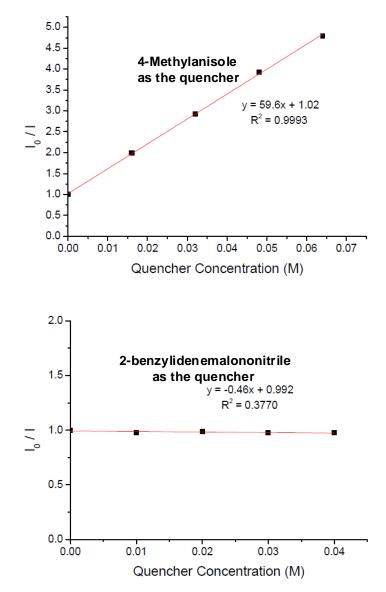



Figure S2. Continuous-flow setup for the synthesis of compound 7

Under Argon atomsphere, a solution of 2-benzylidenemalononitrile **6** (1.23 g, 8.0 mmol), 9-mesityl-10-methylacridinium perchlorate **4** (41.1 mg, 0.075 mmol, 0.0125 equiv.), and tetramethylethylene **5** (4.0 mL, 32 mmol, 4.0 equiv.) in anhydrous DCE (80.0 mL) was introduced into a round bottom flask. As shown in Fig. S2, an Asian pump was filled with the mixture and then attached to the flow apparatus. The tubing (HPFA tubing O.D. 1/8", I.D. 0.062", 600 cm) was placed under a blue LED. The flow apparatus itself was set up with $t_R = 5.0$ hrs, and flow rate = 39 μ L/min. After equilibration with 5 hrs, the solution was collected for 25 hrs. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (15:1-10:1) to give the product **7** (1.1 g) in 79% yield.

VIII. Control Experiments for Mechanistic Investigation


a) Radical inhibition experiments



When TEMPO (1.0 equiv.) or hydroquinone (1.0 equiv.) was introduced into the model reaction, no corresponding product was observed according to both TLC and GC-Mass analysis. This result showed that a free radical process was involved.

b) Stern-Volmer fluorescense quenching experiments

In a typical experiment, a solution of 9-mesityl-10-methylacridinium perchlorate **4** in DCE $(1.25 \times 10^{-3} \text{ M})$ was added the appropriate amount of quencher in a quartz cuvette. Then the emission of the sample was collected. The emission intensity at 510 nm was collected with excited wavelength of 450 nm.

c) Deuterium-labeling experiments

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added 2-benzylidenemalononitrile **6** (31.0 mg, 0.2 mmol), 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv.). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with argon for three times. Then anhydrous DCE and D₂O (V/V = 3/1, 4.0 mL) were added, and finally tetramethylethylene **5** (95.0 µL, 0.8 mmol, 4.0 equiv.) was added. After that, the reaction was placed under a blue LED with an argon balloon and irradiated for 18 hrs. The solvent was removed on a rotary evaporator under reduced pressure and

the residue was used for crude ¹H NMR test with 1,3,5-trimethoxybenzene as the internal standard (Figure S3). It gave the deuterated product **7**- d_1 in 91% NMR yield. Furthermore, when product **7** was subjected to the same reaction conditions, no H/D exchange occurred.

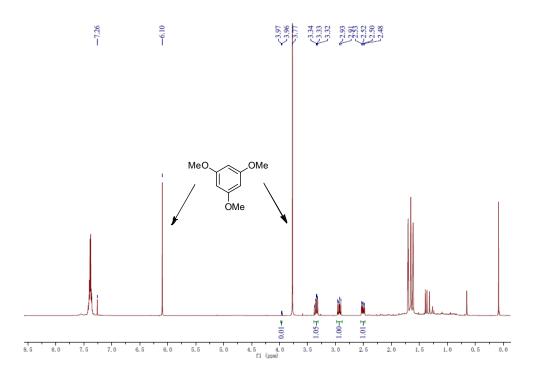
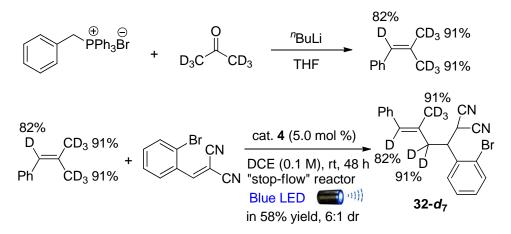
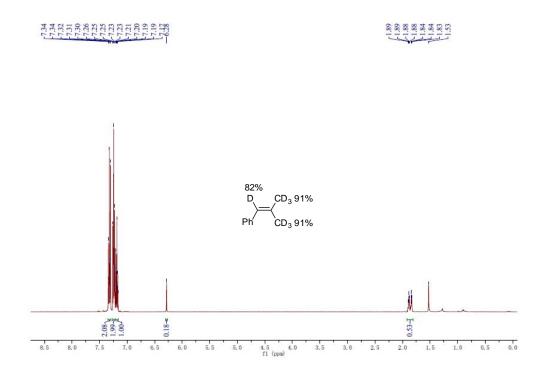
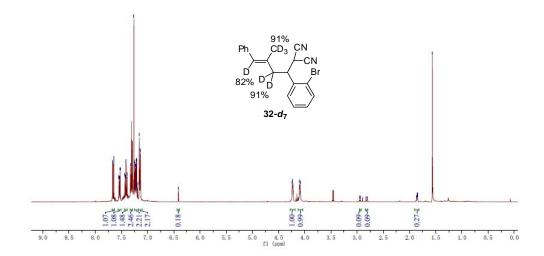




Figure S3. ¹H NMR spectra of the crude mixture of $7-d_1$

To a THF (50 mL) solution of benzyltriphenylphosphonium bromide (4.32 g, 10 mmol) was added ^{*n*}BuLi (2.0 M, 5.1 mL, 10.1 mmol) at 0 °C. The resulting mixture was stirred at 0 °C for 2 hrs until the solution became clear. After acetone- d_6 (0.83 mL, 11 mmol) was added, the solution was heated to 50 °C for 24 hrs. Then, the reaction was quenched by aqueous NH₄Cl solution. The mixture was extracted with ethyl acetate, dried over anhydrous Na₂SO₄, and purified using column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (15:1-10:1)


to give 2-methyl-1-phenyl-1-propene- d_7 (0.9 g) in 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 7.26 – 7.21 (m, 2H), 7.21 – 7.16 (m, 1H), 6.28 (s, 0.18H), 1.92 – 1.81 (m, 0.53H) (Figure S4).

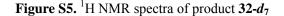
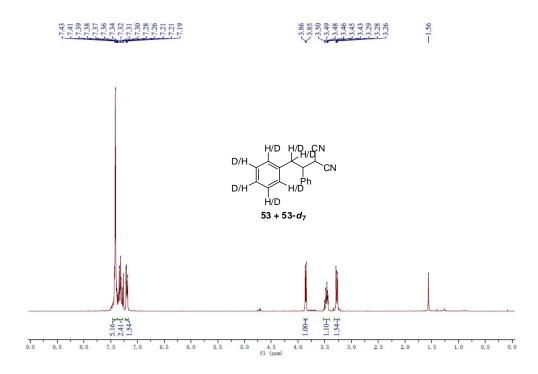


Figure S4. ¹H NMR spectra of 2-methyl-1-phenyl-1-propene- d_7

Under Argon atomsphere, a solution of 2-(2-bromobenzylidene)malononitrile (0.2 mmol), 9-mesityl-10-methylacridinium perchlorate (0.01)0.05 4 mmol, equiv.), and 2-methyl-1-phenyl-1-propene-d7 (111 mg, 0.8 mmol, 4.0 equiv.) in anhydrous DCE (2.0 mL) was introduced into a silicon septa vial. Then the solution was pumped into a stop-flow micro tubing (SFMT) reactor (total volume 1.5 mL) which was made of HPFA tubing (O.D. 1/16", I.D. 0.03", 340 cm) via a syringe. The valves were closed, and the SFMT was placed under a blue LED and irradiated for 48 hrs. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (15:1-10:1) to give the alkylation product $32-d_7$ (32 mg) in 58% yield and 6:1 rr with the *E*-isomer being the major. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.53 (dd, J = 7.9, 1.5 Hz, 1H), 7.41 (td, J = 7.7, 1.2 Hz, 1H), 7.33 - 7.28 (m, 2H), 7.25 - 7.18 (m, 2H), 7.18 – 7.11 (m, 2H), 6.41 (s, 0.18H), 4.23 (d, J = 4.8 Hz, 1H), 4.09 (d, J = 4.8 Hz, 1H), 2.95 (d, J = 7.2 Hz, 0.09H), 2.82 (d, J = 8.3 Hz, 0.09H), 1.90 - 1.82 (m, 0.27H) (Figure S5).

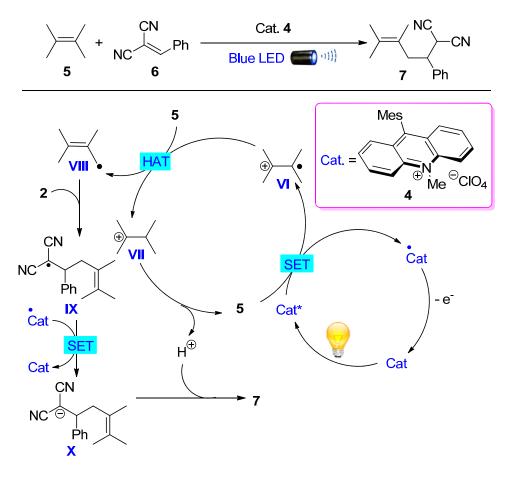


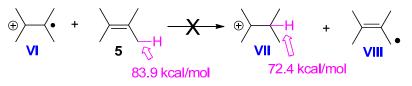



The above deuterium-labeling results strongly imply that the anion intermediate **V** would most likely abstract proton from solvent instead of substrate **1**.

d) Kinetic isotope effect experiments

Under Argon atomsphere, a solution of 2-benzylidenemalononitrile **6** (31.0 mg, 0.2 mmol), 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv.), toluene (106 μ L, 1.0 mmol, 5.0 equiv.), and toluene-*d*₈ (106 μ L, 1.0 mmol, 5.0 equiv.) in anhydrous DCE (2.0 mL) was introduced into a silicon septa vial. Then the solution was pumped into a stop-flow micro tubing (SFMT) reactor (total volume 1.5 mL) which was made of HPFA tubing (O.D. 1/16", I.D. 0.03", 340 cm) via a syringe. The valves were closed, and the SFMT was placed under a blue LED and irradiated for 40 hrs. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (15:1-10:1) to give the desired product **53** and **53-d**₇ (30.6 mg) in 83% yield. The ¹H NMR of the product showed that the position of the benzyl was 1.54 H, thus the




Figure S6. ¹H NMR spectra of product $53 + 53 - d_7$

IX. Proposed Mechanism Involving Hydrogen Atom Transfer (HAT) Process and the DFT Calculation Results

A mechanism involving hydrogen atom transfer process was also proposed to rationalize the alkylation of allylic/benzylic sp³ C–H bonds. As shown in Scheme S1, the radical cation **VI** generated via photoredox mediated SET process can accomplish an intermolecular H-atom abstraction from another molecule of **5**, in which case the radical cation itself served as an HAT catalyst. However, the quantum chemistry calculation using a composite method, CBS-QB3, did not support this process, as the proposed new generated C–H bond in HAT product **VII** is much weaker than the allylic C–H bond in **7** (72.4 kcal / mol vs 83.9 kcal / mol) (Scheme S2).

Scheme S1. Proposed hydrogen atom transfer mechanism

Scheme S2. Calculated C-H bond dissociation energy

Computational details (Methodology):

The quantum chemistry calculations are performed using the Gaussian 09 program¹. A composite method, CBS-QB3^{2,3} is used to carry out the calculations of geometry, frequency and energy within the Polarizable Continuum Model (PCM)⁴. The CBS-QB3 method calculates geometries and frequencies at the B3LYP/CBSB7 level of theory, and the energy is obtained by energy calculations at the CCSD(T)/6-31+G(d') and MP4SDQ/CBSB4 levels of theories and extrapolations to the complete basis set limit. All molecular structures have no imaginary frequencies and are local minima on the potential energy surfaces. Expression (a), formulated by Blanksby and Ellison⁵ is used to calculate the bond dissociation energy (BDE) for a dissociation

process $X-Y \rightarrow X' + Y'$

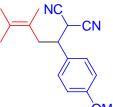
 $D_0(X-Y) = E_0(X) + E_0(Y) - E_0(X-Y) \quad (a)$

where $D_0(X-Y)$, $E_0(X)$, $E_0(Y)$ and $E_0(X-Y)$ denote the BDE to be calculated, computed electronic energies at 0 K with zero-point energy (ZPE) corrections for X, Y and X-Y, respectively.

Table S2. Optimized geometries (Angstrom) and Energies (Hartree) for species involved in
the BDE calculations (CBS-QB3, SCRF = (solvent = CH ₂ ClCH ₂ Cl, PCM))

	V	″II≻ V	l + H·	
VII	CBS-QB3 (0 K)= -235.71	2831	
	SCFR = (so	lvent = CH_2C	ICH ₂ Cl, PCM)	
(±)	1.704025	0.852496	-0.521040	
	2.669610	0.417421	-0.782943	
	1.427986	1.558771	-1.306607	
	1.830595	1.401667	0.413553	
	-1.802205	-0.773065	-0.495752	
	-2.329353	-0.213315	-1.288757	
	-1.476679	-1.724774	-0.909396	
	-2.543432	-0.899651	0.297895	
	-0.703970	0.101270	-0.080074	
	-1.010470	1.334887	0.645735	
	-2.015541	1.359130	1.059645	
	-0.254860	1.569143	1.399083	
	-0.920982	2.143826	-0.100785	
	0.674435	-0.272784	-0.404723	
	0.658985	-0.881664	-1.313880	
	1.048365	-1.275704	0.765314	
	0.361907	-2.119165	0.826261	
	2.043323	-1.650485	0.522426	
	1.087367	-0.763499	1.726748	
VI	CBS-QB3 (0 K)= -235.09	07591	
	SCFR = (so)	$lvent = CH_2C$	ICH ₂ Cl, PCM)	
	-1.478296	1.260321	0.141107	
	-2.442377	1.074099	0.616634	
	-0.939826	2.044478	0.670851	
	-1.701406	1.635399	-0.871120	
	1.478387	-1.260352	0.141153	
	2.442179	-1.074157	0.617290	
	0.939776	-2.044815	0.670283	
	1.702165	-1.634947	-0.871108	
	0.712553	-0.000039	0.000067	

	1.478329	1.260330	-0.140794	
	2.442291	1.074225	-0.616616	
	0.939801	2.044736	-0.670101	
	1.701725	1.634968	0.871535	
	-0.712547	-0.000035	-0.000060	
	-1.478416	-1.260286	-0.141470	
	-0.939715	-2.044795	-0.670427	
	-1.702639	-1.634847	0.870707	
	-2.442027	-1.073975	-0.617945	
H٠	CBS-QB3 (0 K)= -0.4998	34	
	SCFR = (sc)	$elvent = CH_2Cl$	CH ₂ Cl, PCM)	
	0.000000	0.000000	0.000000	
		$5 \rightarrow VIII +$	- H .	
5	CBS-QB3 ((0 K)=-235.333	3327	
	SCFR = (sc)	$elvent = CH_2Cl$	CH ₂ Cl, PCM)	
	-1.526181	1.249877	0.005092	
	-2.209886	1.237299	0.862438	
	-0.960890	2.178362	0.047457	
	-2.158988	1.283666	-0.890182	
	1.526271	-1.249868	0.005093	
	2.210095	-1.237157	0.862341	
	0.961072	-2.178397	0.047624	
	2.158961	-1.283693	-0.890265	
	0.673189	-0.000022	0.000002	
	1.526181	1.249877	-0.005093	
	2.209942	1.237258	-0.862393	
	0.960893	2.178361	-0.047539	
	2.158929	1.283709	0.890222	
	-0.673190	-0.000022	-0.000001	
	-1.526271	-1.249868	-0.005092	
	-0.961068	-2.178399	-0.047526	
	-2.159034	-1.283643	0.890214	
	-2.210024	-1.237206	-0.862397	
VIII	CBS-QB3 ((0 K)=-234.699	9798	
\setminus _/	SCFR = (so)	olvent = CH_2Cl	$CH_2Cl, PCM)$	
· ·	-0.651651	-0.054669	-0.000044	
	0.742439	0.163211	-0.000019	
	-1.266686	-1.423667	0.000044	
	-1.915719	-1.557411	0.876107	
	-1.915514	-1.557619	-0.876138	
	-0.535781	-2.230902	0.000229	
	0.000701			
	-1.618769	1.101091	-0.000034	


-1.488798	1.742883	0.879497
-1.487676	1.743877	-0.878655
1.696873	-1.020481	-0.000028
2.732634	-0.677627	-0.000064
1.555995	-1.654515	0.880276
1.555939	-1.654540	-0.880306
1.284749	1.433464	0.000044
0.670794	2.324763	0.000082
2.358184	1.579454	0.000062

X. Analytical Data of the Products

2-(3,4-Dimethyl-1-phenylpent-3-en-1-yl)malononitrile (7)

Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), 2-benzylidenemalononitrile **6** (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **7** (43 mg) in 91% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.54 – 7.33 (m, 5H), 4.00 (d, *J* = 5.1 Hz, 1H), 3.38 (ddd, *J* = 8.7, 6.7, 5.2 Hz, 1H), 2.98 (dd, *J* = 13.9, 8.7 Hz, 1H), 2.55 (dd, *J* = 13.9, 6.7 Hz, 1H), 1.75 (s, 3H), 1.70 (s, 3H), 1.66 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.1, 130.1, 128.9, 128.8, 127.9, 122.6, 112.4, 111.9, 45.4, 37.3, 28.5, 20.9, 20.6, 18.3; HRMS–ESI [M – H]⁻ Calcd for C₁₆H₁₇N₂ 237.1397, found 237.1395.

ОМе

2-(1-(4-Methoxyphenyl)-3,4-dimethylpent-3-en-1-yl)malononitrile (8)

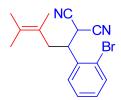
Following the typical procedure **III**, tetramethylethylene **5** (95 μ L, 0.8 mmol, 4.0 equiv), 2-(4-methoxybenzylidene)malononitrile (37 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **8** (28.4 mg) in 53% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 6.95 – 6.89 (m, 2H), 3.91 (d, *J* = 5.0 Hz, 1H), 3.82 (s, 3H), 3.30 (ddd, *J* = 8.8, 6.6, 5.0 Hz, 1H), 2.91 (dd, *J* = 14.0, 8.8 Hz, 1H), 2.47 (dd, *J* = 14.0, 6.7 Hz,

1H), 1.71 (s, 3H), 1.66 (s, 3H), 1.61 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 129.9, 129.1, 122.7, 114.3, 112.6, 112.0, 55.3, 44.8, 37.3, 28.8, 20.9, 20.7, 18.3; HRMS–ESI [M – H]⁻ Calcd for C₁₇H₁₉N₂O 267.1503, found 267.1503.

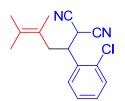
2-(3,4-Dimethyl-1-(p-tolyl)pent-3-en-1-yl)malononitrile (9)

Following the typical procedure III, tetramethylethylene 5 (95 μ L, 0.8 mmol, 4.0 equiv), 2-(4-methylbenzylidene)malononitrile (34 0.2 mmol, 1.0 mg, equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product 9 (40.2 mg) in 80% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.20 (m, 4H), 3.97 (d, *J* = 5.0 Hz, 1H), 3.35 (ddd, *J* = 8.8, 6.5, 5.2 Hz, 1H), 2.97 (dd, J = 14.0, 8.8 Hz, 1H), 2.52 (dd, J = 14.1, 6.8 Hz, 1H), 2.41 (s, 3H), 1.76 (s, 3H), 1.70 (s, 3H), 1.66 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.6, 134.1, 129.9, 129.6, 127.8, 122.7, 112.5, 111.9, 45.1, 37.2, 28.6, 21.1, 20.9, 20.6, 18.3; HRMS-ESI $[M - H]^{-1}$ Calcd for $C_{17}H_{19}N_{2}$ 251.1554, found 251.1549.

2-(3,4-Dimethyl-1-(m-tolyl)pent-3-en-1-yl)malononitrile (10)


Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), 2-(3-methylbenzylidene)malononitrile (34 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **10** (32 mg) in 63% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.24 (m, 1H), 7.24 – 7.09 (m, 3H), 3.94 (d, *J* = 5.1 Hz, 1H), 3.41 – 3.21 (m, 1H), 2.93 (dd, *J* = 14.0, 8.8 Hz, 1H), 2.48 (dd, *J* = 13.9, 6.5 Hz, 1H), 2.38 (s, 3H), 1.71 (s, 3H), 1.66 (s, 3H), 1.62 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.7, 137.1, 130.0, 129.5, 128.8, 128.6, 124.9, 122.7, 112.5, 111.9, 45.3, 37.3, 28.5, 21.4, 20.9, 20.7, 18.3; HRMS–ESI [M – H]⁻ Calcd for

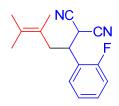
C₁₇H₁₉N₂251.1554, found 251.1544.


2-(1-(4-Hydroxyphenyl)-3,4-dimethylpent-3-en-1-yl)malononitrile (11)

Following the typical procedure **III**, tetramethylethylene **5** (95 μ L, 0.8 mmol, 4.0 equiv), 2-(4-hydroxybenzylidene)malononitrile (34 mg, 0.2 mmol. 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product 11 (27.4 mg) in 54% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.28 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.3 Hz, 2H), 5.40 (s, 1H), 3.97 (d, J = 4.9 Hz, 1) 1H), 3.42 - 3.24 (m, 1H), 2.94 (dd, J = 14.0, 8.9 Hz, 1H), 2.50 (dd, J = 14.0, 6.5 Hz, 1H), 1.75 (s, 3H), 1.70 (s, 3H), 1.65 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.1, 130.0, 129.3, 122.7, 115.9, 112.6, 111.9, 104.9, 44.8, 37.3, 28.8, 20.9, 20.7, 18.3; HRMS-ESI [M - H]⁻ Calcd for C₁₆H₁₇N₂O 253.1346, found 253.1348.

2-(1-(2-Bromophenyl)-3,4-dimethylpent-3-en-1-yl)malononitrile (12)

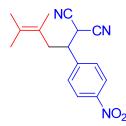
Following the typical procedure III, tetramethylethylene 5 (95 µL, 0.8 mmol, 4.0 equiv), 2-(2-bromobenzylidene)malononitrile 0.2 1.0 (47 mg, mmol. equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product 12 (58.4 mg) in 92% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.34 – 7.20 (m, 1H), 4.18 (dd, J = 13.0, 7.4 Hz, 1H), 4.06 (d, J = 5.2 Hz, 1H), 2.91 (dd, J = 14.0, 7.4 Hz, 1H), 2.68 (dd, J = 14.0, 7.8 Hz, 1H), 1.77 (s, 3H), 1.67 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 136.5, 133.6, 130.1, 130.0, 128.4, 128.1, 125.1, 122.1, 111.9, 111.7, 43.1, 36.6, 27.7, 20.9, 20.7, 18.3; HRMS-ESI $[M - H]^{-1}$ Calcd for C₁₆H₁₆BrN₂ 315.0502, found 315.0499.


2-(1-(2-Chlorophenyl)-3,4-dimethylpent-3-en-1-yl)malononitrile (13)

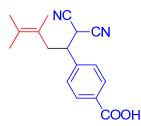
Following the typical procedure III, tetramethylethylene 5 (95 µL, 0.8 mmol, 4.0 equiv), 0.2 2-(2-chlorobenzylidene)malononitrile (38 mg, mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **13** (47 mg) in 86% yield as a colorless oil. ¹H NMR (300 MHz, $CDCl_3$) δ 7.46 - 7.34 (m, 3H), 7.34 - 7.24 (m, 1H), 4.00 (d, J = 5.2 Hz, 1H), 3.43 - 3.25 (m, 1H), 2.94 (dd, J = 14.0, 8.7 Hz, 1H), 2.53 (dd, J = 13.9, 6.8 Hz, 1H), 1.74 (s, 3H), 1.70 (s, 3H), 1.66 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.1, 134.9, 130.5, 130.3, 129.1, 128.2, 126.1, 122.1, 112.1, 111.6, 45.0, 37.2, 28.3, 20.9, 20.7, 18.3; HRMS-ESI $[M - H]^2$ Calcd for C₁₆H₁₆ClN₂ 271.1007, found 271.0998.

2-(1-(4-Chlorophenyl)-3,4-dimethylpent-3-en-1-yl)malononitrile (14)

Following the typical procedure III, tetramethylethylene 5 (95 µL, 0.8 mmol, 4.0 equiv), 2-(4-chlorobenzylidene)malononitrile (38 0.2 mmol, 1.0 mg, equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product 14 (50.5 mg) in 93% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.27 (m, 4H), 3.95 (d, J = 5.0 Hz, 1H), 3.33 (ddd, J = 8.7, 6.7, 5.1 Hz, 1H), 2.90 (dd, J = 14.0, 8.7 Hz, 1H), 2.48 (dd, J = 14.0, 6.7 Hz, 1H), 1.70 (s, 3H), 1.65 (s, 3H), 1.61 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 135.5, 134.8, 130.4, 129.3, 129.2, 122.2, 112.2, 111.7, 44.8, 37.1, 28.4, 20.9, 20.7, 18.3; HRMS-ESI [M - H]⁻ Calcd for C₁₆H₁₆ClN₂ 271.1007, found 271.0999.


2-(1-(2-Fluorophenyl)-3,4-dimethylpent-3-en-1-yl)malononitrile (15)

Following the typical procedure III, tetramethylethylene 5 (95 µL, 0.8 mmol, 4.0 equiv), 2-(2-fluorobenzylidene)malononitrile (35 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product 15 (50 mg) in 98% yield as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.32 (m, 2H), 7.27 – 7.06 (m, 2H), 4.11 (d, J = 6.9 Hz, 1H), 3.84 – 3.71 (m, 1H), 2.89 (dd, J = 13.8, 7.2 Hz, 1H), 2.63 (dd, J = 13.8, 8.3 Hz, 1H), 1.67 (s, 3H), 1.65 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.7 (d, J = 246.2 Hz), 130.4 (d, J = 8.7 Hz), 130.0, 129.2 (d, J = 3.7 Hz), 124.7 (d, J = 3.5 Hz), 124.3 (d, J = 13.3 Hz), 122.3, 115.9 (d, J = 22.5 Hz), 112.1, 111.9, 39.2, 36.8, 27.5 (d, J = 2.7 Hz), 20.8, 20.4, 18.3; HRMS-APCI [M + H]⁺ Calcd for C₁₆H₁₈FN₂ 257.1449, found 257.1451.


2-(1-(4-Bromo-2-fluorophenyl)-3,4-dimethylpent-3-en-1-yl)malononitrile (16)

Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), 2-(4-bromo-2-fluorobenzylidene)malononitrile (50 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **16** (66 mg) in 99% yield as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.17 (m, 3H), 3.96 (d, *J* = 6.6 Hz, 1H), 3.68 – 3.59 (m, 1H), 2.75 (dd, *J* = 13.8, 7.4 Hz, 1H), 2.48 (dd, *J* = 13.8, 8.2 Hz, 1H), 1.57 (s, 3H), 1.55 (s, 3H), 1.53 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 160.4 (d, *J* = 251.1 Hz), 130.4, 130.2 (d, *J* = 4.3 Hz), 128.1 (d, *J* = 3.6 Hz), 123.4 (d, *J* = 13.6 Hz), 123.0 (d, *J* = 10.0 Hz), 121.9, 119.7 (d, *J* = 25.8 Hz), 111.8, 111.6, 38.6, 36.5, 27.3 (d, *J* = 2.4 Hz), 20.9, 20.5, 18.2; HRMS–ESI [M – H]⁻ Calcd for C₁₆H₁₅BrFN₂ 333.0408, found 333.0411.

2-(3,4-Dimethyl-1-(4-nitrophenyl)pent-3-en-1-yl)malononitrile (17)

Following the typical procedure III, tetramethylethylene 5 (95 µL, 0.8 mmol, 4.0 equiv), 2-(4-nitrobenzylidene)malononitrile (40 mg, 0.2 mmol. 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product 17 (34.2 mg) in 60% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 4.08 (d, J = 5.1 Hz, 1H), 3.52 (ddd, J = 8.6, 6.8, 5.2 Hz, 1H), 2.99 (dd, J = 14.0, 8.7 Hz, 1H), 2.59 (dd, J = 14.0, 6.8 Hz, 1H), 1.77 (s, 3H), 1.70 (s, 3H), 1.67 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 148.2, 144.1, 131.1, 129.1, 124.1, 121.6, 111.8, 111.3, 45.0, 37.1, 27.9, 20.9, 20.7, 18.2; HRMS-ESI [M - H]⁻ Calcd for C₁₆H₁₆N₃O₂ 282.1248, found 282.1241.

4-(1,1-Dicyano-4,5-dimethylhex-4-en-2-yl)benzoic acid (18)

Following the typical procedure III, tetramethylethylene 5 (95 μ L, 0.8 mmol, 4.0 equiv), 4-(2,2-dicyanovinyl)benzoic acid (40 0.2 mmol, 1.0 equiv), mg, and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **18** (32.2 mg) in 57% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 4.01 (d, J = 5.2 Hz, 1H), 3.51 – 3.35 (m, 1H), 2.95 (dd, J = 13.9, 8.4 Hz, 1H), 2.55 (dd, J = 13.9, 6.8 Hz, 1H), 1.69 (s, 3H), 1.65 (s, 3H), 1.62 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 142.9, 130.9, 130.6, 129.8, 128.2, 122.0, 112.1, 111.6, 45.3, 37.2, 28.2, 20.9, 20.7, 18.3; HRMS-ESI [M - H]⁻ Calcd for C₁₇H₁₇N₂O₂ 281.1296, found 281.1300.


2-(3,4-Dimethyl-1-(4-(trifluoromethyl)phenyl)pent-3-en-1-yl)malononitrile (19) Following the typical procedure III, tetramethylethylene 5 (95 μL, 0.8 mmol, 4.0 equiv), 2-(4-(trifluoromethyl)benzylidene)malononitrile (45 mg, 0.2 mmol, 1.0 equiv), and

9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **19** (57 mg) in 93% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.2 Hz, 2H), 3.99 (d, *J* = 5.0 Hz, 1H), 3.41 (ddd, *J* = 8.9, 6.6, 5.1 Hz, 1H), 2.95 (dd, *J* = 14.0, 8.9 Hz, 1H), 2.51 (dd, *J* = 14.0, 6.6 Hz, 1H), 1.71 (s, 3H), 1.66 (s, 3H), 1.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 131.1 (q, *J* = 32.8 Hz), 130.8, 128.5, 125.9 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 272.3 Hz), 121.9, 112.1, 111.5, 45.1, 37.1, 28.2, 20.9, 20.7, 18.3; HRMS–ESI [M – H]⁻ Calcd for C₁₇H₁₆F₃N₂ 305.1271, found 305.1266.

2-(1-(4-Cyanophenyl)-3,4-dimethylpent-3-en-1-yl)malononitrile (20)

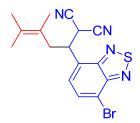
Following the typical procedure **III**, tetramethylethylene **5** (95 μ L, 0.8 mmol, 4.0 equiv), 2-(4-cyanobenzylidene)malononitrile 0.2 (36 mmol. 1.0 equiv), mg, and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product 20 (48 mg) in 91% yield as a colorless oil. ¹H NMR (400 MHz, $CDCl_3$) δ 7.71 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 4.02 (d, J = 5.1 Hz, 1H), 3.46 – 3.35 (m, 1H), 2.91 (dd, J = 14.0, 8.7 Hz, 1H), 2.51 (dd, J = 14.0, 6.8 Hz, 1H), 1.68 (s, 3H), 1.65 (s, 3H), 1.65 (s, 2H), 1.65 (s,1.61 (s. 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 132.7, 130.9, 128.9, 121.7, 118.1, 112.9, 111.9, 111.4, 45.2, 36.9, 27.9, 20.9, 20.6, 18.2; HRMS-ESI [M - H]⁻ Calcd for C₁₇H₁₆N₃ 262.1350, found 262.1341.

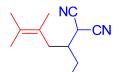
2-(3,4-Dimethyl-1-(naphthalen-1-yl)pent-3-en-1-yl)malononitrile (21)

Following the typical procedure **III**, tetramethylethylene **5** (95 μ L, 0.8 mmol, 4.0 equiv), 2-(naphthalen-1-ylmethylene)malononitrile (41 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **21** (35.1 mg) in 61% yield as a colorless oil. ¹H NMR (600

MHz, CDCl₃) δ 8.00 (d, *J* = 8.5 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.67 (d, *J* = 7.2 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.57 – 7.50 (m, 2H), 4.41 (d, *J* = 4.3 Hz, 1H), 4.11 (d, *J* = 4.8 Hz, 1H), 3.11 (dd, *J* = 14.0, 7.7 Hz, 1H), 2.72 (dd, *J* = 13.8, 7.2 Hz, 1H), 1.76 (s, 3H), 1.60 (s, 3H), 1.56 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 134.0, 133.4, 131.2, 129.9, 129.4, 129.2, 126.9, 126.1, 125.3, 124.7, 122.6, 121.5, 112.3, 112.2, 38.4, 37.5, 28.5, 20.9, 20.8, 18.5; HRMS–ESI [M – H]⁻ Calcd for C₂₀H₁₉N₂ 287.1554, found 287.1550.

2-(1-(Furan-2-yl)-3,4-dimethylpent-3-en-1-yl)malononitrile (22)


Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), 2-(furan-2-ylmethylene)malononitrile (29 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **22** (36 mg) in 80% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 6.36 (t, *J* = 5.1 Hz, 2H), 3.99 (d, *J* = 5.3 Hz, 1H), 3.57 – 3.45 (m, 1H), 2.80 (dd, *J* = 13.9, 8.0 Hz, 1H), 2.59 (dd, *J* = 13.9, 7.5 Hz, 1H), 1.68 (s, 3H), 1.66 (s, 3H), 1.61 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 142.9, 130.5, 121.9, 112.0, 111.5, 110.7, 108.9, 39.5, 35.8, 26.9, 20.9, 20.5, 18.0; HRMS–ESI [M – H]⁻ Calcd for C₁₄H₁₅N₂O 227.1190, found 227.1192.


2-(3,4-Dimethyl-1-(thiophen-2-yl)pent-3-en-1-yl)malononitrile (23)

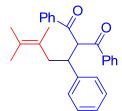
Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), 2-(thiophen-2-ylmethylene)malononitrile (32 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **23** (24.4 mg) in 50% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.31 (d, *J* = 5.1 Hz, 1H), 7.16 (d, *J* = 3.5 Hz, 1H), 7.10 – 7.00 (m, 1H), 3.98 (d, *J* = 4.4 Hz, 1H), 3.79 – 3.61 (m, 1H), 2.93 (dd, *J* = 14.0, 9.1 Hz, 1H), 2.58 (dd, *J* = 14.0, 6.3 Hz, 1H), 1.74 (s, 3H), 1.68 (s, 3H), 1.65 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.5, 130.9, 127.2, 126.5, 125.6, 122.2, 112.3, 111.6, 41.1, 38.7, 29.1, 20.9, 20.7, 18.1; HRMS–ESI [M – H]⁻ Calcd

for C₁₄H₁₅N₂S 243.0961, found 243.0954.

2-(1-(7-Bromobenzo[c][1,2,5]thiadiazol-4-yl)-3,4-dimethylpent-3-en-1-yl)malononitrile (24) Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), 2-((7-bromobenzo[c][1,2,5]thiadiazol-4-yl)methylene)malononitrile (59 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **24** (69 mg) in 92% yield as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 7.4 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 4.85 (d, *J* = 8.3 Hz, 1H), 4.11 – 4.01 (m, 1H), 2.99 – 2.86 (m, 2H), 1.57 (s, 6H), 1.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 153.6, 152.7, 131.9, 130.1, 129.8, 129.4, 122.1, 114.9, 112.1, 111.9, 43.4, 36.7, 27.0, 20.7, 20.3, 18.3; HRMS–ESI [M + H]⁺ Calcd for C₁₆H₁₆BrN₄S 375.0274, found 375.0266.

2-(5,6-Dimethylhept-5-en-3-yl)malononitrile (25)

Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), 2-propylidenemalononitrile (22 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **25** (29.5 mg) in 78% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.77 (d, *J* = 3.4 Hz, 1H), 2.36 – 2.21 (m, 2H), 2.14 – 2.02 (m, 1H), 1.80 – 1.58 (m, 11H), 1.07 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 129.9, 122.9, 112.9, 111.9, 41.4, 35.9, 26.0, 24.6, 20.9, 20.7, 18.2, 11.4; HRMS–ESI [M + H]⁺ Calcd for C₁₂H₁₉N₂ 191.1543, found 191.1544.


2-(2,5,6-Trimethylhept-5-en-3-yl)malononitrile (26)

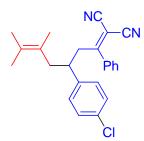
Following the typical procedure **III**, tetramethylethylene **5** (95 μ L, 0.8 mmol, 4.0 equiv), 2-(2-methylpropylidene)malononitrile (24 mg, 0.2 mmol, 1.0 equiv), and

9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **26** (18.8 mg) in 46% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 3.80 (d, *J* = 3.1 Hz, 1H), 2.38 (dd, *J* = 14.3, 10.1 Hz, 1H), 2.24 (dd, *J* = 11.4, 5.2 Hz, 1H), 2.06 – 1.96 (m, 2H), 1.74 (s, 3H), 1.71 (s, 3H), 1.63 (s, 3H), 1.15 (d, *J* = 6.6 Hz, 3H), 1.09 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 130.3, 123.2, 113.5, 112.4, 45.4, 33.8, 30.3, 23.9, 21.1, 21.0, 20.7, 19.4, 18.1; HRMS–ACPI [M + H]⁺ Calcd for C₁₃H₂₁N₂ 205.1699, found 205.1696.

Ethyl 2-cyano-5,6-dimethyl-3-phenylhept-5-enoate (27)

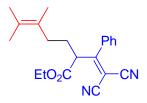
Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), ethyl 2-cyano-3-phenylacrylate (41 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **27** (35.1 mg) in 62% yield as a diastereomeric mixture with 1.4:1 dr; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.17 (m, 5H_{*Major*}), 7.29 – 7.17 (m, 5H_{*Minor*}), 4.03 (q, *J* = 7.1 Hz, 2H_{*Major*}), 3.71 (d, *J* = 5.2 Hz, 1H_{*Major*}), 3.62 (d, *J* = 6.4 Hz, H_{*Minor*}), 3.49 – 3.38 (m, 1H_{*Major*}), 3.71 (d, *J* = 5.2 Hz, 1H_{*Major*}), 3.62 (d, *J* = 6.4 Hz, H_{*Minor*}), 3.49 – 3.38 (m, 1H_{*Minor*}), 2.79 (dd, *J* = 13.9, 9.6 Hz, 1H_{*Major*}), 2.68 (dd, *J* = 13.6, 5.8 Hz, 1H_{*Minor*}), 2.49 (dd, *J* = 13.6, 9.3 Hz, 1H_{*Minor*}), 2.34 (dd, *J* = 13.9, 6.1 Hz, 1 H_{*Major*}), 1.65 (s, 3H_{*Major*}), 1.58 (s, 6H_{*Major*}), 1.48 (s, 3H_{*Minor*}), 1.47 (s, 3H_{*Minor*}), 1.43 (s, 3H_{*Minor*}), 1.08 (t, *J* = 7.2 Hz, 3H_{*Minor*}), 1.05 (t, *J* = 7.1 Hz, 3H_{*Major*}); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 165.2, 139.7, 139.0, 129.1, 128.6, 128.5, 128.2, 128.1, 127.9, 127.8, 127.6, 123.5, 123.4, 116.2, 115.8, 62.6, 62.5, 44.8, 44.5, 44.2, 42.9, 38.2, 37.8, 20.9, 20.7, 20.6, 20.4, 18.5, 18.3, 13.8, 13.7; HRMS–ESI [M + Na]⁺ Calcd for C₁₈H₂₃NO₂Na 308.1621, found 308.1620.

2-(3,4-Dimethyl-1-phenylpent-3-en-1-yl)-1,3-diphenylpropane-1,3-dione (28)

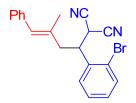

Following the typical procedure III, tetramethylethylene 5 (95 μ L, 0.8 mmol, 4.0 equiv),

2-benzylidene-1,3-diphenylpropane-1,3-dione (63 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **28** (19.6 mg) in 25% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.73 – 7.66 (m, 2H), 7.49 (ddd, J = 6.7, 3.9, 1.3 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.30 (m, 1H), 7.25 – 7.17 (m, 2H), 7.14 – 7.08 (m, 2H), 7.06 – 6.99 (m, 2H), 6.96 (ddd, J = 7.1, 3.8, 1.3 Hz, 1H), 5.66 (d, J = 10.7 Hz, 1H), 4.05 (ddd, J = 10.6, 8.7, 6.4Hz, 1H), 2.37 – 2.26 (m, 2H), 1.33 (s, 3H), 1.30 (s, 3H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.5, 141.5, 137.4, 137.2, 133.4, 132.9, 128.9, 128.8, 128.6, 128.5, 128.3, 127.9, 126.9, 126.4, 124.8, 64.5, 46.2, 40.1, 20.5, 20.2, 18.5; HRMS–ESI [M – H]⁻ Calcd for C₂₈H₂₇O₂ 395.2017, found 395.2014.

CO₂Et

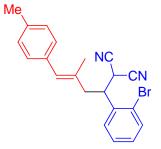

Diethyl 2-(3,4-dimethylpent-3-en-1-yl)malonate (29)

Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), diethyl 2-methylenemalonate (35 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **29** (26.6 mg) in 52% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.25 – 4.12 (m, 4H), 3.27 (t, *J* = 7.2 Hz, 1H), 2.06 (dd, *J* = 9.0, 5.4 Hz, 2H), 2.00 – 1.87 (m, 2H), 1.62 (s, 9H), 1.26 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 169.5, 126.1, 125.6, 61.2, 51.7, 32.0, 27.2, 20.6, 20.1, 18.1, 14.1; GC/MS (m/z, relative intensity) 256 (M⁺, 3), 173 (48), 161 (25), 96 (100), 81 (48), 55 (25).

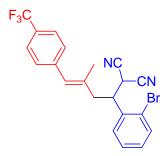

2-(3-(4-Chlorophenyl)-5,6-dimethyl-1-phenylhept-5-en-1-ylidene) malononitrile (30) Following the typical procedure **III**, tetramethylethylene **5** (95 μL, 0.8 mmol, 4.0 equiv), (*E*)-2-(3-(4-chlorophenyl)-1-phenylallylidene)malononitrile (58 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL)

were employed to give the product **30** (36 mg) in 48% yield as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.65 – 7.42 (m, 3H), 7.26 (d, *J* = 7.9 Hz, 4H), 6.93 (d, *J* = 8.3 Hz, 2H), 3.37 – 3.19 (m, 2H), 2.78 – 2.60 (m, 1H), 2.51 (dd, *J* = 13.5, 8.3 Hz, 1H), 2.24 (dd, *J* = 13.4, 7.0 Hz, 1H), 1.65 (s, 3H), 1.59 (s, 3H), 1.47 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 178.7, 140.3, 134.3, 132.8, 131.9, 129.1, 128.8, 128.7, 127.9, 127.4, 124.2, 112.6, 112.4, 85.7, 43.5, 42.5, 41.8, 20.7, 20.5, 18.5; HRMS–ESI [M – H]⁻ Calcd for C₂₄H₂₂ClN₂ 373.1477, found 373.1479.

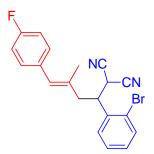
Ethyl 2-(2,2-dicyano-1-phenylvinyl)-5,6-dimethylhept-5-enoate (31)


Following the typical procedure **III**, tetramethylethylene **5** (95 µL, 0.8 mmol, 4.0 equiv), ethyl 4,4-dicyano-2-methylene-3-phenylbut-3-enoate (51 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **31** (42 mg) in 63% yield as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.57 – 7.41 (m, 3H), 7.36 (dd, *J* = 5.9, 4.8 Hz, 2H), 4.21 (q, *J* = 7.2 Hz, 2H), 4.03 (t, *J* = 7.0 Hz, 1H), 2.23 – 2.09 (m, 1H), 2.09 – 1.91 (m, 2H), 1.62 (s, 3H), 1.54 (s, 6H), 1.29 – 1.21 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.1, 168.9, 133.4, 131.7, 129.0, 127.6, 126.6, 125.2, 112.2, 111.9, 88.9, 62.2, 51.9, 32.1, 28.5, 20.6, 20.1, 17.9, 13.9; HRMS–ESI [M – H]⁻ Calcd for C₂₁H₂₃N₂O₂ 335.1765, found 335.1768.

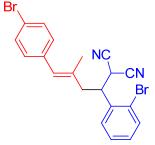
(E)-2-(1-(2-bromophenyl)-3-methyl-4-phenylbut-3-en-1-yl) malononitrile (32)


In batch: following the typical procedure **III**, (2-methylprop-1-en-1-yl)benzene (106 mg, 0.8 mmol, 4.0 equiv), 2-(2-bromobenzylidene)malononitrile (47 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (4.1 mg, 0.01 mmol, 0.05 equiv) in DCE (2.0 mL) were employed to give the product **32** and a minor uncharacterized isomeric product (combined 45.6 mg) in 63% yield and 7:1 rr as colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure **IV** using a HPFA tubing (total volume 1.5 mL) to afford product **32** and a minor uncharacterized isomeric product **33** and a minor uncharacterized isomeric product **34** and **35** mg in 56% yield and 7:1 rr.

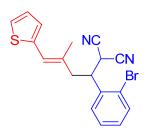
(400 MHz, CDCl₃) δ 7.66 (dd, J = 8.0, 1.3 Hz, 1H), 7.54 (dd, J = 7.9, 1.5 Hz, 1H), 7.41 (td, J = 7.6, 1.2 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.27 – 7.18 (m, 2H), 7.14 (d, J = 7.2 Hz, 2H), 6.41 (s, 1H), 4.32 – 4.20 (m, 1H), 4.09 (d, J = 4.8 Hz, 1H), 2.97 (dd, J = 14.1, 7.4 Hz, 1H), 2.84 (dd, J = 14.0, 8.3 Hz, 1H), 1.89 (d, J = 1.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 137.2, 135.8, 133.7, 132.6, 130.3, 129.9, 128.8, 128.3, 128.1, 126.7, 125.1, 111.8, 111.3, 42.3, 27.9, 17.6; HRMS–ESI [M – H]⁻ Calcd for C₂₀H₁₆BrN₂ 363.0502, found 363.0508.


(E)-2-(1-(2-bromophenyl)-3-methyl-4-(p-tolyl)but-3-en-1-yl)malononitrile (33)

In batch: following the typical procedure **III**, 1-methyl-4-(2-methylprop-1-en-1-yl)benzene (117 mg, 0.8 mmol, 4.0 equiv), 2-(2-bromobenzylidene)malononitrile (47 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (4.1 mg, 0.01 mmol, 0.05 equiv) in DCE (2.0 mL) were employed to give the product **33** and a minor uncharacterized isomeric product (combined 56.7 mg) in 75% yield and 7:1 rr as colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure **IV** using a HPFA tubing (total volume 1.5 mL) to afford product **33** and a minor uncharacterized isomeric product (combined 36.2 mg) in 64% yield and 7:1 rr. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.54 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.41 (td, *J* = 7.6, 1.2 Hz, 1H), 7.23 (ddd, *J* = 8.0, 7.5, 1.6 Hz, 1H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 6.38 (s, 1H), 4.29 – 4.20 (m, 1H), 4.09 (d, *J* = 4.9 Hz, 1H), 2.95 (ddd, *J* = 13.9, 7.5, 0.8 Hz, 1H), 2.82 (dd, *J* = 14.0, 8.2 Hz, 1H), 2.33 (s, 3H), 1.89 (d, *J* = 1.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 135.9, 134.3, 133.7, 131.8, 130.2, 129.9, 128.8, 128.7, 128.3, 125.1, 111.8, 111.3, 42.4, 27.9, 21.1, 17.6; HRMS–ACPI [M + H]⁺ Calcd for C₂₁H₂₀BrN₂ 379.0804, found 379.0805.

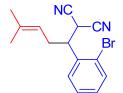


(E) - 2 - (1 - (2 - bromophenyl) - 3 - methyl - 4 - (4 - (trifluoromethyl)phenyl)but - 3 - en - 1 - yl)malononitrile (34)


In batch: following the typical procedure III, 1-(2-methylprop-1-en-1-yl)-4-(trifluoromethyl)benzene (160 mg, 0.8 mmol, 4.0 equiv), 2-(2-bromobenzylidene)malononitrile (47 0.2 1.0 mmol. equiv), mg. and 9-mesityl-10-methylacridinium perchlorate 4 (4.1 mg, 0.01 mmol, 0.05 equiv) in DCE (2.0 mL) were employed to give the product 34 and a minor uncharacterized isomeric product (combined 18.6 mg) in 21% yield and 7:1 rr as colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure IV using a HPFA tubing (total volume 1.5 mL) to afford product 34 and a minor uncharacterized isomeric product (combined 22 mg) in 34% yield and 7:1 rr. ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 8.1 Hz, 1H), 7.53 (dd, J = 19.7, 7.8 Hz, 3H), 7.42 (t, J = 7.5 Hz, 1H), 7.29 - 7.19 (m, 3H), 6.41 (s, 1H), 4.25 (br s, 1H), 4.08 (br s, 1H), 3.01 (dd, J = 14.0, 7.1 Hz, 1H), 2.87 (dd, J = 13.8, 8.6 Hz, 1H), 1.88 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 140.7, 135.6, 135.0, 133.8, 130.9, 130.4, 128.9, 128.7, 128.6 (q, J = 33.5 Hz), 128.4, 125.1 (q, J = 3.8 Hz), 124.1 (q, J = 272.9 Hz), 111.7, 111.1, 42.1, 28.0, 17.7; HRMS-ESI [M - H] Calcd for C₂₁H₁₅BrF₃N₂ 431.0376, found 431.0378.

(*E*)-2-(1-(2-bromophenyl)-4-(4-fluorophenyl)-3-methylbut-3-en-1-yl)malononitrile (35) In batch: following the typical procedure III, 1-fluoro-4-(2-methylprop-1-en-1-yl)benzene (120 mg, 0.8 mmol, 4.0 equiv), 2-(2-bromobenzylidene)malononitrile (47 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (4.1 mg, 0.01 mmol, 0.05 equiv) in DCE (2.0 mL) were employed to give the product 35 and a minor uncharacterized isomeric product (combined 31.1 mg) in 41% yield and 4:1 rr as colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure **IV** using a HPFA tubing (total volume 1.5 mL) to afford product **35** and a minor uncharacterized isomeric product (combined 36 mg) in 63% yield and 5:1 rr. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 8.0, 1.3 Hz, 1H), 7.52 (dd, J = 7.9, 1.5 Hz, 1H), 7.41 (td, J = 7.6, 1.2 Hz, 1H), 7.24 (ddd, J = 8.0, 7.5, 1.9 Hz, 1H), 7.16 – 7.07 (m, 2H), 7.03 – 6.94 (m, 2H), 6.37 (s, 1H), 4.28 – 4.20 (m, 1H), 4.09 (d, J = 4.7 Hz, 1H), 2.96 (ddd, J = 14.0, 7.5, 0.8 Hz, 1H), 2.83 (dd, J = 14.0, 8.2 Hz, 1H), 1.86 (d, J = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, J = 246.4 Hz), 135.9, 133.8, 133.2 (d, J = 3.4 Hz), 132.7 (d, J = 1.2 Hz), 130.4, 130.3 (d, J = 2.9 Hz), 128.9, 128.4, 125.1, 115.1(d, J = 21.4 Hz), 111.8, 111.2, 42.2, 27.9, 17.5; HRMS–ESI [M – H]⁻ Calcd for C₂₀H₁₅BrFN₂ 381.0408, found 381.0410.

(*E*)-2-(1-(2-bromophenyl)-4-(4-bromophenyl)-3-methylbut-3-en-1-yl)malononitrile (36) In batch: following the typical procedure III, 1-bromo-4-(2-methylprop-1-en-1-yl)benzene (169 mg, 0.8 mmol, 4.0 equiv), 2-(2-bromobenzylidene)malononitrile (47 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (4.1 mg, 0.01 mmol, 0.05 equiv) in DCE (2.0 mL) were employed to give the product **36** and a minor uncharacterized isomeric product (combined 36.4 mg) in 41% yield and 6:1 rr as colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure IV using a HPFA tubing (total volume 1.5 mL) to afford product **36** and a minor uncharacterized isomeric product (combined 45 mg) in 68% yield and 6:1 rr. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.51 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.45 – 7.40 (m, 3H), 7.27 – 7.22 (m, 1H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.33 (s, 1H), 4.29 – 4.19 (m, 1H), 4.08 (d, *J* = 4.7 Hz, 1H), 2.96 (dd, *J* = 13.7, 6.9 Hz, 1H), 2.83 (dd, *J* = 14.0, 8.3 Hz, 1H), 1.86 (d, *J* = 1.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.0, 135.8, 133.8, 133.6, 131.3, 130.4, 128.8, 128.4, 125.1, 120.6, 111.7, 111.2, 42.2, 27.9, 17.6; HRMS–ACPI [M + H]⁺ Calcd for C₂₀H₁₇Br₂N₂ 442.9753, found 442.9746.



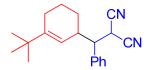
(*E*)-2-(1-(2-bromophenyl)-3-methyl-4-(thiophen-2-yl)but-3-en-1-yl)malononitrile (37) In batch: following the typical procedure **III**, 2-(2-methylprop-1-en-1-yl)thiophene (111 mg, 0.8 mmol, 4.0 equiv), 2-(2-bromobenzylidene)malononitrile (47 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (4.1 mg, 0.01 mmol, 0.05 equiv) in DCE (2.0 mL) were employed to give the product **37** and a minor uncharacterized isomeric product (combined 11.1 mg) in 15% yield and 5:1 rr as pale yellow oil. In "stop-flow micro tubing" reactor: following the typical procedure **IV** using a HPFA tubing (total volume 1.5 mL) to afford product **37** and a minor uncharacterized isomeric product (combined 23.8 mg) in 43% yield and 5:1 rr. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.26 - 7.20 (m, 2H), 7.00 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.94 (d, *J* = 3.3 Hz, 1H), 6.55 (s, 1H), 4.26 - 4.18 (m, 1H), 4.07 (s, 1H), 2.95 (dd, *J* = 14.1, 7.7 Hz, 1H), 2.84 (dd, *J* = 14.0, 7.9 Hz, 1H), 2.02 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.9, 135.7, 133.8, 130.9, 130.3, 128.4, 128.2, 127.4, 126.8, 125.2, 123.1, 111.7, 111.2, 42.7, 27.8, 18.2; HRMS-ACPI [M + H]⁺ Calcd for C₁₈H₁₆BrN₂S 371.0212, found 371.0209.

2-(2,4-Dimethyl-1-phenylpent-3-en-1-yl)malononitrile (38)

Following the typical procedure **III**, 2-methylpent-2-ene (99 µL, 0.8 mmol, 4.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **38** as inseparable diastereomeric and regioisomeric mixtures (combined 41.9 mg) in 88% yield, 3.9:1 rr, and 1.6:1 dr as colorless oil. Data for the major and minor diastereomers: ¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.32 (m, 4H_{major}), 7.46 – 7.32 (m, 4H_{minor}), 7.17 (dd, *J* = 7.8, 1.2 Hz, 1H_{major}), 7.17 (dd, *J* = 7.8, 1.2 Hz, 1H_{minor}), 4.95 (d, *J* = 10.1 Hz, 1H_{minor}), 4.78 (d, *J* = 10.2 Hz, 1H_{major}), 4.25 (d, *J* = 4.0 Hz, 1H_{minor}), 4.10 (d, *J* = 9.2 Hz, 1H_{major}), 3.20 (dd, *J* = 9.2, 6.1 Hz, 1H_{major}), 3.17 – 3.05 (m, 1H_{major}), 3.17 – 3.05 (m, 1H_{minor}), 2.82 (dd, *J* = 11.2, 4.0 Hz, 1H_{minor}),

1.82 (dd, J = 15.6, 0.9 Hz, $3H_{major}$), 1.69 – 1.65 (m, $3H_{minor}$), 1.67 (dd, J = 4.2, 1.0 Hz, $3H_{major}$), 1.67 (dd, J = 4.2, 1.0 Hz, $3H_{minor}$), 0.99 (d, J = 6.7 Hz, $3H_{major}$), 0.82 (d, J = 6.5 Hz, $3H_{minor}$); ¹³C NMR (151 MHz, CDCl₃) δ 136.4, 135.9, 135.3, 134.8, 132.5, 129.1, 128.7, 128.6, 128.5, 127.9, 126.6, 123.8, 112.8, 112.5, 112.2, 112.1, 52.9, 52.3, 34.9, 34.4, 28.5, 27.0, 26.1, 26.0, 19.8, 19.3, 18.4, 18.3; HRMS-ESI [M – H]⁻ Calcd for C₁₆H₁₇N₂ 237.1397, found 237.1392.

2-(1-(2-Bromophenyl)-4-methylpent-3-en-1-yl)malononitrile (39)

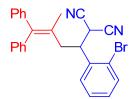

Following the typical procedure III, 2-methylbut-2-ene (67 µL, 0.8 mmol, 4.0 equiv), 1.0 2-(2-bromobenzylidene)malononitrile (47 mg, 0.2 mmol. equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product 39 as inseparable regioisomeric mixtures (combined 38 mg) in 63% yield and 1.4:1 rr as colorless oil. Data for the major and minor regioisomers: ¹H NMR (600 MHz, CDCl₃) δ 7.60 – 7.53 (m, 1H_{maior}), 7.60 – 7.53 (m, 1H_{minor}), 7.41 (d, J = 8.0 Hz, 1H_{minor}), 7.39 - 7.35 (m, 1H_{major}), 7.34 - 7.28 (m, 1H_{major}), 7.34 - 7.28 (m, 1H_{minor}), 7.18 - 7.12 (m, 1H_{major}), 7.18 - 7.12 (m, $1H_{minor}$), 5.41 - 5.33 (m, $1H_{minor}$), 4.92 (td, J = 6.4, 1.3 Hz, $1H_{major}$), 4.07 - 4.00(m, 1H_{major}), 4.07 - 4.00 (m, 1H_{minor}), 3.95 (d, J = 4.3 Hz, 1H_{minor}), 3.86 (dd, J = 13.1, 7.3 Hz, $1H_{major}$), 2.78 – 2.64 (m, $2H_{major}$), 2.64 – 2.51 (m, $2H_{minor}$), 1.62 (d, J = 5.5 Hz, $3H_{major}$), 1.60 – 1.55 (m, 3H_{minor}), 1.52 – 1.47 (m, 3H_{major}), 1.52 – 1.47 (m, 3H_{minor}); ¹³C NMR (151 MHz, CDCl₃) δ 137.2, 136.2, 135.9, 133.7, 133.6, 130.2, 130.1, 130.0, 128.3, 128.2, 124.6, 124.3, 118.3, 111.9, 111.7, 111.4, 44.6, 41.5, 29.8, 27.7, 27.6, 25.8, 23.1, 18.1, 15.4, 13.6; HRMS-ESI [M - H]⁻ Calcd for C₁₅H₁₄BrN₂ 301.0346, found 301.0343.

2-((3-Methylcyclohex-2-en-1-yl)(phenyl)methyl)malononitrile (40)

Following the typical procedure **III**, 1-methylcyclohex-1-ene (77 mg, 0.8 mmol, 4.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the

product **40** as two separable diastereomers and other trace amount of uncharacterized isomeric products (combined 39.2 mg) in 79% yield, 1.1:1 dr, and >10:1 rr as colorless oil. Data for the major diastereomer: ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.38 (m, 3H), 7.36 (d, *J* = 6.7 Hz, 2H), 4.92 (s, 1H), 4.17 (d, *J* = 4.8 Hz, 1H), 2.94 – 2.83 (m, 2H), 2.01 – 1.95 (m, 1H), 1.90 (s, 2H), 1.87 – 1.81 (m, 1H), 1.67 – 1.57 (m, 2H), 1.56 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 137.6, 136.5, 129.1, 128.8, 128.6, 120.4, 112.0, 111.7, 51.5, 37.3, 29.7, 27.6, 27.5, 23.9, 21.6; HRMS–ESI [M – H]⁻ Calcd for C₁₇H₁₇N₂ 249.1397, found 249.1389.

2-((3-(*Tert*-butyl)cyclohex-2-en-1-yl)(phenyl)methyl)malononitrile (41)


Following the typical procedure **III**, 1-(*tert*-butyl)cyclohex-1-ene (110 mg, 0.8 mmol, 4.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **41** as two separable diastereomers and other trace amount of uncharacterized isomeric products (combined 43.9 mg) in 75% yield, 1.3:1 dr, and >20:1 rr. The major diastereomer is a colorless solid: ¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.36 (m, 3H), 7.36 – 7.32 (m, 2H), 5.02 (s, 1H), 4.19 (d, *J* = 5.7 Hz, 1H), 2.95 (dd, *J* = 9.7, 5.7 Hz, 1H), 2.89 (dd, *J* = 7.4, 4.5 Hz, 1H), 2.06 (d, *J* = 17.1 Hz, 1H), 2.00 – 1.93 (m, 1H), 1.93 – 1.78 (m, 2H), 1.55 – 1.48 (m, 1H), 1.28 – 1.20 (m, 1H), 0.90 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 136.6, 129.0, 128.7, 128.5, 116.8, 112.1, 111.9, 51.9, 37.7, 35.5, 28.7, 27.7, 27.3, 24.3, 22.1; the minor diastereomer is a colorless oil: ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.37 (m, 3H), 7.37 – 7.32 (m, 2H), 5.57 – 5.52 (m, 1H), 4.22 (d, *J* = 5.0 Hz, 1H), 3.02 (dd, *J* = 10.3, 5.0 Hz, 1H), 2.87 – 2.79 (m, 1H), 2.09 – 1.97 (m, 2H), 1.64 – 1.57 (m, 1H), 1.55 – 1.43 (m, 2H), 1.21 – 1.12 (m, 1H), 1.07 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 151.3, 136.9, 129.1, 128.7, 128.2, 116.0, 112.3, 112.0, 51.7, 36.6, 35.8, 28.9, 27.5, 25.9, 24.6, 20.4; HRMS–ESI [M – H]⁻ Calcd for C₂₀H₂₃N₂ 291.1867, found 291.1870.

NC

2-((3-Methylcyclopent-2-en-1-yl)(phenyl)methyl)malononitrile (42)

Following the typical procedure III, 1-methylcyclopent-1-ene (66 mg, 0.8 mmol, 4.0 equiv),

2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (2.1 mg, 0.005 mmol, 0.025 equiv) in DCE (4.0 mL) were employed to give the product **42** as two separable diastereomers and other trace amount of uncharacterized isomeric products (combined 44.4 mg) in 94% yield, 2.9:1 dr, and >10:1 rr. Data for the major diastereomer: ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.33 (m, 5H), 5.45 (s, 1H), 4.11 (d, *J* = 4.7 Hz, 1H), 3.43 – 3.34 (m, 1H), 2.93 (dd, *J* = 10.6, 4.7 Hz, 1H), 2.33 – 2.12 (m, 2H), 2.01 – 1.90 (m, 1H), 1.78 (s, 3H), 1.48 – 1.38 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 146.0, 136.9, 129.0, 128.7, 128.4, 123.3, 112.1, 111.8, 51.8, 47.6, 35.6, 29.4, 28.3, 16.8; HRMS–APCI [M + H]⁺ Calcd for C₁₆H₁₇N₂ 237.1386, found 237.1383.

2-(1-(2-Bromophenyl)-3-methyl-4,4-diphenylbut-3-en-1-yl)malononitrile (43)

In batch: following the typical procedure **III**, (2-methylprop-1-ene-1,1-diyl)dibenzene (166 mg, 0.8 mmol, 4.0 equiv), 2-(2-bromobenzylidene)malononitrile (47 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (4.1 mg, 0.01 mmol, 0.05 equiv) in DCE (2.0 mL) were employed to give the product **43** (26 mg) in 30% yield as a colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure **IV** using a HPFA tubing (total volume 1.5 mL) to afford product **43** (47.5 mg) in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.61 (m, 1H), 7.36 – 7.30 (m, 2H), 7.30 – 7.26 (m, 1H), 7.25 – 7.13 (m, 5H), 7.03 (d, *J* = 6.9 Hz, 2H), 6.96 – 6.89 (m, 1H), 6.88 – 6.83 (m, 2H), 4.18 (br s, 1H), 3.88 (br s, 1H), 3.09 (dd, *J* = 13.7, 10.5 Hz, 1H), 2.91 (dd, *J* = 13.7, 5.2 Hz, 1H), 1.73 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 142.2, 141.8, 135.1, 133.5, 130.2, 129.6, 129.3, 128.6, 128.4, 128.1, 127.9, 127.0, 126.6, 111.6, 111.1, 36.6, 28.5, 20.1; HRMS–APCI [M + H]⁺ Calcd for C₂₆H₂₂BrN₂ 441.0961, found 441.0953.

2-((2-Bromophenyl)(cyclopent-2-en-1-yl)methyl)malononitrile (44)

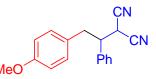
Following the typical procedure **III**, cyclopentene (68 mg, 1.0 mmol, 5.0 equiv), 2-(2-bromobenzylidene)malononitrile (47 mg, 0.2 mmol, 1.0 equiv), and

9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **44** as inseparable diastereomers (41 mg) in 68% yield and 1.3:1 dr as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.1, 1.1 Hz, 1H_{major}), 7.66 (dd, *J* = 8.1, 1.1 Hz, 1H_{minor}), 7.57 (ddd, *J* = 18.2, 7.9, 1.6 Hz, 1H_{major}), 7.57 (ddd, *J* = 18.2, 7.9, 1.6 Hz, 1H_{major}), 7.57 (ddd, *J* = 10.9, 4.2 Hz, 1H_{minor}), 7.26 – 7.21 (m, 1H_{minor}), 7.26 – 7.21 (m, 1H_{minor}), 6.10 – 6.02 (m, 1H_{minor}), 5.99 – 5.92 (m, 1H_{minor}), 5.88 – 5.81 (m, 1H_{major}), 5.32 – 5.24 (m, 1H_{minor}), 4.13 – 4.02 (m, 1H_{major}), 3.57 – 3.36 (m, 1H_{minor}), 3.91 – 3.74 (m, 1H_{minor}), 3.57 – 3.36 (m, 1H_{major}), 3.57 – 3.36 (m, 1H_{minor}), 1.45 – 1.34 (m, 1H_{minor}), 2.37 – 2.30 (m, 2H_{minor}), 1.96 – 1.83 (m, 1H_{minor}), 1.77 – 1.64 (m, 1H_{major}), 1.45 – 1.34 (m, 1H_{minor}), ¹³C NMR (101 MHz, CDCl₃) δ 136.8, 136.5, 135.9, 134.1, 133.7, 133.6, 130.1, 130.06, 130.05, 129.2, 128.5, 128.3, 128.1, 125.9, 125.7, 111.9, 111.8, 111.3, 111.2, 48.5, 48.3, 48.2, 48.0, 32.5, 31.3, 28.9, 28.7, 27.4, 27.3; HRMS–APCI [M + H]⁺ Calcd for C₁₅H₁₄BrN₂ 301.0335, found 301.0328.

2-((5,6-Dihydro-2*H*-pyran-2-yl)(phenyl)methyl)malononitrile (45)

Following the typical procedure **III**, 3,4-dihydro-2*H*-pyran (84 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **45** as two separable diastereomers and other minor uncharacterized isomeric products (combined 36.9 mg) in 78% yield, 2.5:1 dr, and 3:1 rr as colorless oil. Data for the major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.36 (m, 5H), 5.94 – 5.85 (m, 1H), 5.38 – 5.31 (m, 1H), 4.62 (d, *J* = 4.3 Hz, 1H), 4.61 – 4.57 (m, 1H), 4.08 (ddd, *J* = 11.3, 5.9, 1.4 Hz, 1H), 3.76 (ddd, *J* = 11.3, 10.1, 3.8 Hz, 1H), 3.14 (dd, *J* = 10.4, 4.3 Hz, 1H), 2.40 – 2.27 (m, 1H), 2.05 – 1.94 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 133.9, 129.4, 129.3, 128.8, 127.5, 125.8, 112.3, 111.7, 72.8, 63.8, 51.1, 26.3, 24.9; HRMS–ACPI [M + H]⁺ Calcd for C₁₅H₁₅N₂O 239.1179, found 239.1181.

2-((2,5-Dihydrofuran-2-yl)(phenyl)methyl)malononitrile (46)


In batch: following the typical procedure III, 2,5-dihydrofuran (70 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product 46 as inseparable diastereomers and other trace amount of uncharacterized isomeric products (combined 19.7 mg) in 44% yield, 1.6:1 dr, and >10:1 rr as colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure IV using a HPFA tubing (total volume 1.5 mL) to afford product 46 as inseparable diastereomers and other trace amount of uncharacterized isomeric products (combined 31.3 mg) in 93% yield, 1.6:1 dr, and >10:1 rr. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 5H_{maior}), 7.38 – 7.33 (m, 3H_{minor}), 7.26 – 7.23 (m, 2H_{minor}), 6.01 (ddd, J = 6.2, 3.7, 1.7 Hz, 1H_{major}), 5.82 (ddd, J = 6.2, 3.9, 1.6 Hz, 1H_{minor}), 5.66 (dtd, J = 6.3, 2.5, 1.5 Hz, $1H_{minor}$), 5.54 (dtd, J = 6.3, 2.5, 1.5 Hz, $1H_{major}$), 5.43 – 5.36 (m, $1H_{minor}$), 5.35 – 5.26 (m, $1H_{major}$), 4.79 (dddd, J = 13.3, 5.7, 2.4, 1.7 Hz, 1H_{major}), 4.73 (dddd, J = 13.3, 4.0, 2.5, 1.7 Hz, 1H_{major}), 4.62 (dddd, J = 13.1, 4.2, 2.5, 1.6 Hz, 1H_{minor}), 4.55 - 4.47 (m, 1H_{minor}), 4.51 (d, J = 4.4 Hz, $1H_{maior}$); 4.38 (d, J = 10.3 Hz, $1H_{minor}$), 3.46 (dd, J = 10.3, 2.9 Hz, $1H_{minor}$), 3.10 (dd, J = 9.4, 4.4 Hz, 1H_{maior}); ¹³C NMR (101 MHz, CDCl₃) δ 134.1, 133.9, 129.4, 129.3, 129.2, 129.1, 128.9, 128.8, 128.4, 126.7, 125.7, 112.3, 112.2, 112.1, 111.7, 85.6, 85.5, 76.2, 75.9, 52.3, 51.1, 26.5, 25.6; HRMS-APCI $[M + H]^+$ Calcd for C₁₄H₁₃N₂O 225.1022, found 225.1023.

(E)-2-(2,5,5-trimethyl-1-phenylhex-3-en-1-yl)malononitrile (47)

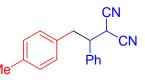
In batch: following the typical procedure III, (E)-2,2-dimethylhex-3-ene (112 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product 47 as inseparable diastereomers and other trace amount of uncharacterized isomeric products (combined 13.6 mg) in 25% yield, 1:1 dr, and >20:1 rr as colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure IV using a HPFA tubing (total volume 1.5 mL) to afford product 47 as inseparable diastereomers and other trace amount of uncharacterized isomeric products (combined 30 mg) in 75% yield, 1:1 dr, and >20:1 rr. ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.33 (m, 4H_{major}), 7.46 - 7.33 (m, 4H_{minor}),

7.15 – 7.10 (m, 1H_{major}), 7.15 – 7.10 (m, 1H_{minor}), 5.90 (d, J = 15.5 Hz, 1H), 5.62 (dd, J = 15.7, 0.6 Hz, 1H), 5.17 (dd, J = 15.5, 9.0 Hz, 1H), 4.94 (dd, J = 15.7, 9.3 Hz, 1H), 4.11 (d, J = 3.8 Hz, 1H), 4.05 (d, J = 9.8, 1H), 3.17 (dd, J = 9.8, 5.7 Hz, 1H), 2.90 – 2.75 (m, 3H), 1.07 (s, 9H), 1.02 (d, J = 6.8 Hz, 3H), 0.96 (s, 9H), 0.87 (d, J = 6.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 145.9, 145.4, 136.0, 134.6, 129.2, 128.9, 128.7, 128.6, 128.4, 125.9, 123.5, 112.4, 112.2, 111.7, 51.9, 40.1, 38.9, 33.2, 33.1, 29.5, 29.4, 28.7, 27.2, 19.6, 19.4; HRMS–APCI [M + H]⁺ Calcd for C₁₈H₂₃N₂ 267.1856, found 267.1852.

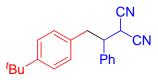
2-(2-(4-Methoxyphenyl)-1-phenylethyl)malononitrile (48)


Following the typical procedure **V**, 4-Methylanisole (122 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **48** (47 mg) in 85% yield as a pale yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.35 (m, 5H), 7.10 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 3.86 (d, *J* = 5.2 Hz, 1H), 3.79 (s, 3H), 3.44 – 3.39 (m, 1H), 3.25 – 3.17 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 158.9, 136.5, 129.9, 129.1, 128.9, 128.4, 127.9, 114.5, 112.1, 111.4, 55.2, 48.5, 37.6, 28.3; HRMS–ESI [M – H]⁻ Calcd for C₁₈H₁₅N₂O 275.1190, found 275.1193.

2-(1-Phenyl-2-*o*-tolylethyl)malononitrile (49)


Following the typical procedure **V**, o-xylene (106 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **49** (42 mg) in 80% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.35 (m, 5H), 7.22 – 7.18 (m, 2H), 7.18 – 7.11 (m, 1H), 7.08 (d, *J* = 7.1 Hz, 1H), 3.92 (d, *J* = 5.0 Hz, 1H), 3.43 (ddd, *J* = 8.8, 6.3, 5.1 Hz, 1H), 3.33 (dd, *J* = 14.1, 8.8 Hz, 1H), 3.23 (dd, *J* = 14.1, 6.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.7, 136.4, 134.8, 131.2, 129.6, 129.2, 129.1, 127.9, 127.7, 126.5, 112.1, 111.6, 46.9, 36.1, 28.5, 19.3; HRMS–APCI [M + H]⁺ Calcd for

C₁₈H₁₇N₂261.1386, found 261.1387.

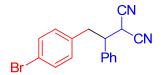

2-(1-Phenyl-2-m-tolylethyl)malononitrile (50)

Following the typical procedure **V**, m-xylene (106 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **50** (26 mg) in 50% yield as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.37 (m, 5H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 7.00 (d, *J* = 9.0 Hz, 2H), 3.85 (d, *J* = 4.9 Hz, 1H), 3.45 (td, *J* = 7.8, 4.9 Hz, 1H), 3.22 (d, *J* = 7.9 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.9, 136.6, 129.6, 129.2, 129.0, 128.4, 128.0, 125.9, 112.1, 111.4, 48.3, 38.4, 28.4, 21.4; HRMS–APCI [M + H]⁺ Calcd for C₁₈H₁₇N₂ 261.1386, found 261.1383.

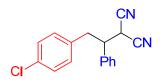
2-(1-Phenyl-2-p-tolylethyl)malononitrile (51)


Following the typical procedure **V**, *p*-xylene (106 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **51** (47 mg) in 89% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.35 (m, 5H), 7.14 (d, *J* = 7.9 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 3.85 (d, *J* = 5.0 Hz, 1H), 3.48 – 3.38 (m, 1H), 3.23 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 137.3, 136.5, 133.5, 129.8, 129.1, 129.0, 128.8, 128.0, 112.1, 111.4, 48.4, 38.1, 28.4, 21.0; HRMS–APCI [M + H]⁺ Calcd for C₁₈H₁₇N₂ 261.1386, found 261.1385.

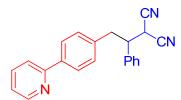
2-(2-(4-*Tert*-butylphenyl)-1-phenylethyl)malononitrile (52)


Following the typical procedure **V**, 1-*tert*-butyl-4-methylbenzene (148 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the

product **52** (50 mg) in 83% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 5H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 3.86 (d, *J* = 4.8 Hz, 1H), 3.48 – 3.40 (m, 1H), 3.23 (d, *J* = 7.9 Hz, 2H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 136.6, 133.5, 129.2, 129.0, 128.6, 128.1, 126.1, 112.2, 111.4, 48.3, 37.9, 34.5, 31.3, 28.4; HRMS–APCI [M + H]⁺ Calcd for C₂₁H₂₃N₂ 303.1856, found 303.1862.


2-(1,2-Diphenylethyl)malononitrile (53)

Following the typical procedure **V**, toluene (92 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **53** (22.7 mg) in 46% yield as a colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure **VI** using a HPFA tubing (total volume 1.5 mL) to afford product **53** (31.5 mg) in 85% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.41 (m, 5H), 7.41 – 7.31 (m, 3H), 7.28 – 7.20 (m, 2H), 3.89 (d, *J* = 5.0 Hz, 1H), 3.50 (td, *J* = 7.8, 5.1 Hz, 1H), 3.36 – 3.27 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.6, 136.4, 129.2, 129.1, 129.0, 128.9, 128.0, 127.6, 112.0, 111.4, 48.3, 38.5, 28.5; HRMS–APCI [M + H]⁺ Calcd for C₁₇H₁₅N₂ 247.1230, found 247.1226.


2-(2-(4-Bromophenyl)-1-phenylethyl)malononitrile (54)

Following the typical procedure **V**, 1-bromo-4-methylbenzene (171 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **54** (8 mg) in 12% yield as a colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure **VI** using a HPFA tubing (total volume 1.5 mL) to afford product **54** (31 mg) in 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 5H), 7.36 – 7.31 (m, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 3.86 (d, *J* = 5.5 Hz, 1H), 3.43 (td, *J* = 7.8, 5.5 Hz, 1H), 3.24 (qd, *J* = 14.1, 7.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 135.9, 135.5, 132.2, 130.6, 129.3, 129.2, 127.9, 121.5, 111.8, 111.4, 48.2, 37.9, 28.8; HRMS–APCI [M + H]⁺ Calcd for C₁₇H₁₄BrN₂ 325.0335, found 325.0327.

2-(2-(4-Chlorophenyl)-1-phenylethyl)malononitrile (55)

Following the typical procedure **V**, 1-chloro-4-methylbenzene (127 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **55** (6 mg) in 10% yield as a colorless oil. In "stop-flow micro tubing" reactor: following the typical procedure **VI** using a HPFA tubing (total volume 1.5 mL) to afford product **55** (15.5 mg) in 37% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.31 (m, 5H), 7.27 (d, *J* = 7.5 Hz, 2H), 7.08 (d, *J* = 7.6 Hz, 2H), 3.87 (d, *J* = 5.1 Hz, 1H), 3.44 (dd, *J* = 13.8, 7.1 Hz, 1H), 3.35 – 3.14 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 135.9, 135.0, 133.4, 130.3, 129.3, 129.2, 127.9, 111.8, 111.4, 48.2, 37.9, 28.8; HRMS–APCI [M + H]⁺ Calcd for C₁₇H₁₄ClN₂ 281.0840, found 281.0837.

2-(1-Phenyl-2-(4-(pyridin-2-yl)phenyl)ethyl)malononitrile (56)

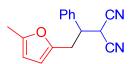
Following the typical procedure **V**, 2-(*p*-tolyl)pyridine (169 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **56** (47 mg) in 73% yield as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.70 (d, *J* = 4.8 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 2H), 7.76 (td, *J* = 7.8, 1.7 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.35 (m, 5H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.25 (ddd, *J* = 7.0, 4.8, 0.9 Hz, 1H), 3.98 (d, *J* = 5.5 Hz, 1H), 3.53 (td, *J* = 7.8, 5.6 Hz, 1H), 3.33 (ddd, *J* = 28.9, 14.0, 7.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 156.5, 149.5, 138.4, 137.3, 136.8, 136.1, 129.2, 129.0, 128.9, 127.9, 127.4, 122.2, 120.3, 111.9, 111.5, 47.9, 38.1, 28.5; HRMS–ESI [M + Na]⁺ Calcd for C₂₂H₁₇N₃Na 346.1315, found 346.1315.

2-(1,2-Diphenylpropyl)malononitrile (57)

Following the typical procedure **V**, ethylbenzene (106 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **57** as two separable diastereomers (combined 38 mg) in 73% yield and 1.2:1 dr as colorless oil. Data for the major diastereomer: ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.41 (m, 7H), 7.41 – 7.33 (m, 3H), 3.61 (d, *J* = 4.1 Hz, 1H), 3.41 (dq, *J* = 13.5, 6.8 Hz, 1H), 3.21 (dd, *J* = 11.6, 4.0 Hz, 1H), 1.15 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 142.4, 135.5, 129.7, 129.3, 129.1, 128.5, 128.1, 127.1, 112.1, 111.4, 53.6, 42.0, 28.7, 20.6; HRMS–APCI [M + H]⁺ Calcd for C₁₈H₁₇N₂ 261.1386, found 261.1388.

2-((2-Bromophenyl)(1,2,3,4-tetrahydronaphthalen-1-yl)methyl)malononitrile (58)

Following the typical procedure V, 1,2,3,4-tetrahydronaphthalene (53 mg, 0.4 mmol, 2.0 equiv), 2-(2-bromobenzylidene)malononitrile (47 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate 4 (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product 58 as two separable diastereomers (combined 55 mg) in 75% yield and 2:1 dr as colorless oil. The major diastereomer: ¹H NMR (300 MHz, CDCl₃) δ 7.59 -7.45 (m, 2H), 7.38 (t, J = 7.5 Hz, 1H), 7.20 (ddd, J = 8.2, 7.4, 1.1 Hz, 1H), 7.16 -7.04 (m, 2H), 6.91 (t, J = 7.3 Hz, 1H), 6.57 (d, J = 7.8 Hz, 1H), 4.46 – 4.34 (m, 1H), 4.20 (d, J = 6.7 Hz, 1H), 3.60 - 3.45 (m, 1H), 2.81 (t, J = 6.8 Hz, 2H), 2.16 - 1.93 (m, 2H), 1.92 - 1.74 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) & 137.9, 136.4, 134.9, 133.5, 129.9, 129.5, 128.6, 128.2, 128.0, 127.1, 126.5, 125.4, 112.2, 111.6, 46.9, 40.6, 28.3, 25.9, 25.3, 18.9; the minor diastereomer: ¹H NMR (300 MHz, $CDCl_3$) δ 7.73 (dd, J = 11.5, 8.0 Hz, 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.39 – 7.18 (m, 5H), 4.07 (dd, J= 11.6, 4.1 Hz, 1H), 3.97 (d, J = 4.1 Hz, 1H), 3.44 (d, J = 11.7 Hz, 1H), 3.02 (ddd, J = 17.7, 8.5, 3.5 Hz, 1H), 2.93 – 2.76 (m, 1H), 2.06 – 1.86 (m, 1H), 1.80 – 1.46 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) & 137.5, 136.3, 135.3, 133.9, 130.5, 130.3, 128.9, 128.6, 128.5, 128.1, 126.5, 126.1, 112.1, 111.4, 46.8, 40.7, 28.0, 27.0, 24.9, 17.3; HRMS-APCI $[M + H]^+$ Calcd for C₂₀H₁₈BrN₂ 365.0648,


2-((2,3-Dihydro-1H-inden-1-yl)(phenyl)methyl)malononitrile (59)

Following the typical procedure **V**, 2,3-dihydro-1*H*-indene (118 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **59** as two separable diastereomers (combined 54 mg) in 99% yield and 2:1 dr as colorless oil. The major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.33 (m, 3H), 7.23 – 7.12 (m, 4H), 7.05 – 6.95 (m, 1H), 6.57 (d, *J* = 7.6 Hz, 1H), 4.20 (d, *J* = 6.9 Hz, 1H), 3.96 (dd, *J* = 14.1, 8.0 Hz, 1H), 3.36 (dd, *J* = 8.7, 6.9 Hz, 1H), 2.83 – 2.71 (m, 1H), 2.56 – 2.42 (m, 2H), 2.00 – 1.86 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 141.8, 135.9, 129.1, 129.0, 128.6, 127.7, 126.3, 124.9, 124.5, 112.1, 111.8, 51.1, 46.2, 31.3, 30.9, 28.4; the minor diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.38 (m, 6H), 7.33 – 7.26 (m, 3H), 4.18 (d, *J* = 4.7 Hz, 1H), 3.80 (dd, *J* = 10.8, 7.8 Hz, 1H), 3.06 (dd, *J* = 11.0, 4.7 Hz, 1H), 2.99 – 2.86 (m, 1H), 2.78 (dd, *J* = 16.2, 8.1 Hz, 1H), 2.25 – 2.11 (m, 1H), 1.82 – 1.71 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 144.5, 142.9, 136.3, 129.2, 128.9, 128.6, 128.3, 126.8, 125.8, 124.5, 112.1, 111.9, 49.3, 46.8, 30.5, 30.1, 28.4; HRMS–APCI [M + H]⁺ Calcd for C₁₉H₁₇N₂ 273.1386, found 273.1387.

2-(2-(5-Methylthiophen-2-yl)-1-phenylethyl)malononitrile (60)

Following the typical procedure **V**, 2,5-dimethylthiophene (112 mg, 1.0 mmol, 5.0 equiv), 2-benzylidenemalononitrile (31 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **60** (28.2 mg) in 53% yield as a pale yellow oil. In "stop-flow micro tubing" reactor: following the typical procedure **IV** using a HPFA tubing (total volume 1.5 mL) to afford product **60** (24.4 mg) in 61% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.37 (m, 5H), 6.69 (d, *J* = 3.3 Hz, 1H), 6.58 (dd, *J* = 3.2, 0.9 Hz, 1H), 4.01 (d, *J* = 4.7 Hz, 1H), 3.49 – 3.40 (m, 2H), 3.40 – 3.31 (m, 1H), 2.44 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 140.0, 136.1, 135.9, 129.2, 129.1, 128.0, 127.0,

125.3, 111.9, 111.2, 48.4, 32.9, 28.4, 15.3; HRMS–APCI $[M + H]^+$ Calcd for C₁₆H₁₅N₂S 267.0950, found 267.0954.

2-(2-(5-Methylfuran-2-yl)-1-phenylethyl)malononitrile (61)

Following the typical procedure **VI** using a HPFA tubing (total volume 1.5 mL) to afford product **61** (29 mg) in 77% yield as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.36 (m, 5H), 6.05 (d, *J* = 2.9 Hz, 1H), 5.92 – 5.85 (m, 1H), 4.00 (d, *J* = 4.9 Hz, 1H), 3.61 (dt, *J* = 10.2, 5.2 Hz, 1H), 3.28 (dd, *J* = 15.3, 10.0 Hz, 1H), 3.19 (dd, *J* = 15.3, 5.5 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 142.4, 135.5, 129.7, 129.3, 129.1, 128.5, 128.1, 127.1, 112.1, 111.4, 53.6, 42.0, 28.7, 20.6; HRMS–APCI [M + H]⁺ Calcd for C₁₆H₁₅N₂O 251.1179, found 251.1184.

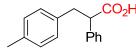
2-(1-p-Tolylbutan-2-yl)malononitrile (62)

Following the typical procedure **V**, *p*-xylene (106 mg, 1.0 mmol, 5.0 equiv), 2-propylidenemalononitrile (21 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **62** (33 mg) in 78% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 3.61 (d, *J* = 4.1 Hz, 1H), 3.00 (dd, *J* = 14.2, 5.7 Hz, 1H), 2.60 (dd, *J* = 14.2, 9.5 Hz, 1H), 2.35 (s, 3H), 2.23 – 2.10 (m, 1H), 1.91 – 1.77 (m, 1H), 1.74 – 1.59 (m, 1H), 1.12 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 137.1, 133.8, 129.8, 128.7, 112.6, 111.5, 44.4, 36.6, 26.3, 24.3, 21.0, 11.3; HRMS–APCI [M + H]⁺ Calcd for C₁₄H₁₇N₂ 213.1386, found 213.1384.

3-(4-Methylbenzyl)dihydrofuran-2,5-dione (63) Following the typical procedure **V**, *p*-xylene (106 mg, 1.0 mmol, 5.0 equiv),

cyclopent-4-ene-1,3-dione (19.2 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **63** (30 mg) in 74% yield as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.12 (d, *J* = 7.7 Hz, 2H), 7.06 (d, *J* = 7.6 Hz, 2H), 3.21 – 3.00 (m, 2H), 2.79 – 2.54 (m, 2H), 2.42 (d, *J* = 17.0 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 180.7, 178.5, 136.5, 134.5, 129.4, 128.8, 42.9, 36.9, 34.5, 21.0; HRMS–APCI [M + H]⁺ Calcd for C₁₂H₁₃O₃ 205.0859, found 205.0864.

CO₂Me

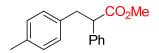

Dimethyl 2-(4-methylbenzyl)succinate (64)

Following the typical procedure **V**, *p*-xylene (106 mg, 1.0 mmol, 5.0 equiv), dimethyl maleate (29 mg, 0.2 mmol, 1.0 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (1.0 mg, 0.0025 mmol, 0.0125 equiv) in DCE (2.0 mL) were employed to give the product **64** (34.5 mg) in 69% yield as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.09 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.1 Hz, 2H), 3.67 (s, 3H), 3.63 (s, 3H), 3.17 – 2.94 (m, 2H), 2.78 – 2.58 (m, 2H), 2.43 (d, *J* = 4.8 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.7, 172.3, 136.2, 135.0, 129.2, 128.9, 51.8, 51.7, 43.1, 37.3, 34.9, 20.9; HRMS–ESI [M + Na]⁺ Calcd for C₁₄H₁₈NaO₄ 273.1097, found 273.1102.

4,5-Dimethyl-2-phenylhex-4-enoic acid (66)

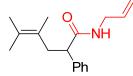
In a Schlenk tube equipped with a magnetic stirring bar was charged with alkylation product **7** (238 mg, 1.0 mmol, 1.0 equiv), CuI (38 mg, 0.2 mmol, 0.2 equiv), and Cs₂CO₃ (652 mg, 2.0 mmol, 2.0 equiv) in DMSO (2.0 mL), and the resulting mixture was performed in air at 140 0 C for 18 h. After the reaction was cooled to room temperature, ethyl acetate 5 mL was added and the solution was filtrated. Then HCl (1 M) was added to adjusted the pH to 2~3. The solution was extracted with ethyl acetate (3×5 mL). The combined organic phase was washed with water and brine, dried over anhydrous Na₂SO₄, and purified using column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (10:1~2:1) to give the acid **66** (157 mg) as a pale yellow oil in 72% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.22 (m, 5H), 3.72 (t, *J* = 7.6 Hz, 1H), 2.89 (dd, *J* = 13.6, 7.9 Hz, 1H), 2.50 (dd, *J* = 13.6, 7.4 Hz, 1H), 1.59 (s, 6H), 1.55 (s, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 180.3, 138.5, 128.4, 128.1, 127.5, 127.3, 123.9, 50.4, 38.4, 20.6,
20.3, 18.4; HRMS-ESI [M – H]⁻ Calcd for C₁₄H₁₇O₂ 217.1234, found 217.1237.

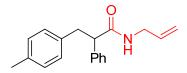


2-Phenyl-3-(p-tolyl)propanoic acid (67)

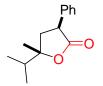
In a Schlenk tube equipped with a magnetic stirring bar was charged with alkylation product **51** (260 mg, 1.0 mmol, 1.0 equiv), CuI (38 mg, 0.2 mmol, 0.2 equiv), and Cs₂CO₃ (652 mg, 2.0 mmol, 2.0 equiv) in DMSO (2.0 mL), and the resulting mixture was performed in air at 140 0 C for 18 h. After the reaction was cooled to room temperature, ethyl acetate 5 mL was added and the solution was filtrated. Then HCl (1 M) was added to adjusted the pH to 2~3. The solution was extracted with ethyl acetate (3×5 mL). The combined organic phase was washed with water and brine, dried over anhydrous Na₂SO₄, and purified using column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (10:1~2:1) to give the acid **67** (180 mg) as a pale red solid in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 5H), 7.03 (q, *J* = 8.2 Hz, 4H), 3.85 (dd, *J* = 8.4, 7.0 Hz, 1H), 3.38 (dd, *J* = 13.9, 8.5 Hz, 1H), 3.01 (dd, *J* = 13.9, 6.9 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.3, 138.0, 135.9, 135.6, 129.0, 128.7, 128.6, 128.1, 127.5, 53.5, 38.8, 20.9; HRMS–ESI [M + Na]⁺ Calcd for C₁₆H₁₆NaO₂263.1043, found 263.1046.


Methyl 4,5-dimethyl-2-phenylhex-4-enoate (68)

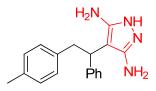
At – 20 °C, MCPBA (78 mg, 0.45 mmol, 1.5 equiv) was added to a mixture of alkylation product **7** (72 mg, 0.3 mmol, 1.0 equiv) and Cs₂CO₃ (103 mg, 0.315 mmol, 1.05 equiv) in MeOH (2.0 mL). After 12 hrs, the reaction was warmed to room temperature and stirred for another 12 hrs. The mixture was filtered through a short column of SiO₂, and purified using column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate ($50:1 \sim 30:1$) to give the acid **68** (48 mg) as a colorless oil in 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.30 (m, 4H), 7.30 – 7.25 (m, 1H), 3.73 (t, *J* = 7.7 Hz, 1H), 3.67 (s, 3H), 2.87 (dd, *J* = 13.5, 8.0 Hz, 1H), 2.52 (dd, *J* = 13.5, 7.4 Hz, 1H), 1.61 (s, 6H), 1.56 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 139.2, 128.4, 127.9, 127.3, 127.1, 124.1, 51.8, 50.4, 38.8, 20.6, 20.2, 18.4; HRMS–ESI [M + Na]⁺ Calcd for C₁₅H₂₀NaO₂ 255.1356, found 255.1354.


Methyl 2-phenyl-3-(p-tolyl)propanoate (69)

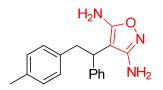
At – 20 °C, MCPBA (78 mg, 0.45 mmol, 1.5 equiv) was added to a mixture of alkylation product **51** (78 mg, 0.3 mmol, 1.0 equiv) and Cs₂CO₃ (103 mg, 0.315 mmol, 1.05 equiv) in MeOH (2.0 mL). After 12 hrs, the reaction was warmed to room temperature and stirred for another 12 hrs. The mixture was filtered through a short column of SiO₂, and purified using column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (50:1 \sim 30:1) to give the acid **69** (62.5 mg) as a colorless oil in 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 4.3 Hz, 4H), 7.31 – 7.26 (m, 1H), 7.07 (d, *J* = 8.1 Hz, 2H), 7.04 (d, *J* = 8.1 Hz, 2H), 3.86 (dd, *J* = 8.9, 6.6 Hz, 1H), 3.63 (s, 3H), 3.41 (dd, *J* = 13.8, 8.9 Hz, 1H), 3.02 (dd, *J* = 13.8, 6.6 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 138.8, 135.9, 135.8, 129.0, 128.7, 128.6, 127.9, 127.3, 53.7, 51.9, 39.4, 21.0; HRMS–ESI [M + Na]⁺ Calcd for C₁₇H₁₈NaO₂ 277.1199, found 277.1203.


N-allyl-4,5-dimethyl-2-phenylhex-4-enamide (70)

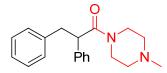
Under O₂ atmosphere, allylamine (57 mg, 1.0 mmol, 2.0 equiv) was added to a solution of alkylation product **7** (119 mg, 0.5 mmol, 1.0 equiv) and K₂CO₃ (138 mg, 1.0 mmol, 2.0 equiv) in CH₃CN (5.0 mL). The resulting mixture was stirred at rt until the compound **7** was completely consumed as monitored by TLC. The solution was filtered, then concentrated and purified using column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (10:1 \sim 5:1) to give the amide **70** (114 mg) as a pale yellow semi-solid in 89% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.26 (m, 4H), 7.26 – 7.21 (m, 1H), 5.80 – 5.69 (m, 1H), 5.61 (br s, 1H), 5.09 – 4.98 (m, 2H), 3.90 – 3.82 (m, 1H), 3.81 – 3.73 (m, 1H), 3.46 (t, *J* = 7.5 Hz, 1H), 2.88 (dd, *J* = 13.6, 6.9 Hz, 1H), 2.56 (dd, *J* = 13.6, 8.1 Hz, 1H), 1.56 (s, 6H), 1.50 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 140.1, 134.2, 128.4, 128.1, 127.0, 126.8, 124.7, 115.9, 52.1, 41.9, 38.3, 20.6, 20.3, 18.4; HRMS–ESI [M + Na]⁺ Calcd for C₁₇H₂₃NNaO 280.1672, found 280.1667.


N-allyl-2-phenyl-3-(p-tolyl)propanamide (71)

Under O₂ atmosphere, allylamine (57 mg, 1.0 mmol, 2.0 equiv) was added to a solution of alkylation product **51** (130 mg, 0.5 mmol, 1.0 equiv) and K₂CO₃ (138 mg, 1.0 mmol, 2.0 equiv) in CH₃CN (5.0 mL). The resulting mixture was stirred at rt until the compound **51** was completely consumed as monitored by TLC. The solution was filtered, then concentrated and purified using column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate ($10:1 \sim 5:1$) to give the amide **71** (112 mg) as a colorless oil in 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.27 (m, 4H), 7.27 – 7.22 (m, 1H), 7.06 – 6.98 (m, 4H), 5.72 – 5.60 (m, 2H), 4.98 (d, J = 10.3 Hz, 1H), 4.89 (d, J = 17.2 Hz, 1H), 3.85 – 3.68 (m, 2H), 3.60 (t, J = 7.4 Hz, 1H), 3.51 (dd, J = 13.5, 8.1 Hz, 1H), 2.97 (dd, J = 13.5, 6.8 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 139.7, 136.5, 135.5, 133.9, 128.9, 128.8, 128.6, 127.9, 127.2, 115.8, 55.59, 41.8, 39.2, 20.9; HRMS–ESI [M + Na]⁺ Calcd for C₁₉H₂₁NNaO 302.1515, found 302.1518.


5-Isopropyl-5-methyl-3-phenyldihydrofuran-2(3H)-one (72)

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added the 4,5-dimethyl-2-phenylhex-4-enoic acid (**66**) (44 mg, 0.2 mmol, 1.0 equiv.), 2-phenylmalononitrile (14.2 mg, 0.1 mmol, 0.5 equiv), and 9-mesityl-10-methylacridinium perchlorate **4** (4.1 mg, 0.01 mmol, 0.05 equiv.). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with argon for three times. Then anhydrous DCE (0.2 mL) was added, and finally 2,6-lutidine (2.1 mg, 0.02 mmol, 0.1 equiv.) was added. After that, the reaction was placed under a blue LED with an argon balloon and irradiated for 72 hrs. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (15:1-10:1) to give the lactone **72** (30.5 mg) as a colorless oil in 70% yield and 10:1 dr. The overall yield of lactone **72** starting from alkylation product **7** is thus calculated as 50%.

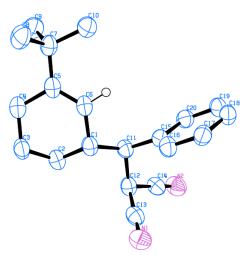

4-(1-Phenyl-2-(*p*-tolyl)ethyl)-1H-pyrazole-3,5-diamine (73)

The alkylation product **51** (260 mg, 1.0 mmol, 1.0 equiv) was dissolved in hydrazine hydrate (300 mg, 6.0 mmol, 6.0 equiv). The mixture was heated under reflux for 1.5 h, and then cooled to room temperature. Ethanol was added and the precipitated was collected. Recrystallization from ethyl acetate and hexane gave the pyrazole **73** (240 mg) as a gray solid in 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.21 (t, *J* = 7.0 Hz, 1H), 7.00 (d, *J* = 7.8 Hz, 2H), 6.95 (d, *J* = 7.9 Hz, 2H), 4.37 (br s, 2H), 3.92 (dd, *J* = 10.5, 5.0 Hz, 1H), 3.33 (dd, *J* = 12.7, 5.0 Hz, 1H), 3.09 (dd, *J* = 12.5, 10.8 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 148.8, 143.3, 137.6, 135.5, 129.0, 128.9, 128.5, 127.6, 126.3, 92.9, 41.6, 38.9, 20.9; HRMS–ESI [M + Na]⁺ Calcd for C₁₈H₂₀N₄Na 315.1580, found 315.1588.

4-(1-Phenyl-2-(*p*-tolyl)ethyl)isoxazole-3,5-diamine (74)

To a stirred mixture of hydroxylamine hydrochloride (35 mg, 0.5 mmol, 1.0 equiv) and alkylation product **51** (130 mg, 0.5 mmol, 1.0 equiv) in methanol (3.0 mL), a solution of triethylamine (70 μ L, 0.5 mmol, 1.0 equiv) in methanol (1.0 mL) was added dropwise. After the addition has been completed, a second portion of triethylamine (70 uL, 0.5 mmol, 1.0 equiv) was added and the mixture was stirred at room temperature for 48 hrs. The solvent was removed on a rotary evaporator under reduced pressure and the residue was subjected to column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate (5:1-1:1) to give the isoxazole **74** (86 mg) as a gray solid in 59% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, *J* = 4.3 Hz, 4H), 7.32 – 7.27 (m, 1H), 7.10 (d, *J* = 7.9 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.86 (dd, *J* = 11.1, 4.6 Hz, 1H), 3.68 – 3.40 (br s, 2H), 3.35 (dd, *J* = 12.7, 4.6 Hz, 1H), 3.14 – 3.03 (m, 1H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 141.7, 136.9, 136.1, 129.4, 129.1, 128.8, 127.6, 127.0, 86.9, 40.9, 38.6, 21.0.

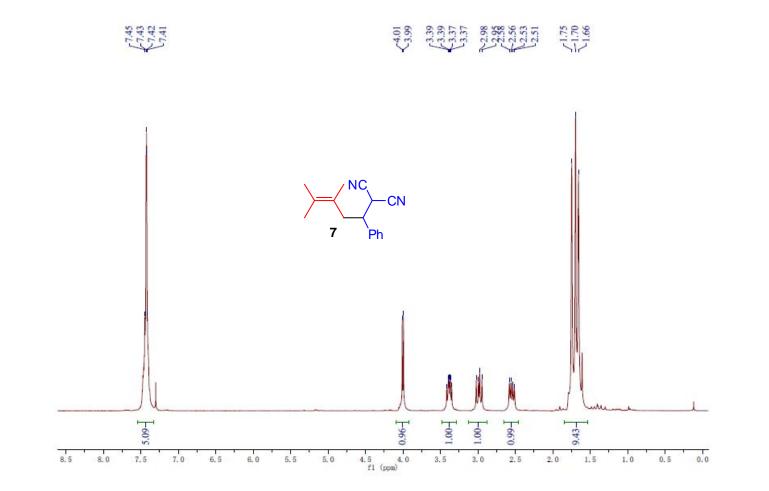
1-(4-Methylpiperazin-1-yl)-2,3-diphenylpropan-1-one (75)

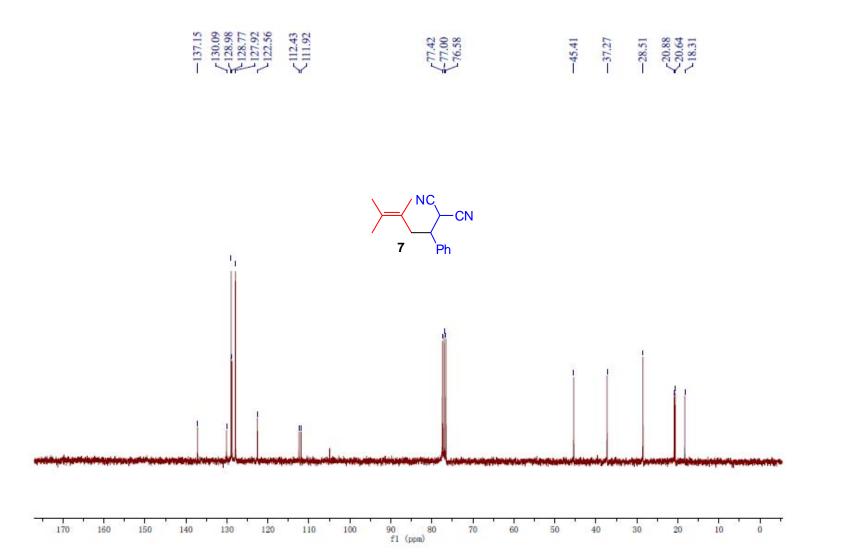

Under O₂ atmosphere, 1-methylpiperazine (39 mg, 0.39 mmol, 2.0 equiv) was added to a solution of alkylation product **53** (47.5 mg, 0.19 mmol, 1.0 equiv) and K₂CO₃ (54 mg, 0.39 mmol, 2.0 equiv) in CH₃CN (2.0 mL). The resulting mixture was stirred at rt until the compound **53** was completely consumed as monitored by TLC. The solution was filtered, then concentrated and purified using column chromatography isolation on silica gel by gradient elution with hexane / ethyl acetate / methanol to give the amide **75** (47 mg) as a colorless oil in 80% yield. This is a known compound⁶. ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 7.27 – 7.21 (m, 5H), 7.20 – 7.16 (m, 1H), 7.13 – 7.08 (m, 2H), 4.02 – 3.95 (m, 1H), 3.77 – 3.67 (m, 1H), 3.61 – 3.47 (m, 2H), 3.39 – 3.30 (m, 2H), 2.98 (dd, *J* = 13.5, 6.7 Hz, 1H), 2.34 – 2.26 (m, 1H), 2.26 – 2.18 (m, 1H), 2.16 (s, 3H), 2.05 – 1.96 (m, 1H), 1.84 – 1.74 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 139.9, 139.7, 129.2, 128.6, 128.1, 127.9, 126.9, 126.1, 54.6, 54.5, 50.8, 45.8, 45.4, 41.9, 41.0.

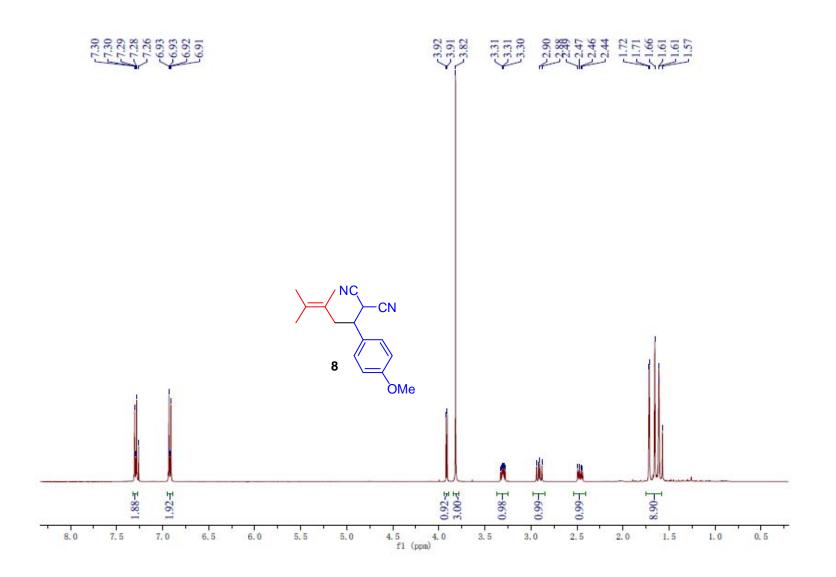
XI. Supplementary References

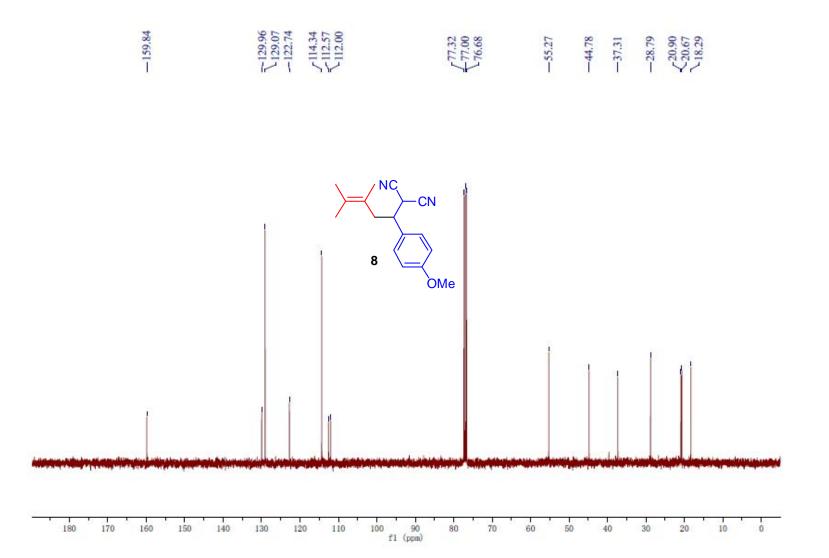
- M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, *Gaussian Inc., Wallingford CT*, 2010.
- (2) J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 1999, 110, 2822-2827.
- (3) J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532-6542.
- (4) B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 106, 5151-5158.
- (5) S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255-263.
- (6) M. S. Poslusney, C. Sevel, T. J. Utley, T. M. Bridges, R. D. Morrison, N. R. Kett, D. J. Sheffler, C. M. Niswender, J. S. Daniels, P. J. Conn, C. W. Lindsley, M. R. Wood, *Bioorg. Med. Chem. Lett.* 2012, 22, 6923-6928.

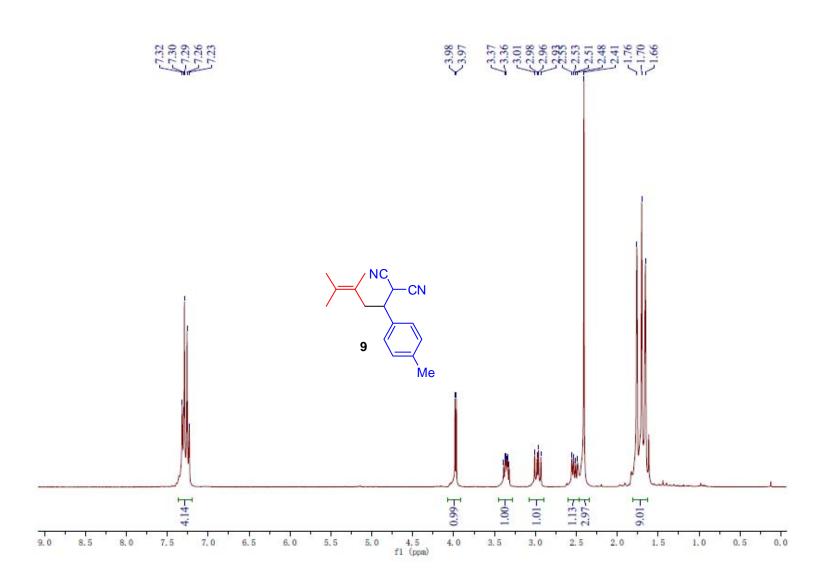
XII. ORTEP Drawings for the Major Diastereomer of 41

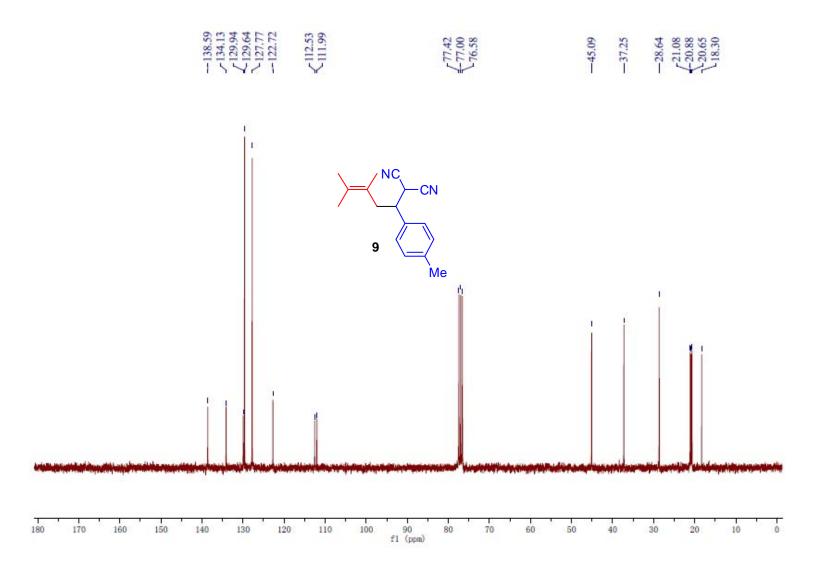

Table S2. Crystal data and structure refinement for 41-major.

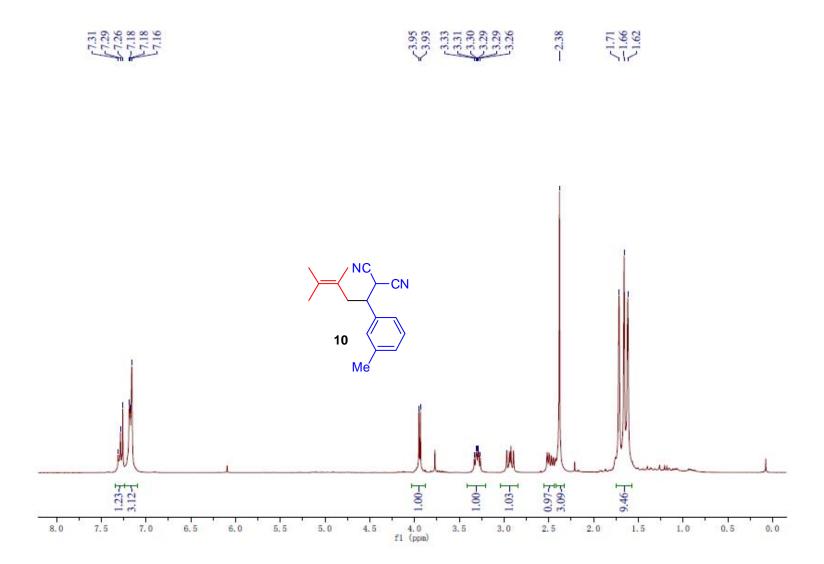


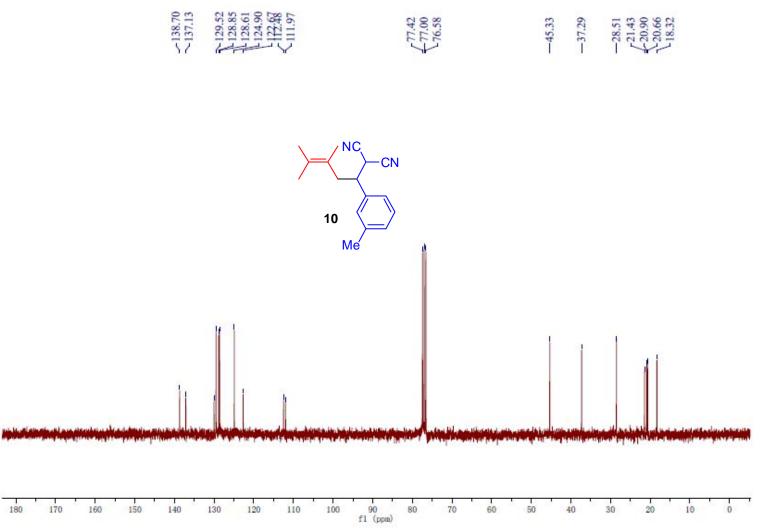

Identification code	41-major
Empirical formula	$C_{20} H_{24} N_2$
Formula weight	292.41
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P2 ₁ /n
Unit cell dimensions	a = 16.6451(18) Å
	b = 5.8536(6) Å
	c = 19.416(2) Å
Volume	1730.6(3) Å ³
Ζ	4
Density (calculated)	1.122 Mg/m ³
Absorption coefficient	0.499 mm ⁻¹
F(000)	632
Crystal size	0.594 x 0.046 x 0.043 mm ³
Theta range for data collection	2.963 to 66.678°.
Index ranges	-18<=h<=19, -6<=k<=6, -23<=l<=23
Reflections collected	14377
Independent reflections	3030 [R(int) = 0.1171]
Completeness to theta = 66.678°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7528 and 0.4273
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3030 / 0 / 202

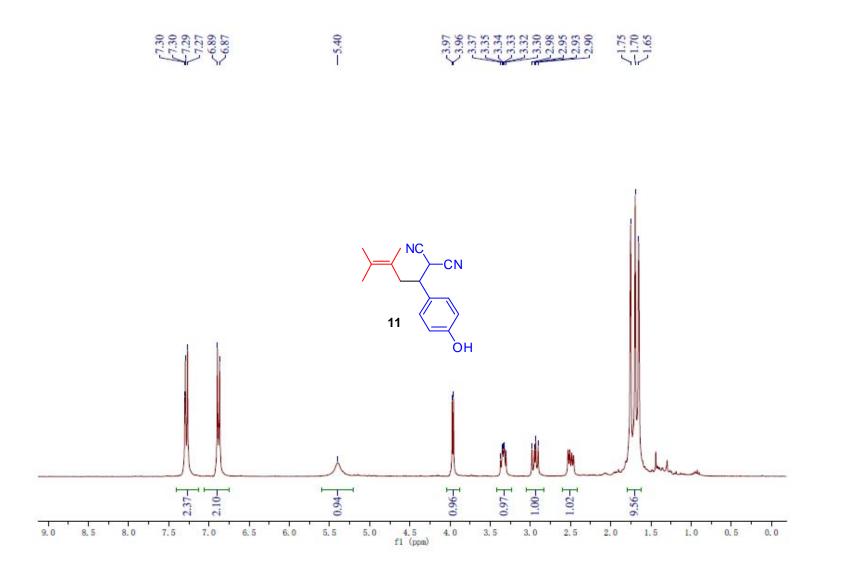

Goodness-of-fit on F ²	1.032
Final R indices [I>2sigma(I)]	R1 = 0.0794, wR2 = 0.1965
R indices (all data)	R1 = 0.1297, wR2 = 0.2432
Extinction coefficient	n/a
Largest diff. peak and hole	0.323 and -0.331 e.Å ⁻³

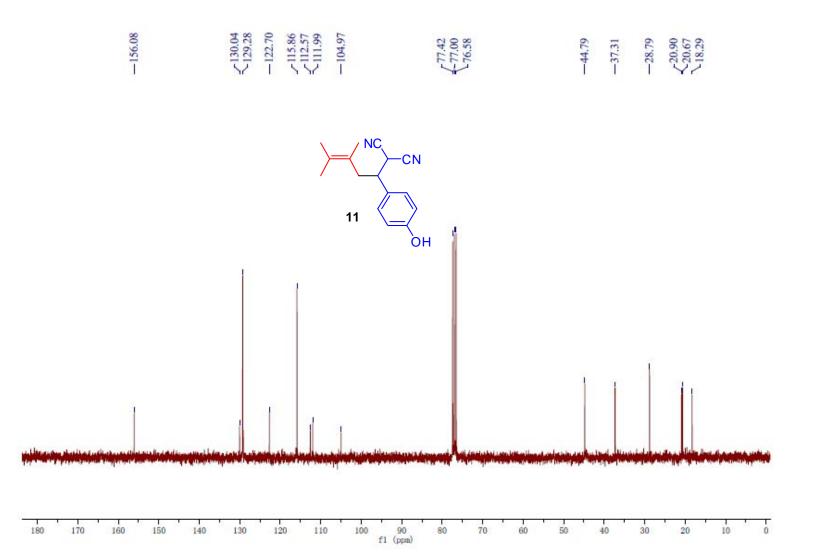

XIII. ¹H, ¹³C NMR Spectra of Products

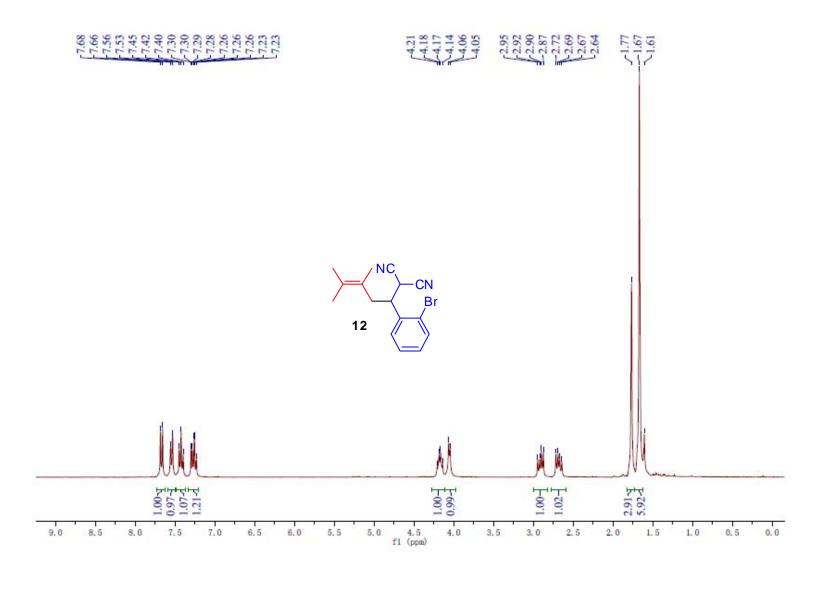


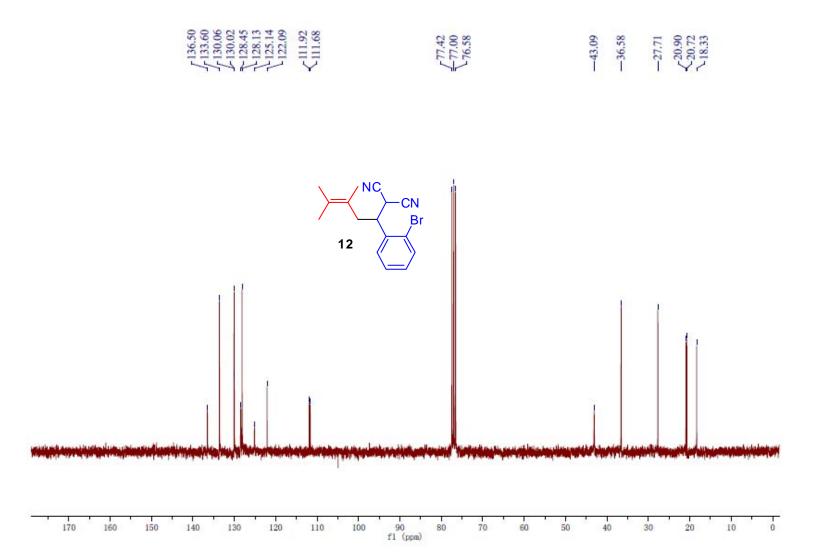


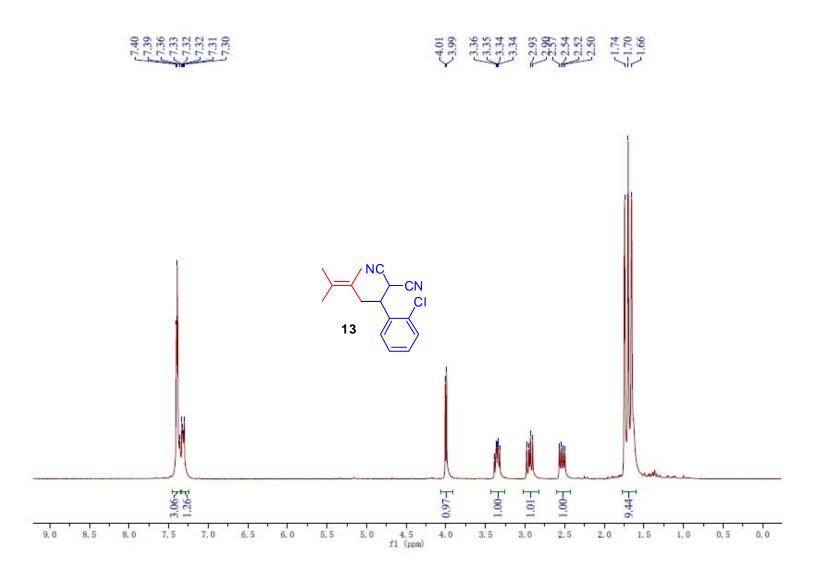


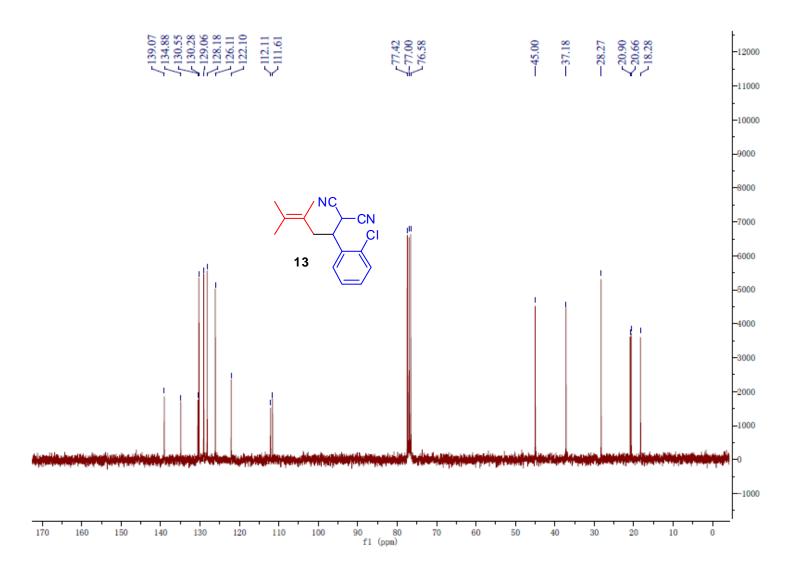


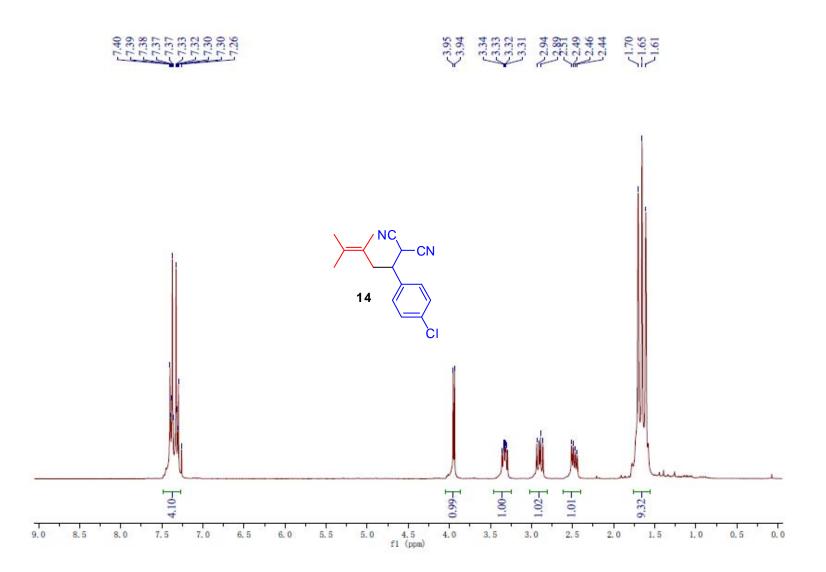


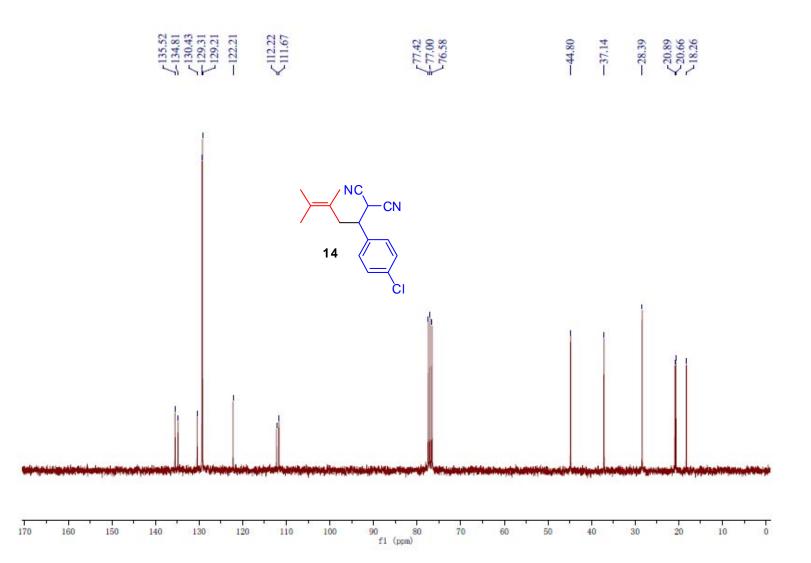


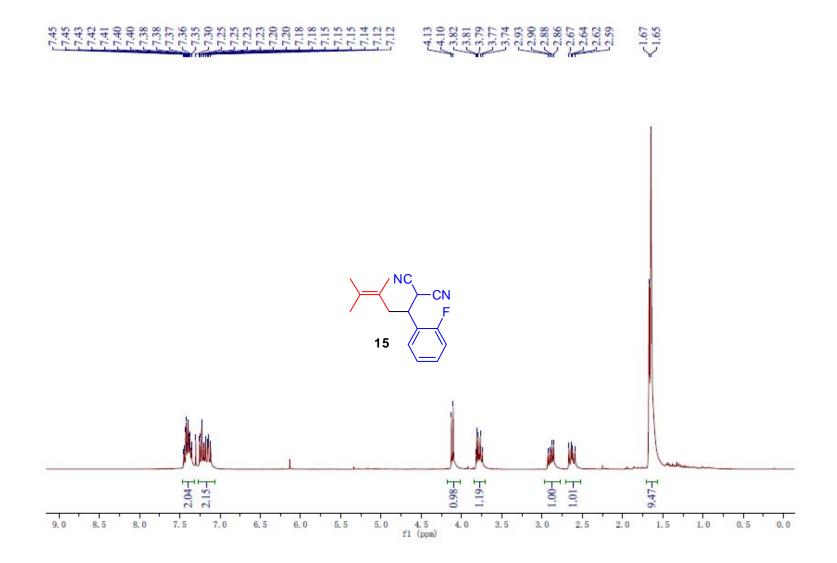


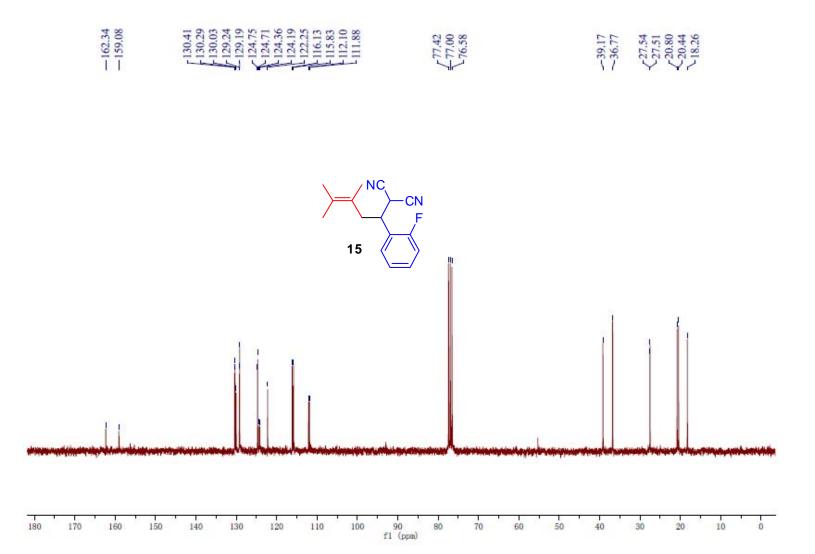


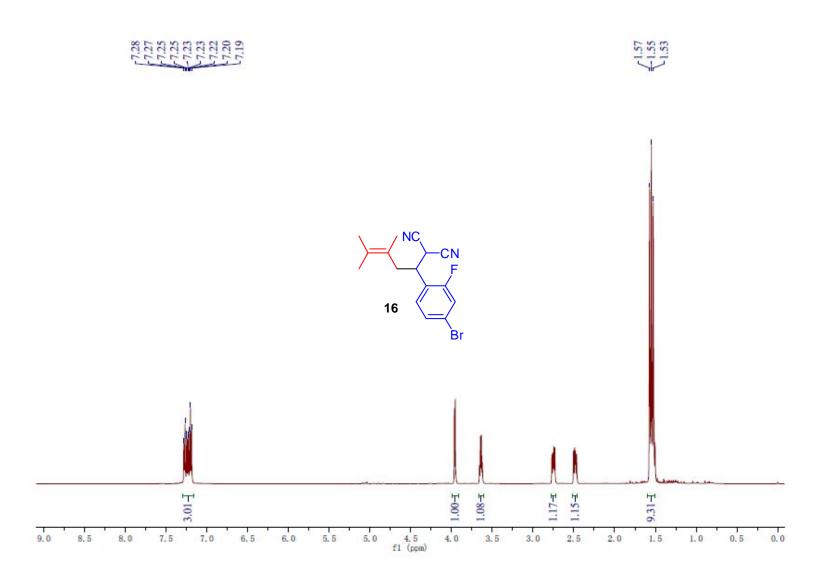


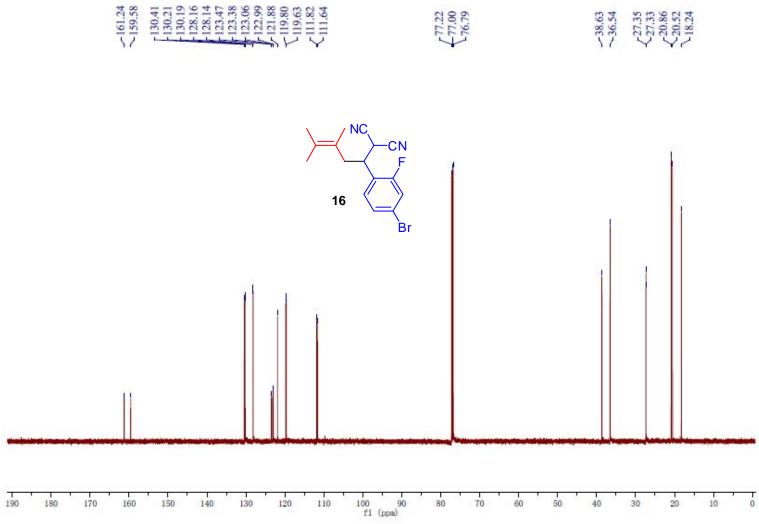


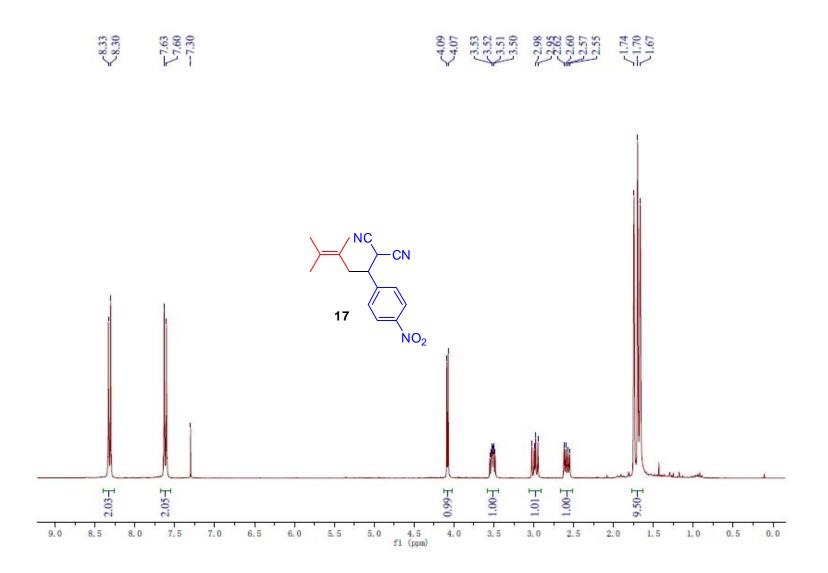


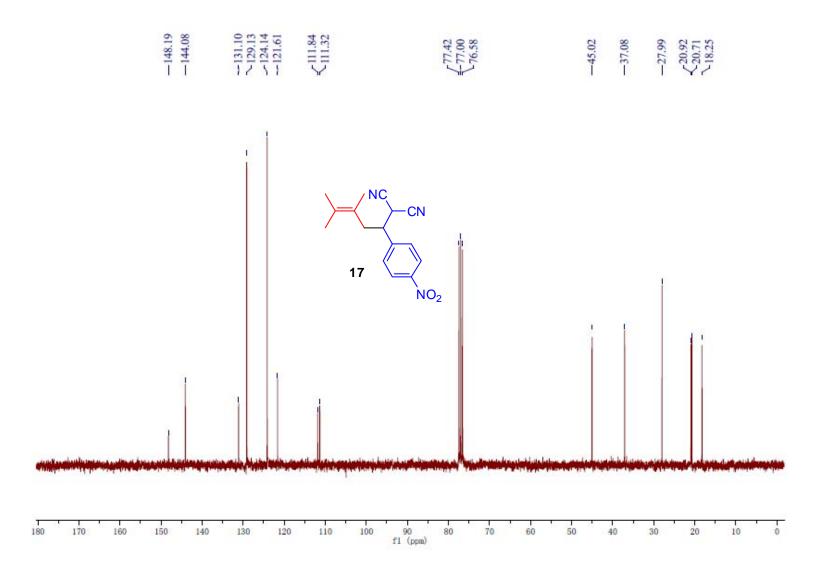


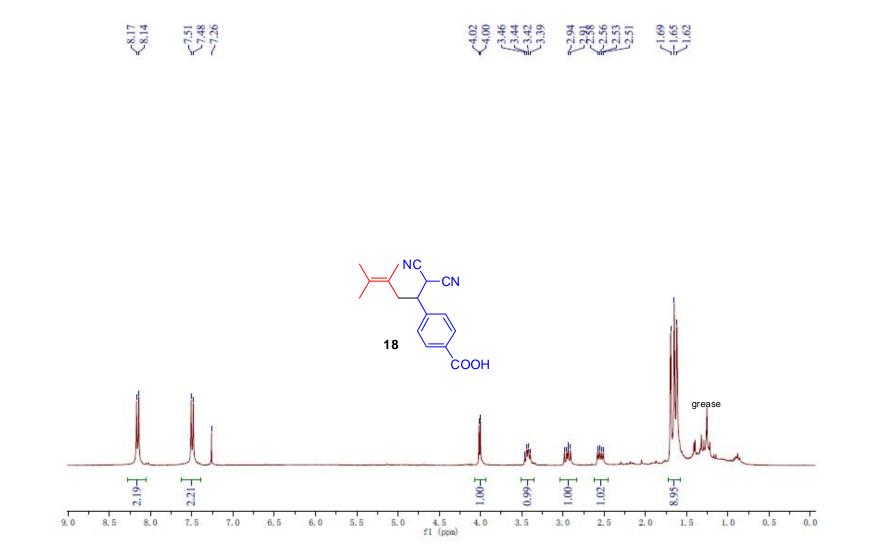


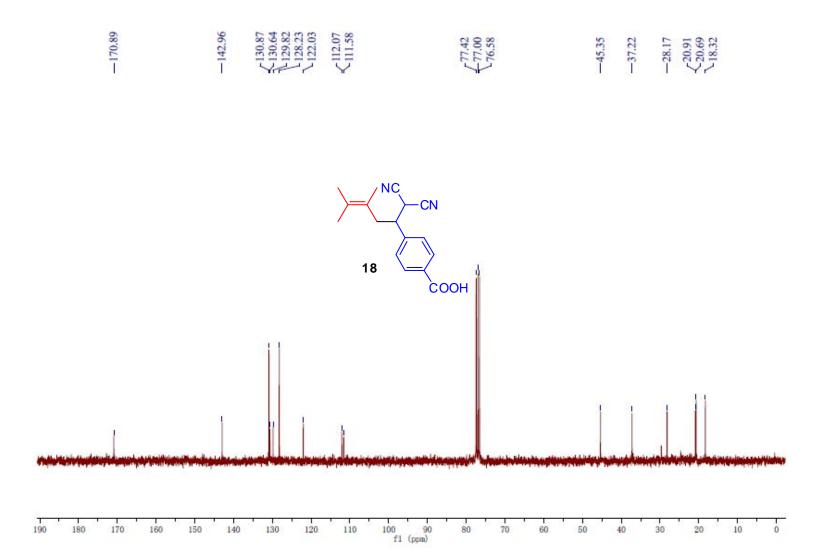


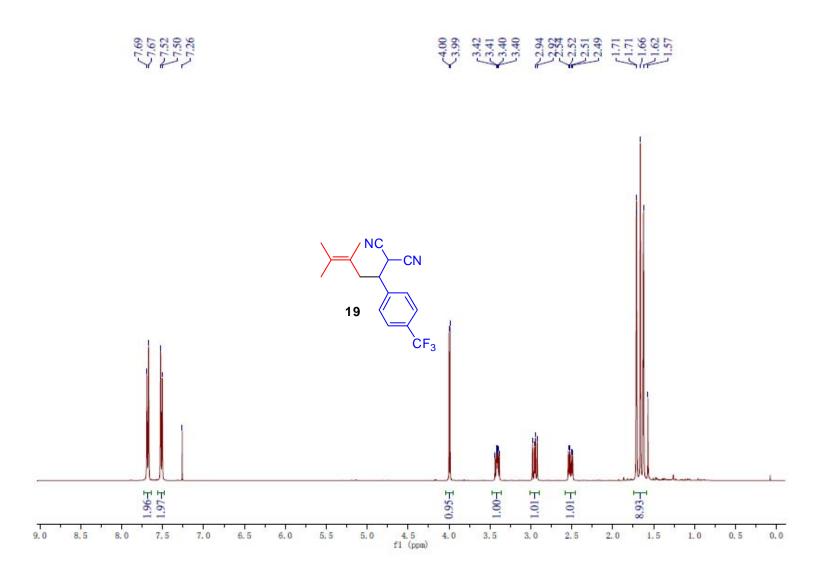


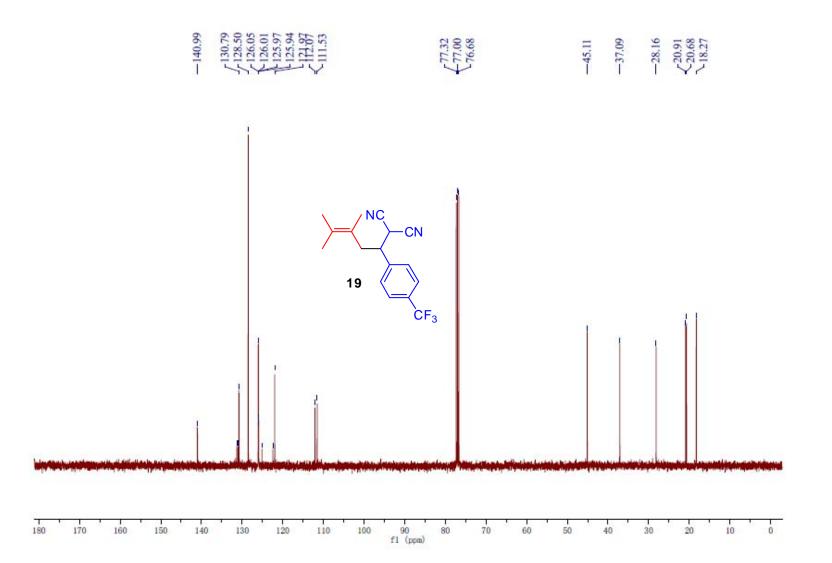


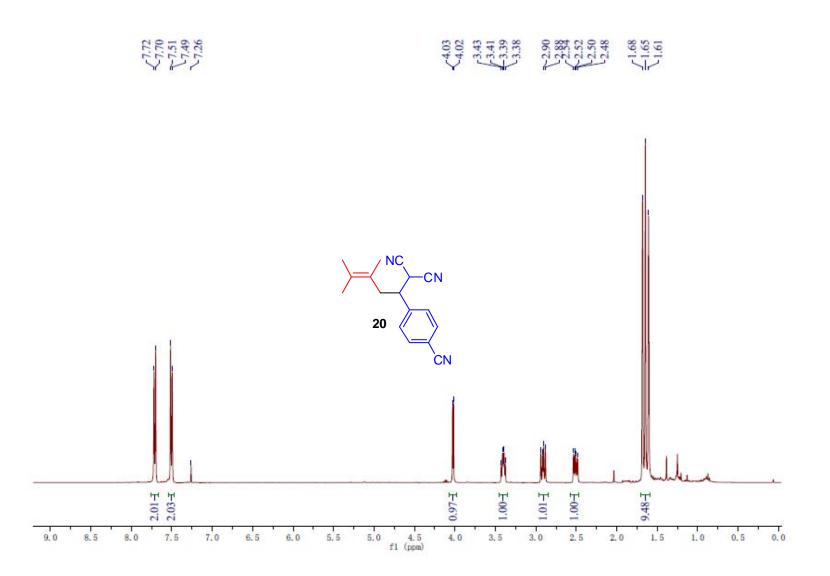


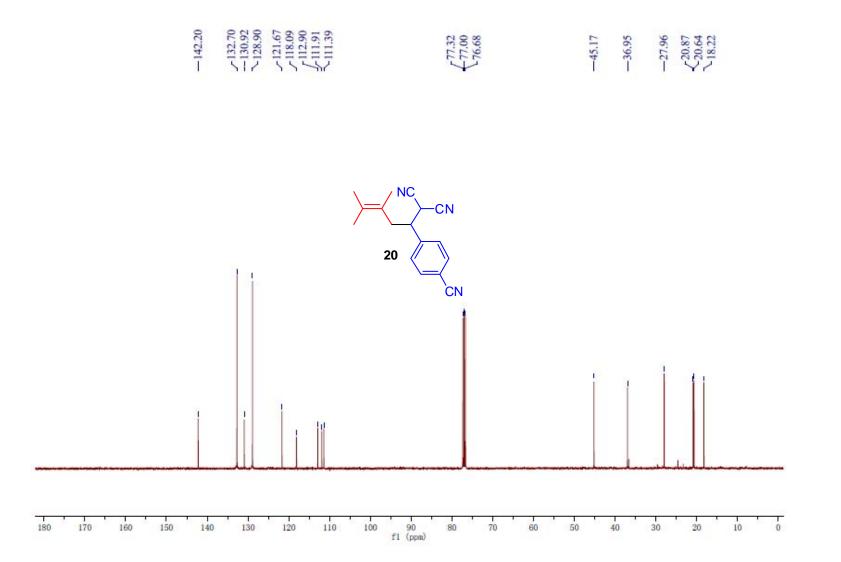


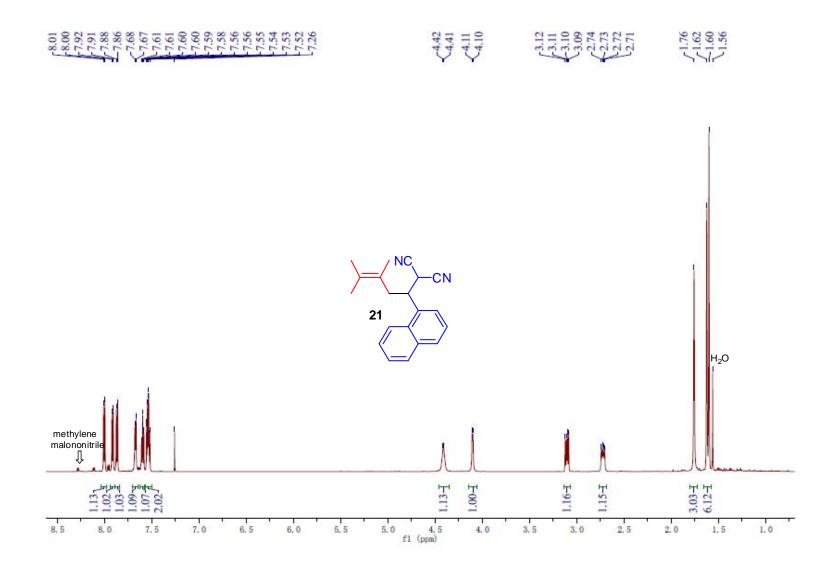


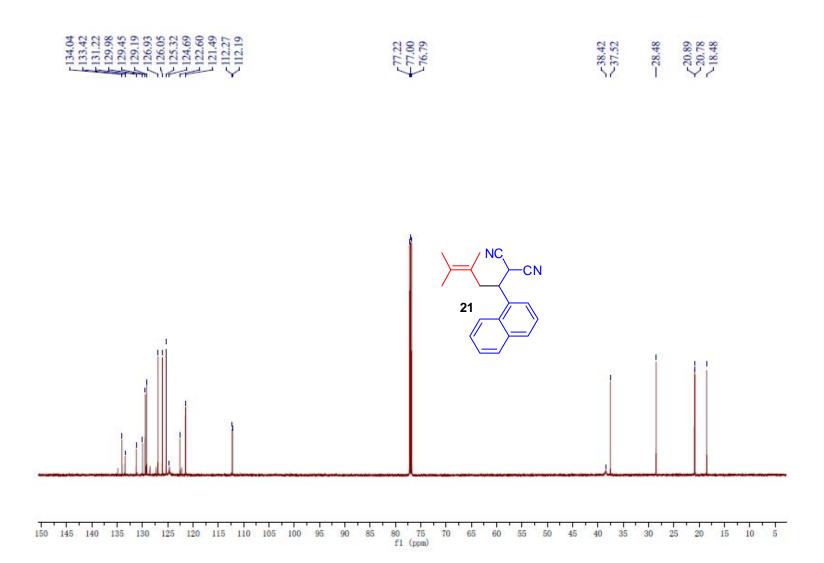


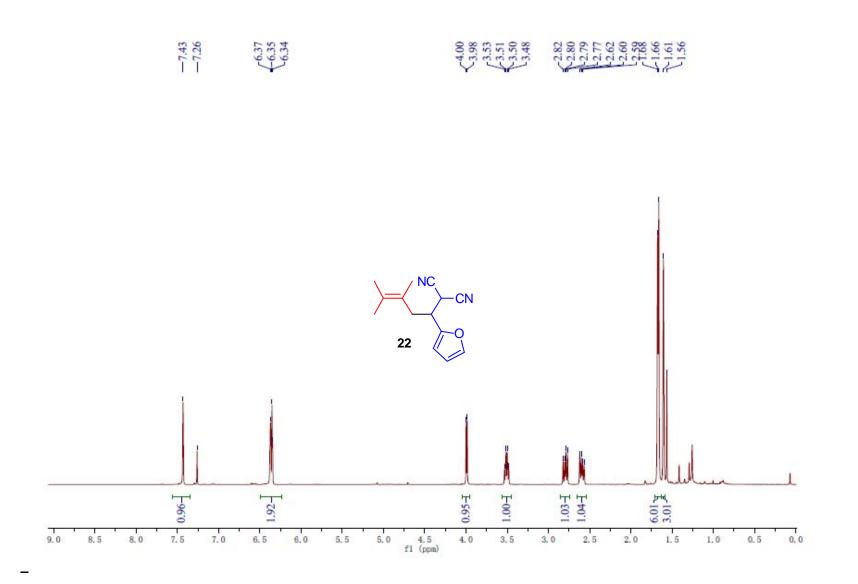


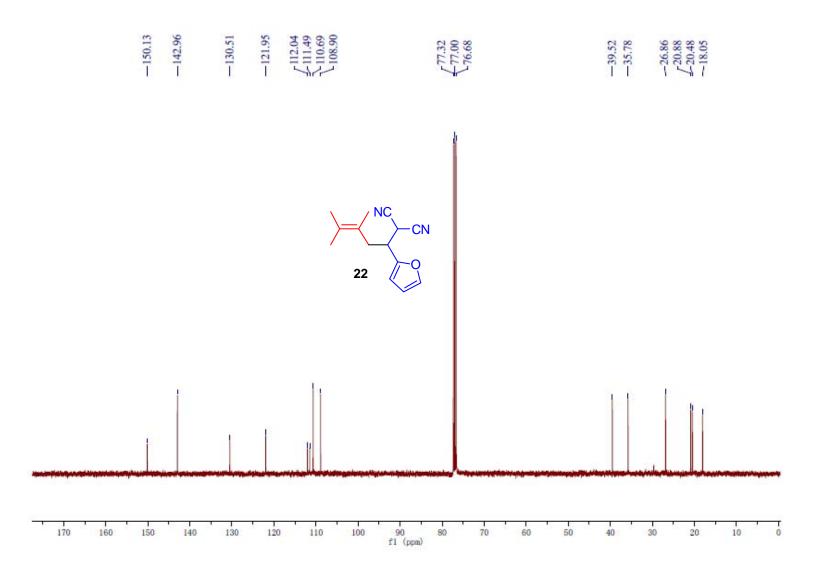


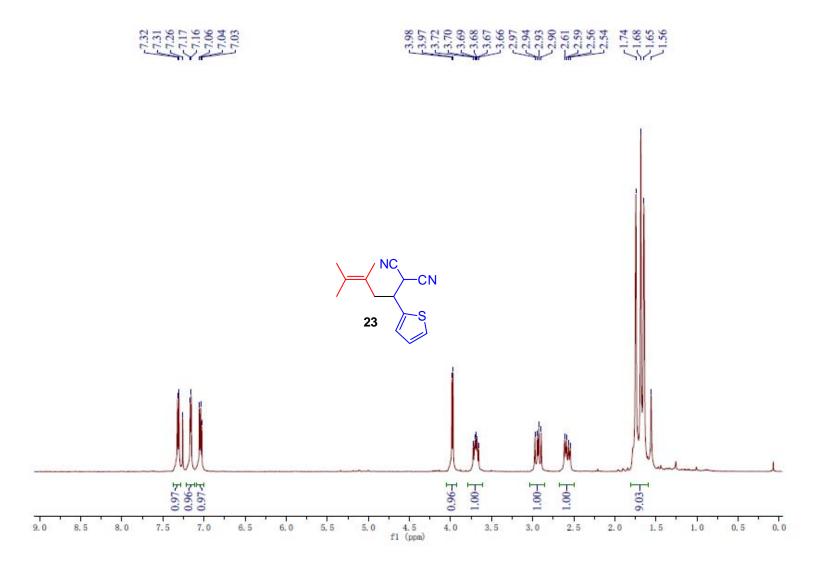


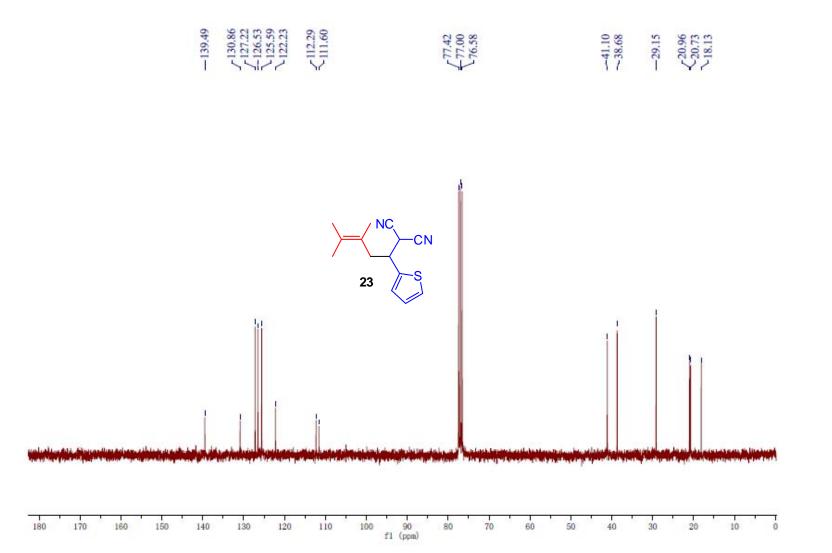


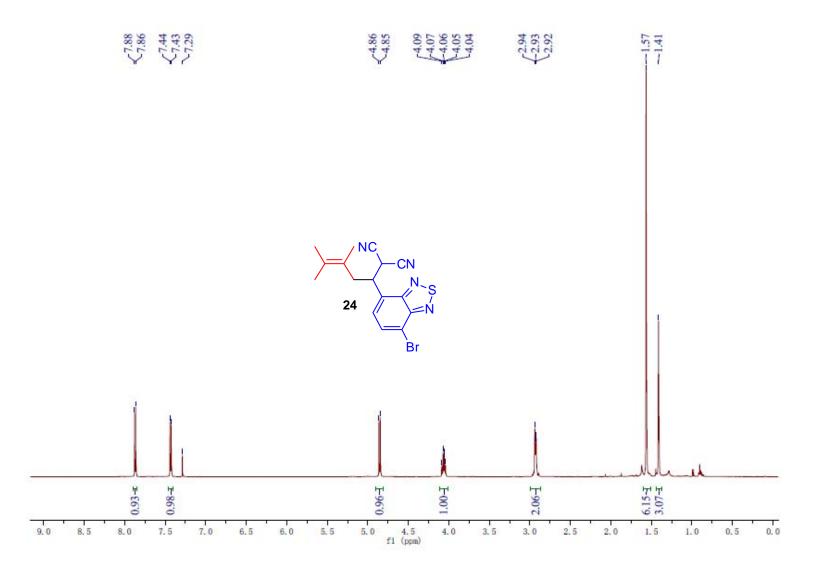


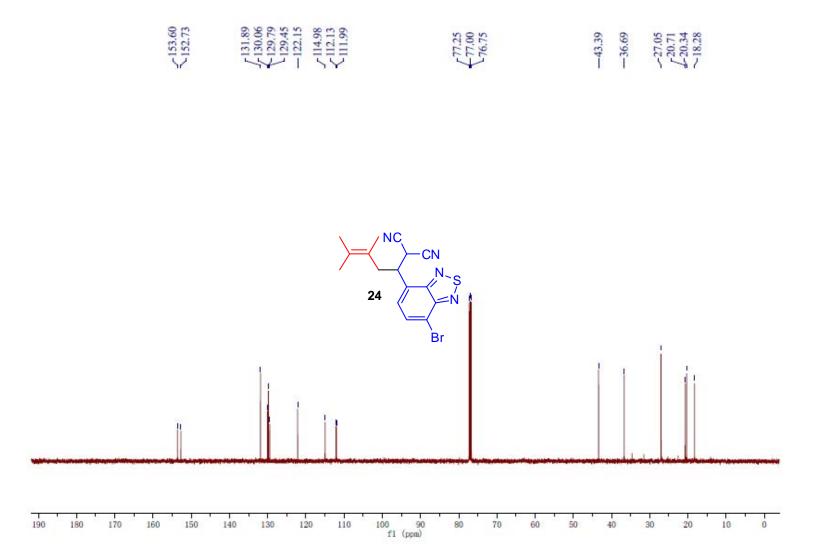


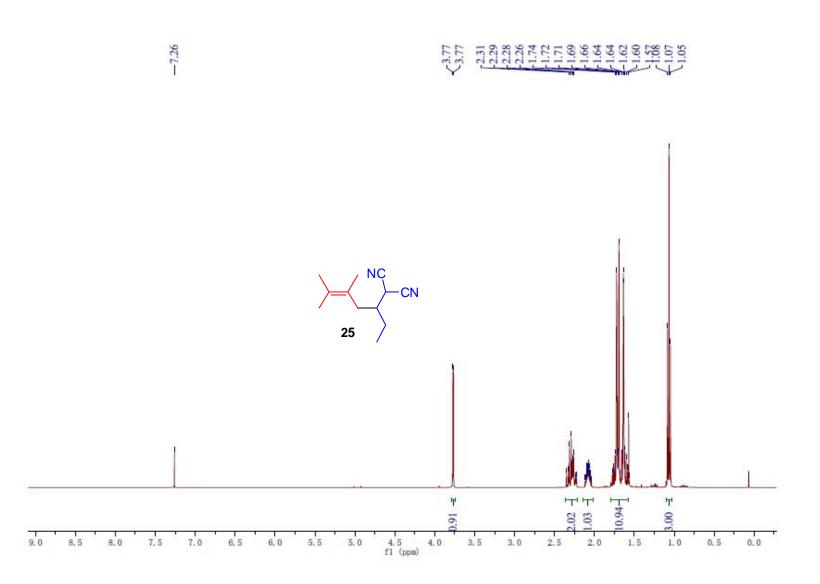


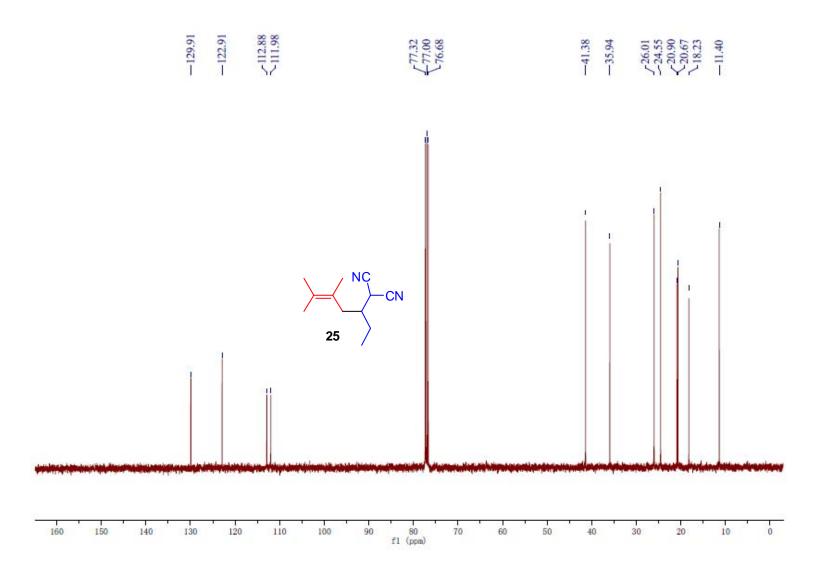


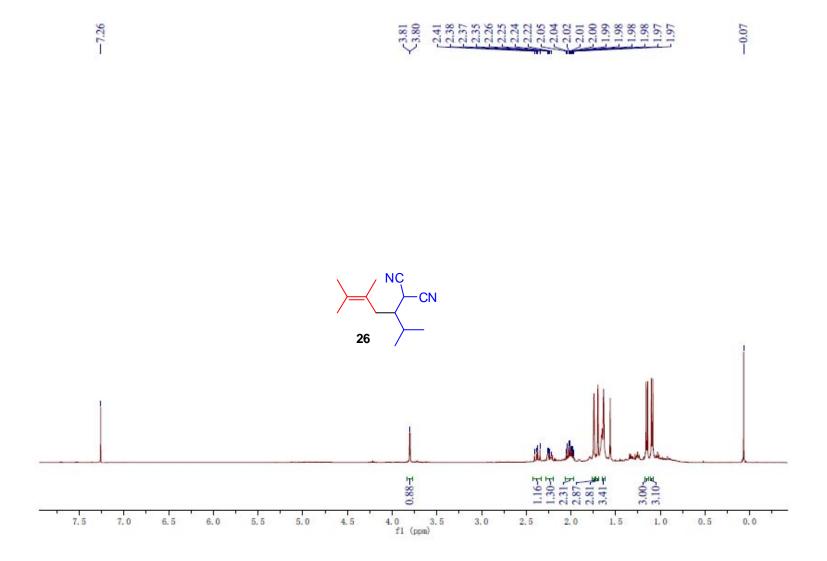


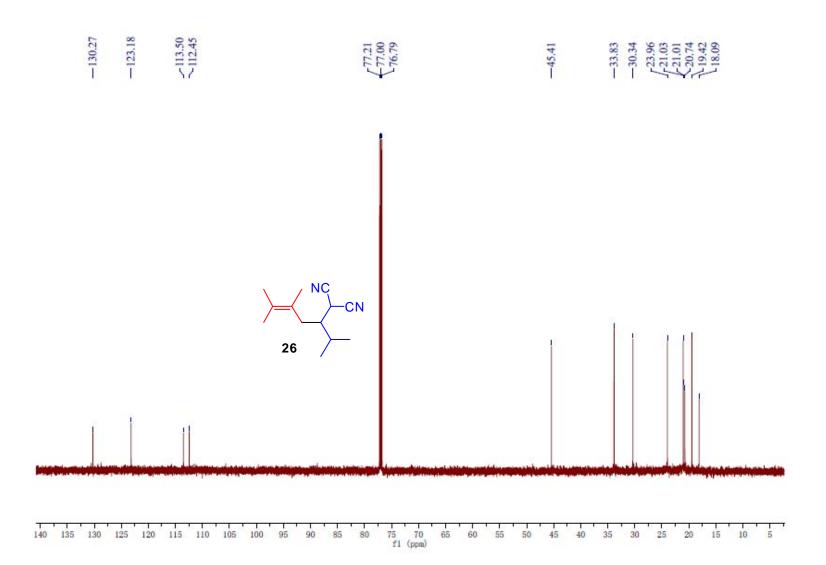


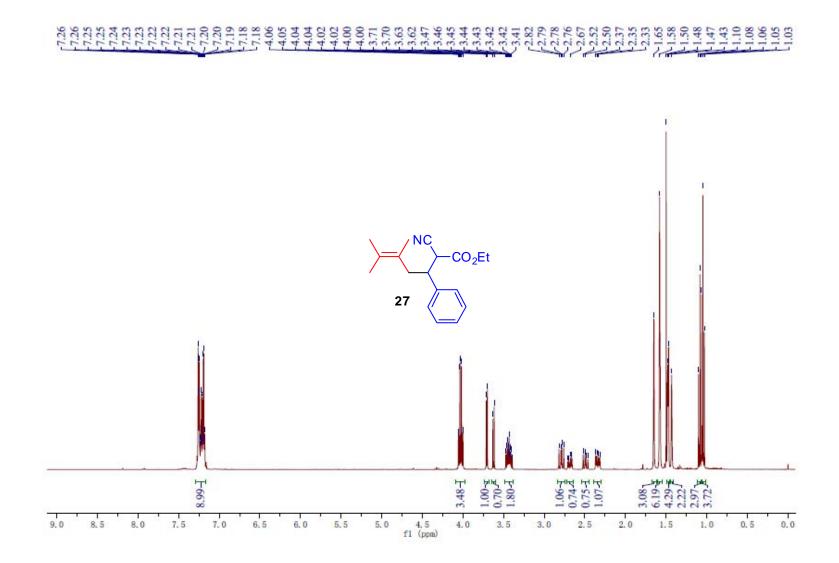

S82



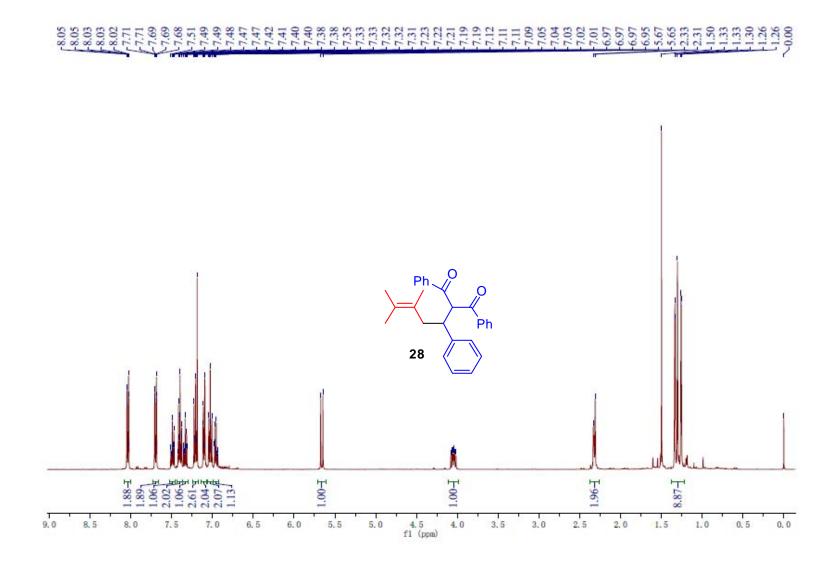


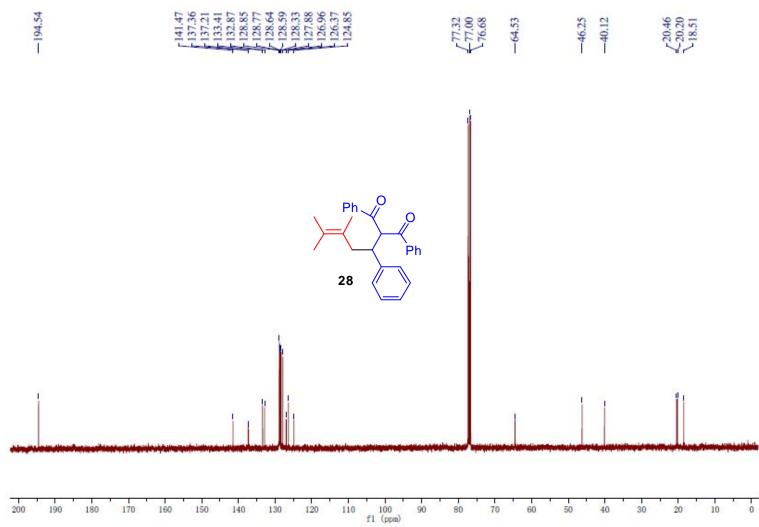


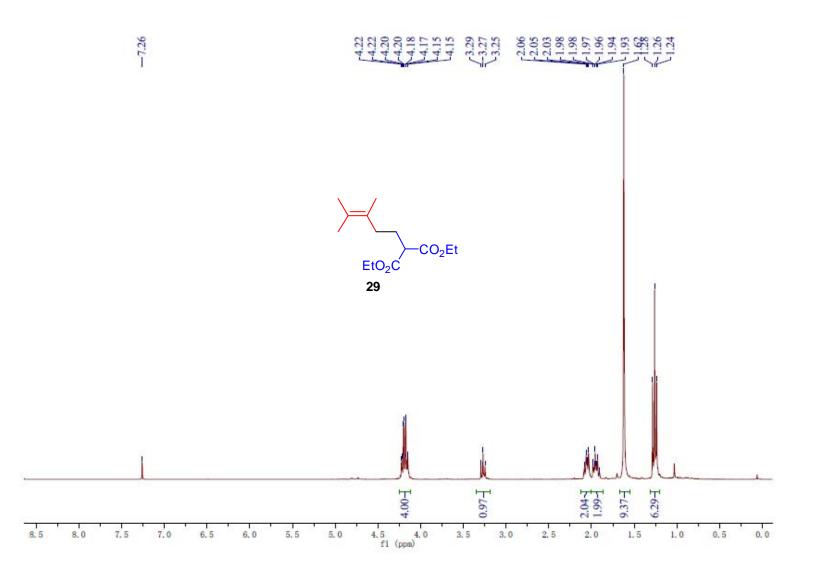


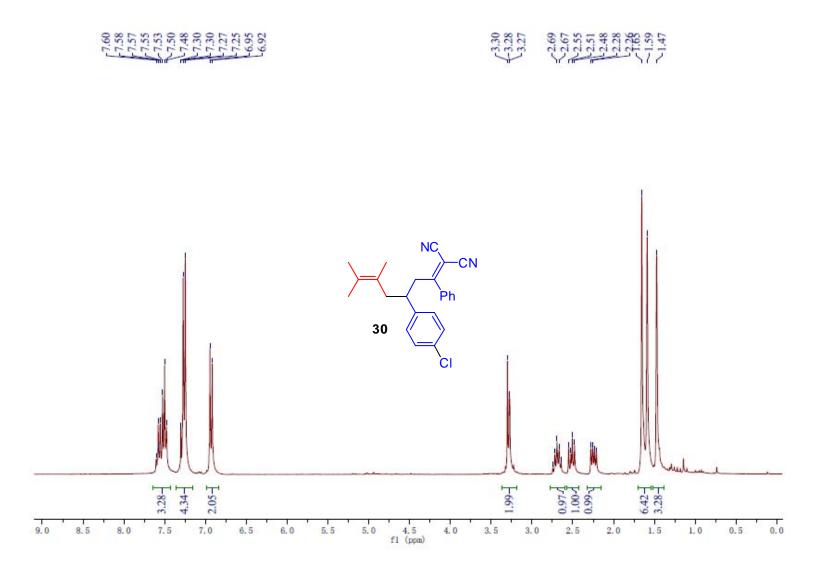


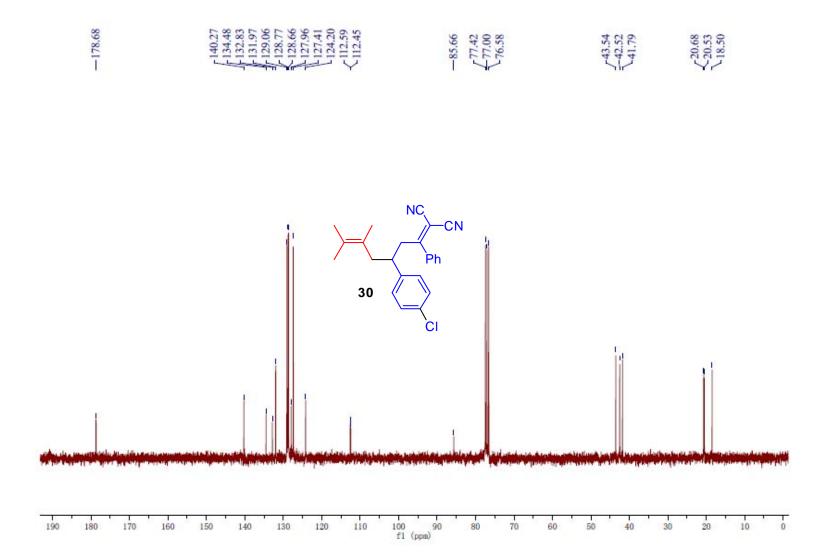


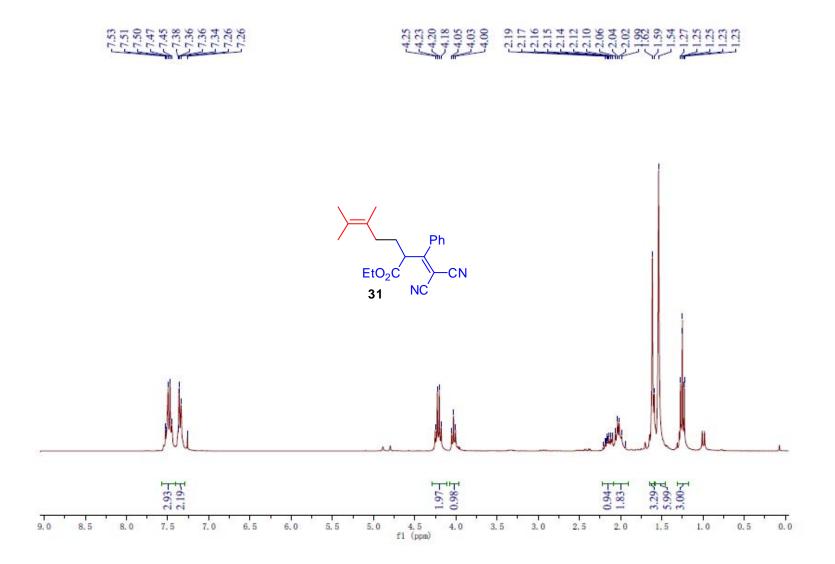


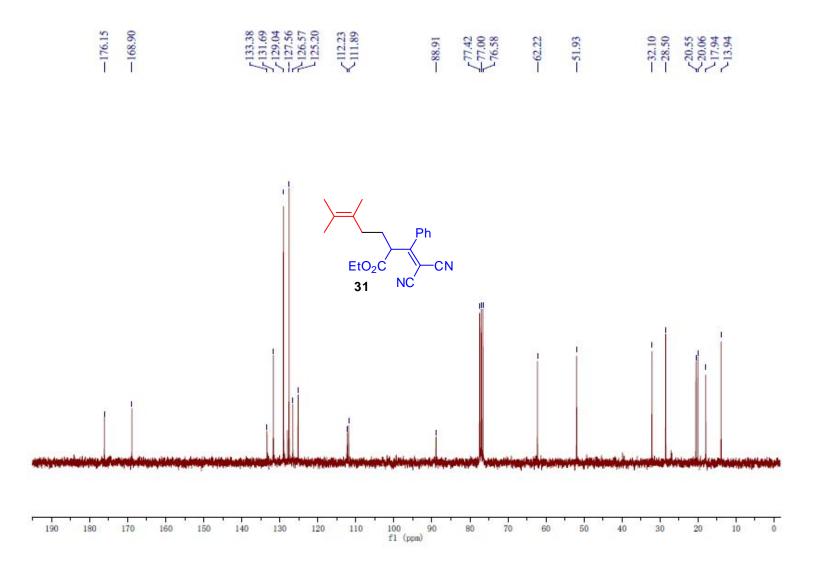


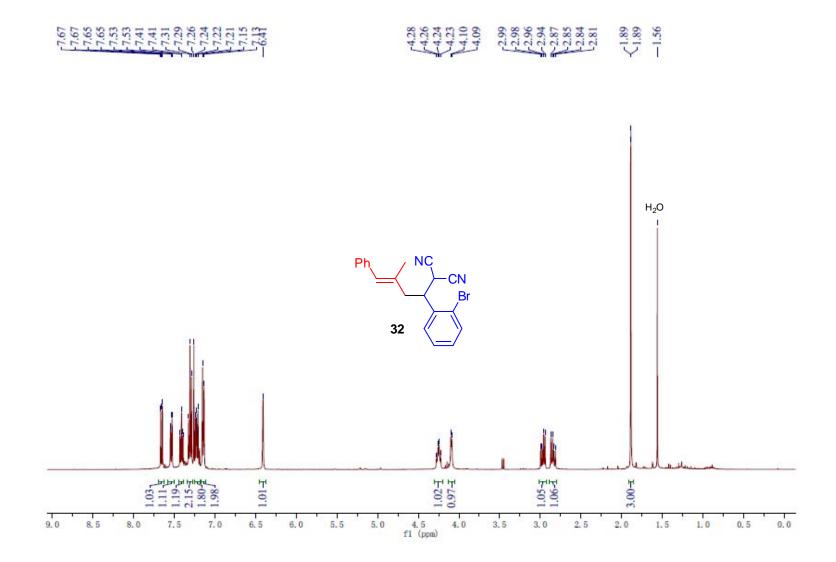


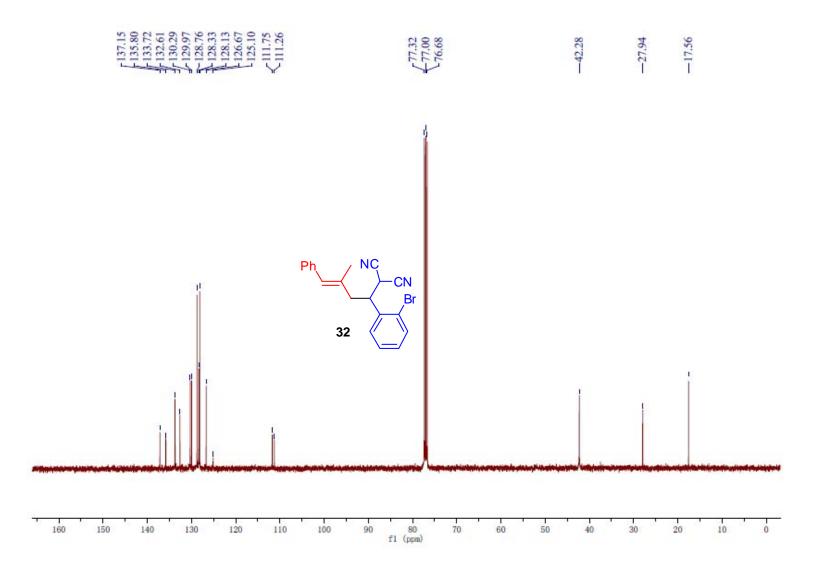


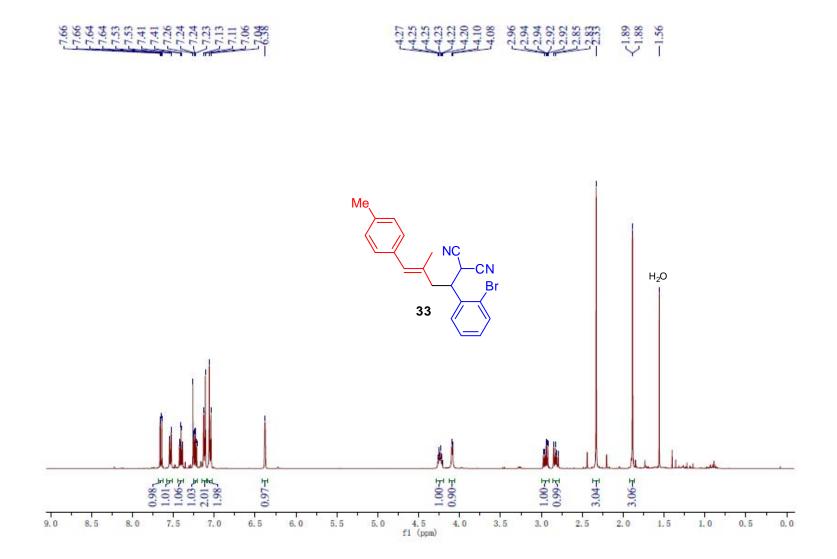


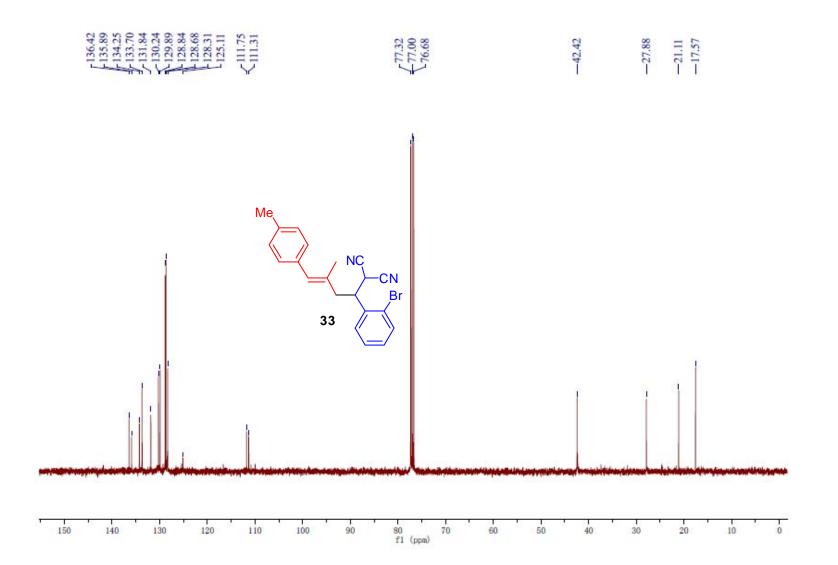


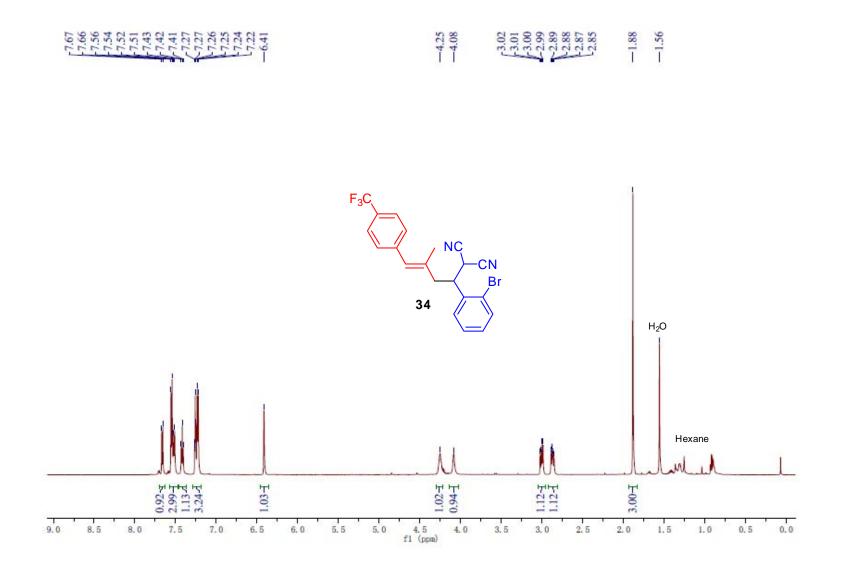


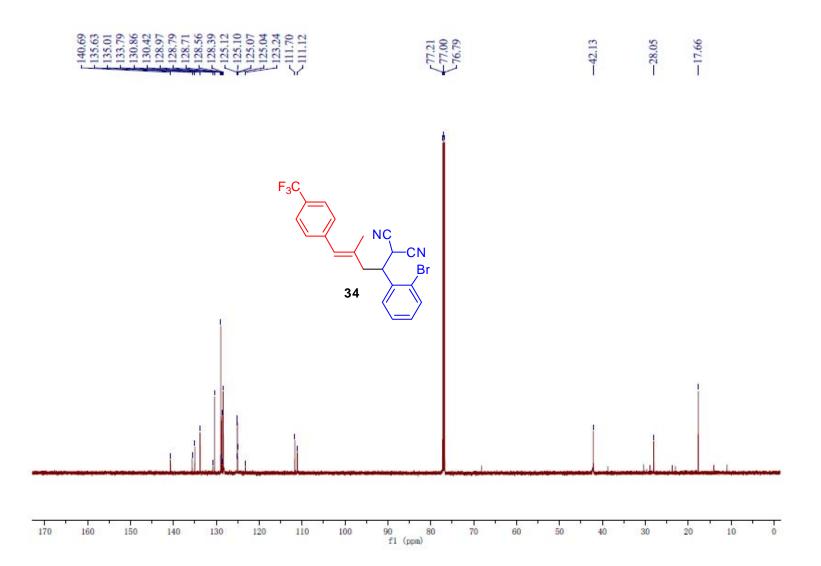


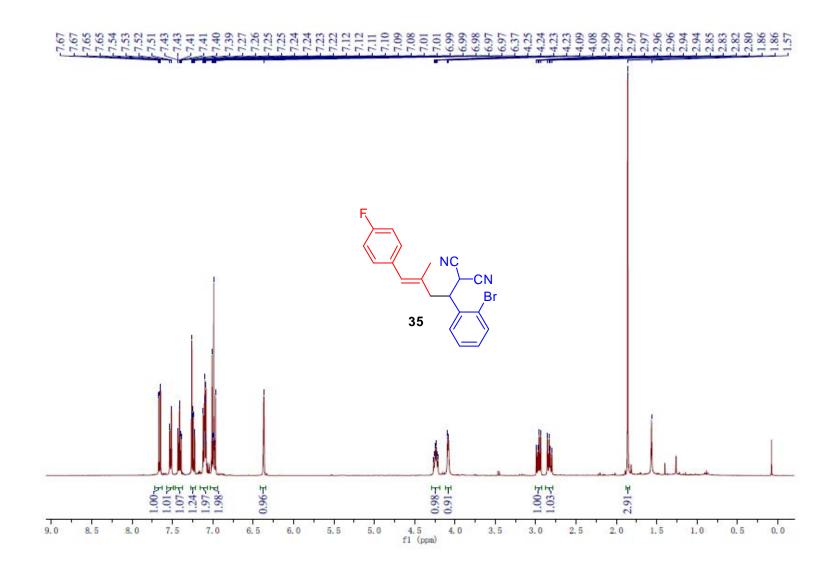


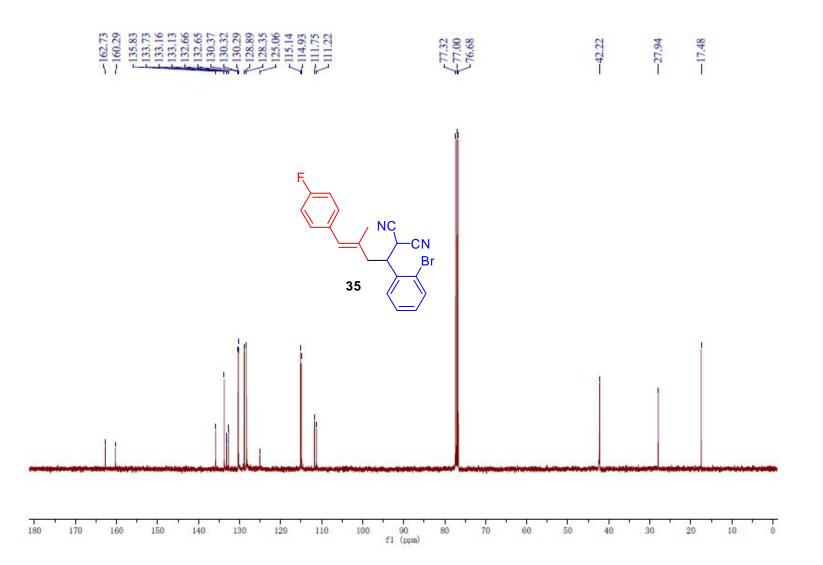


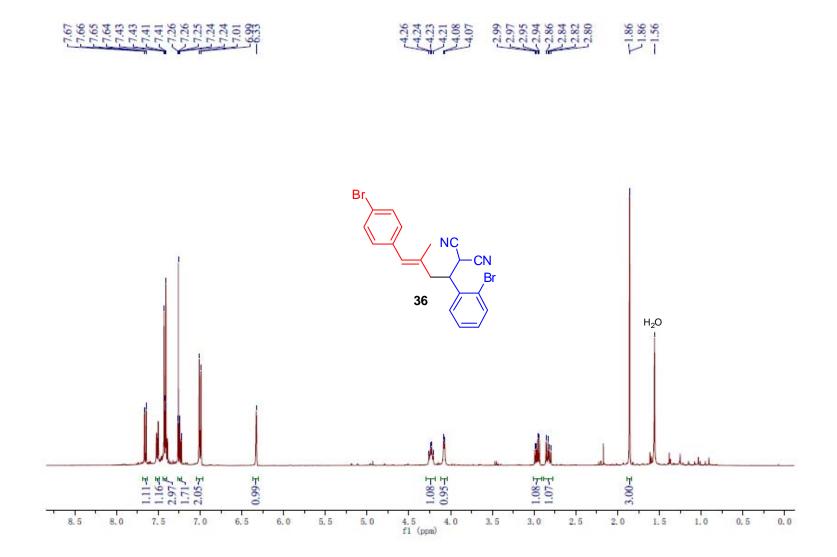


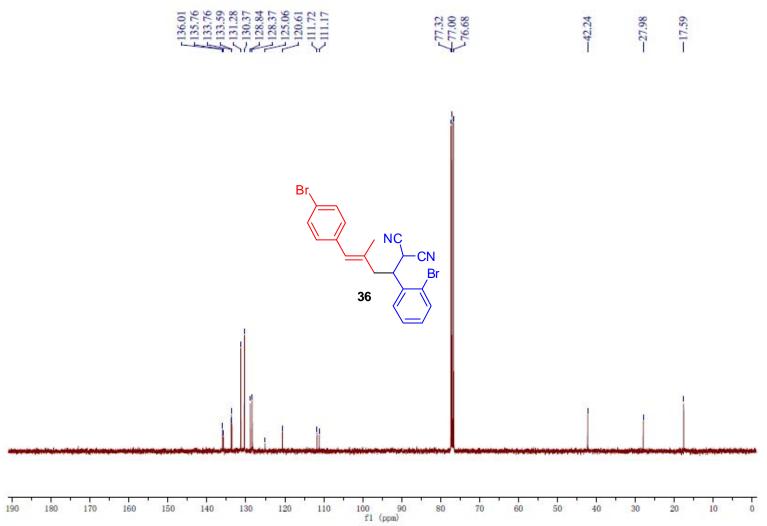


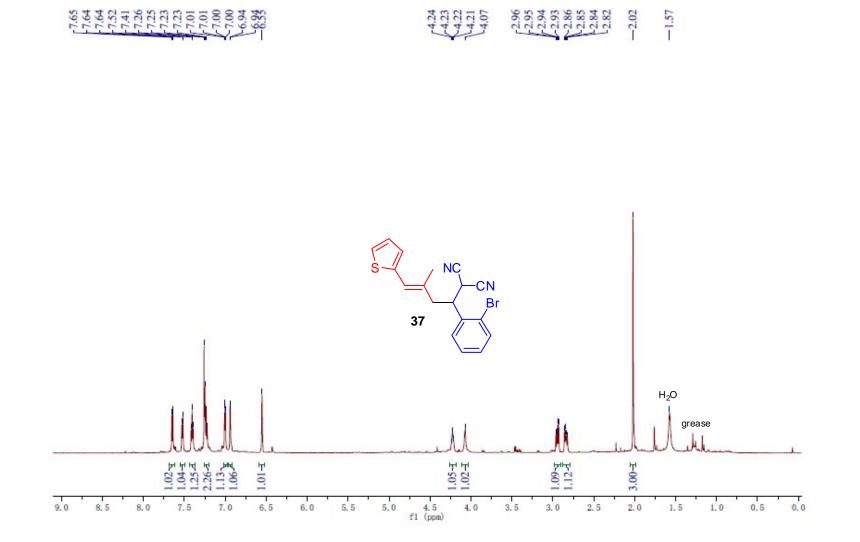


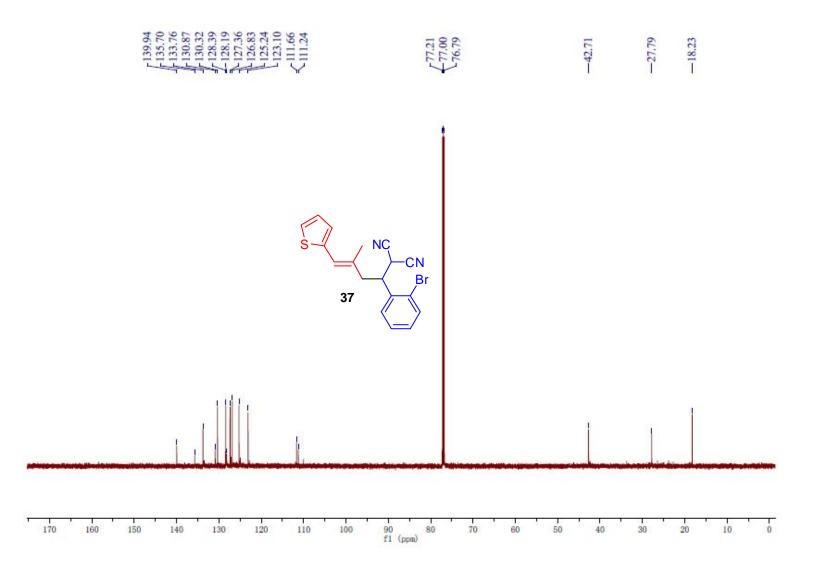


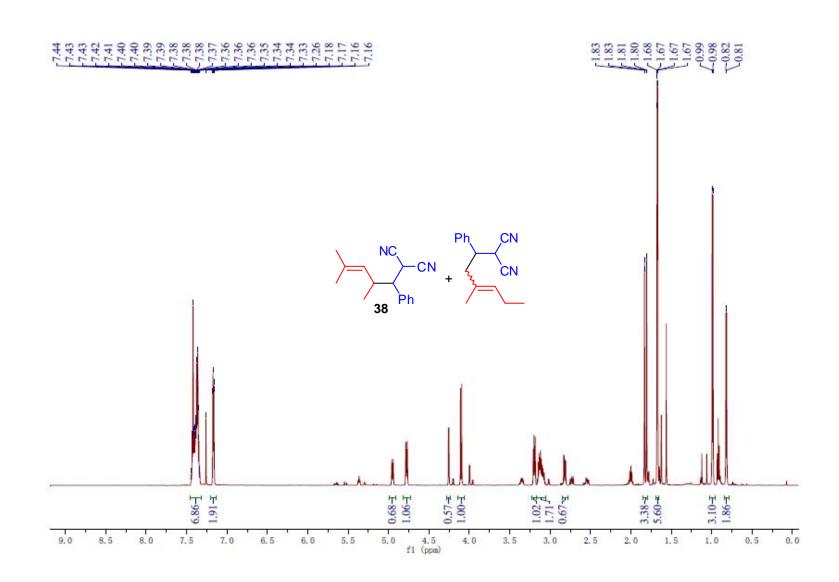


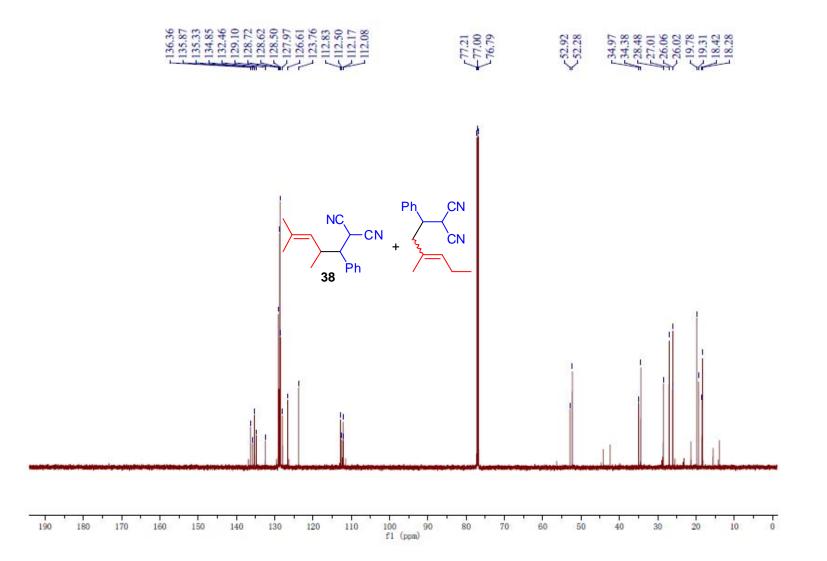


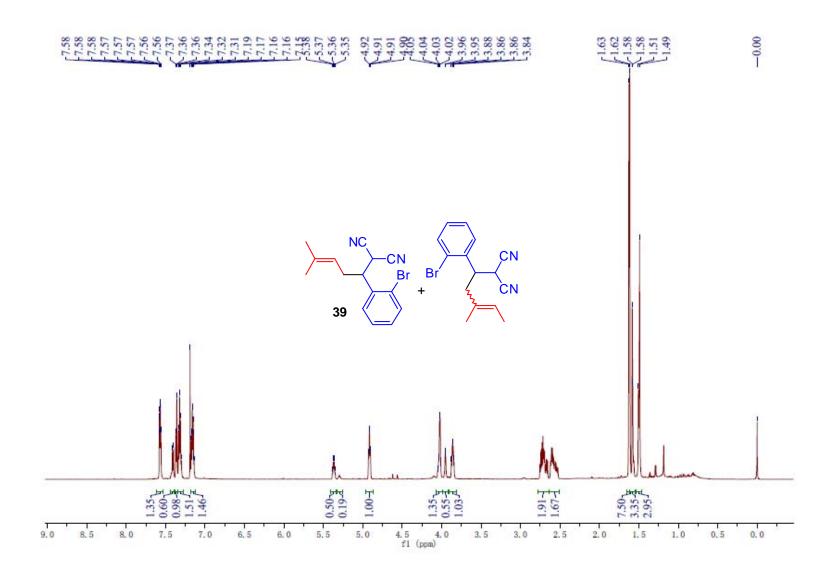


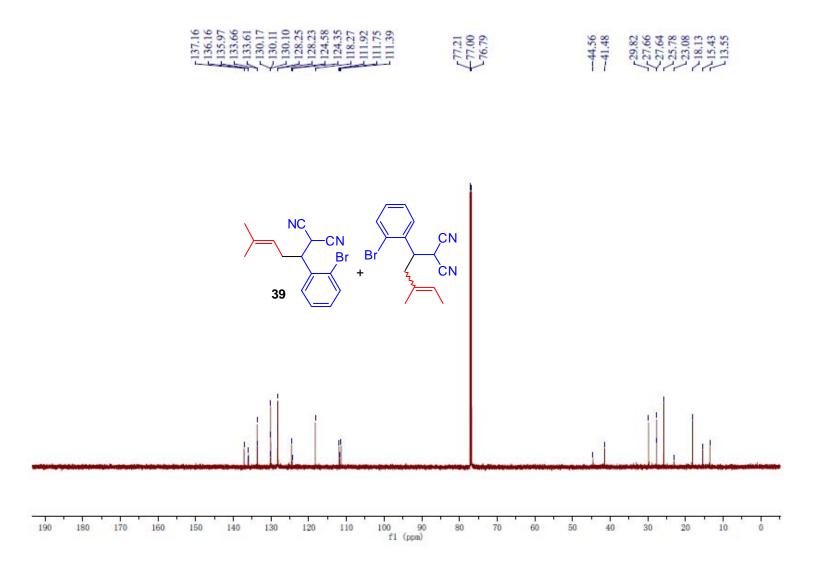


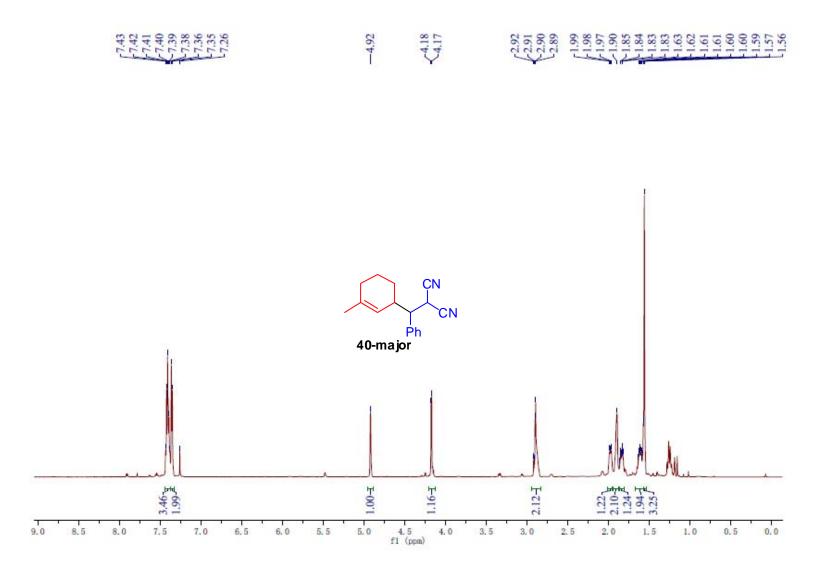


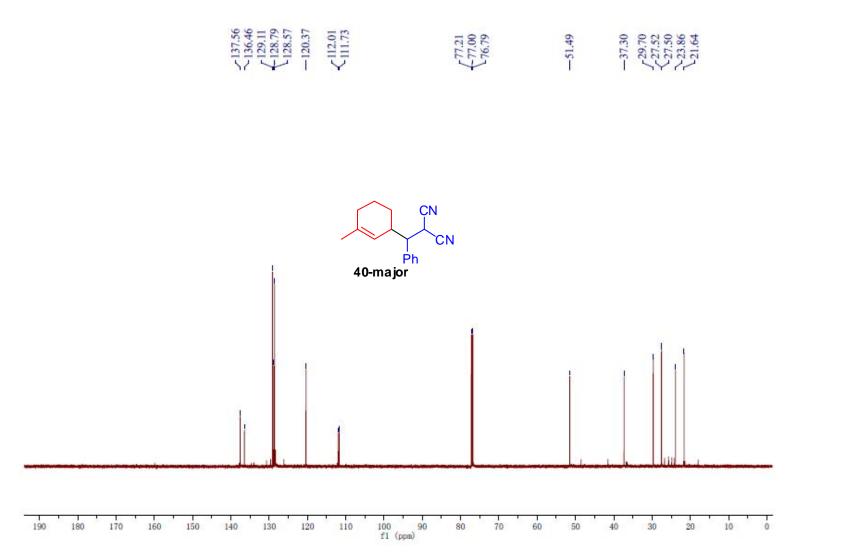


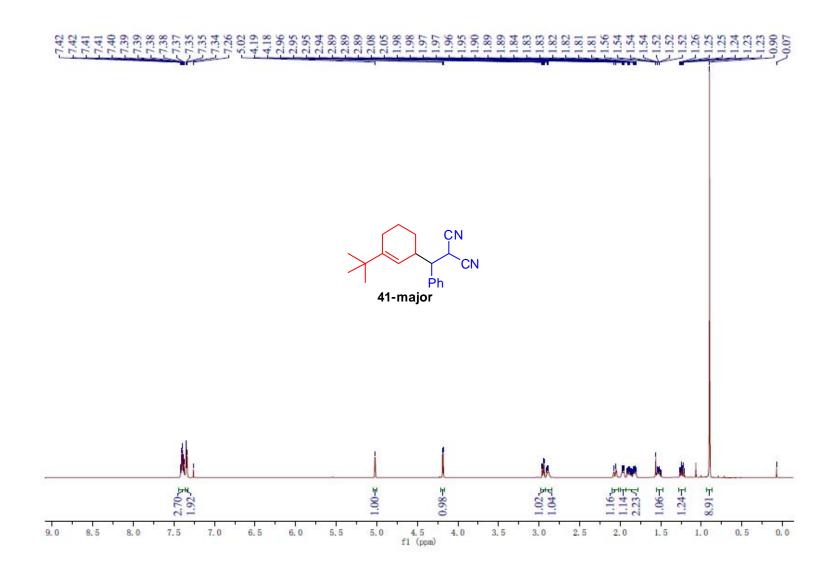


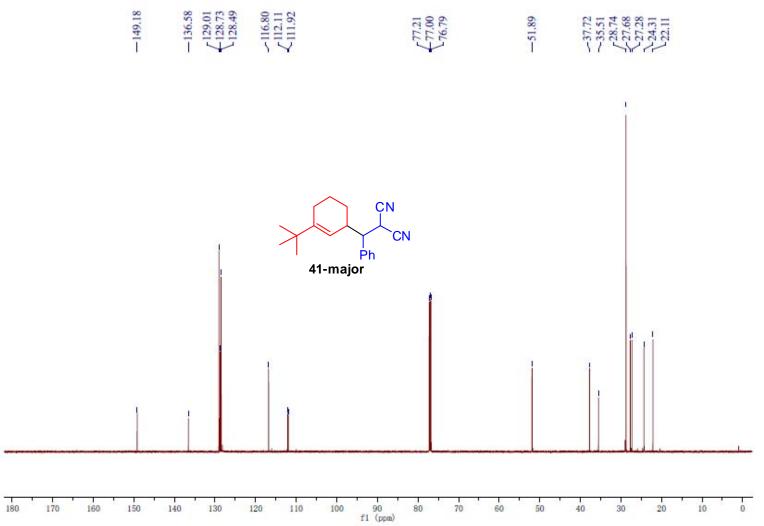


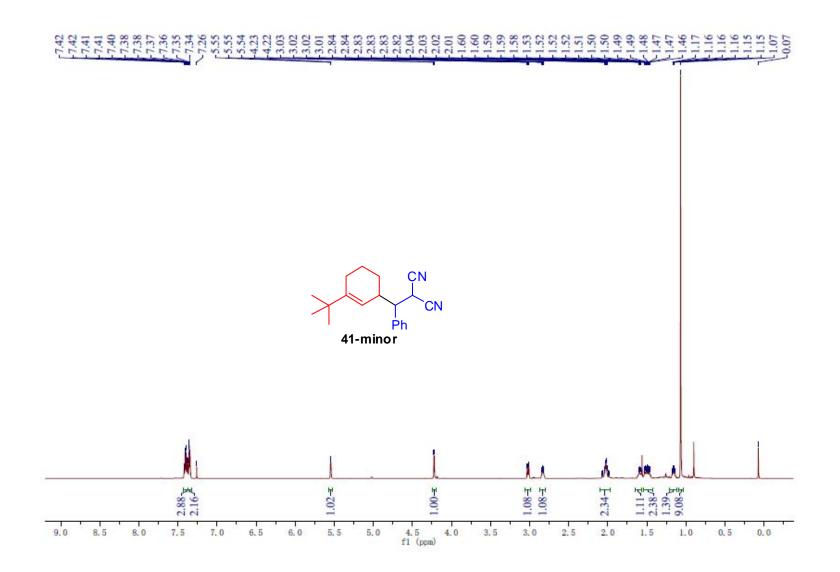

S112

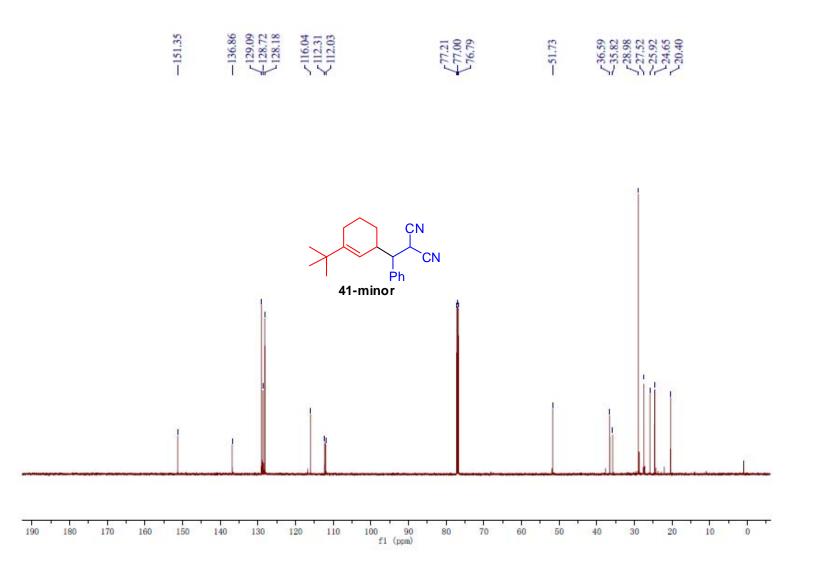


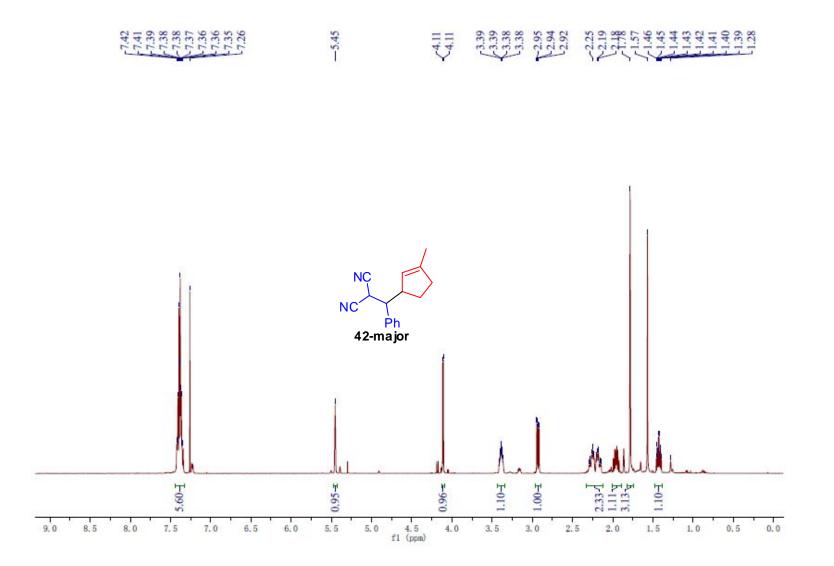


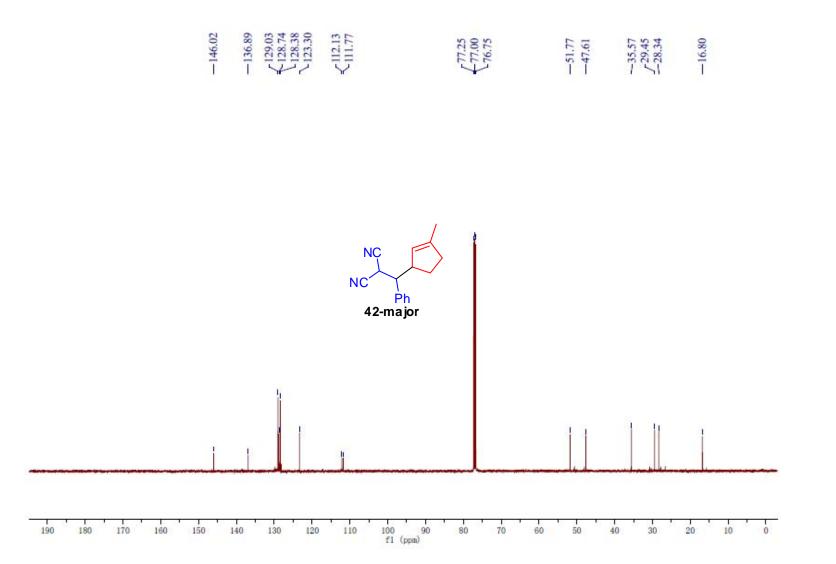


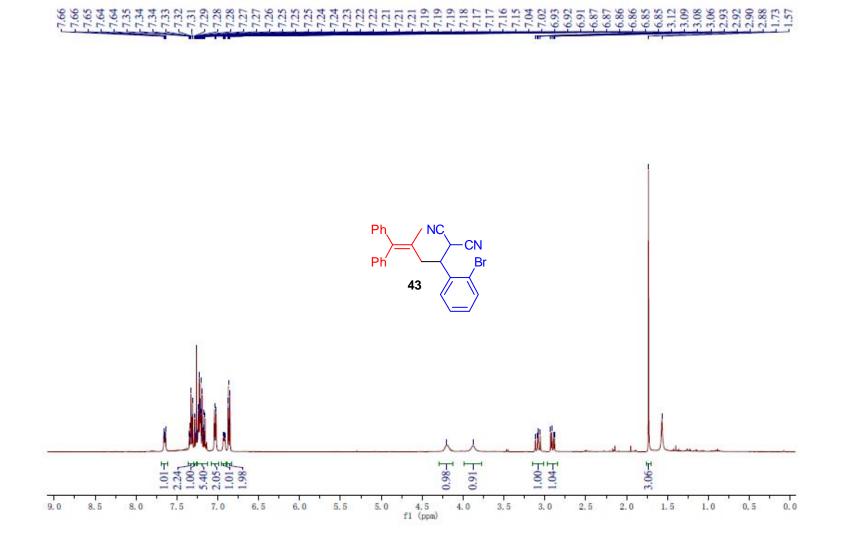


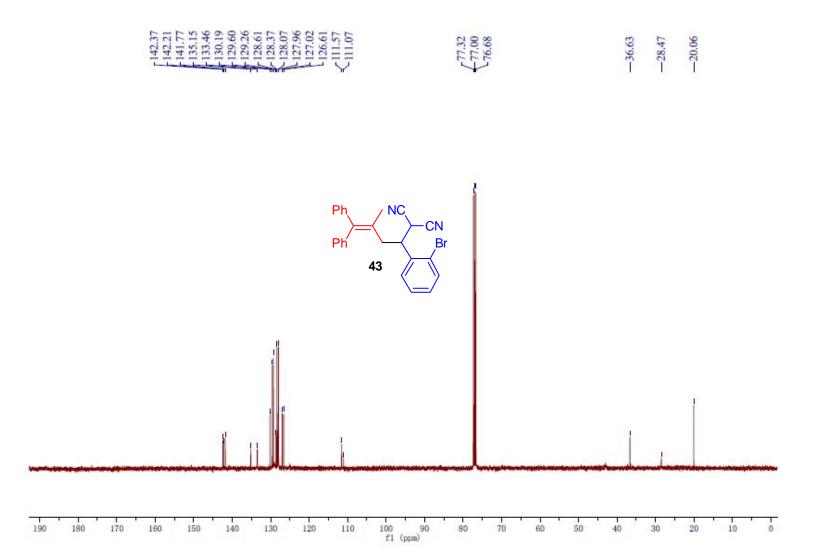


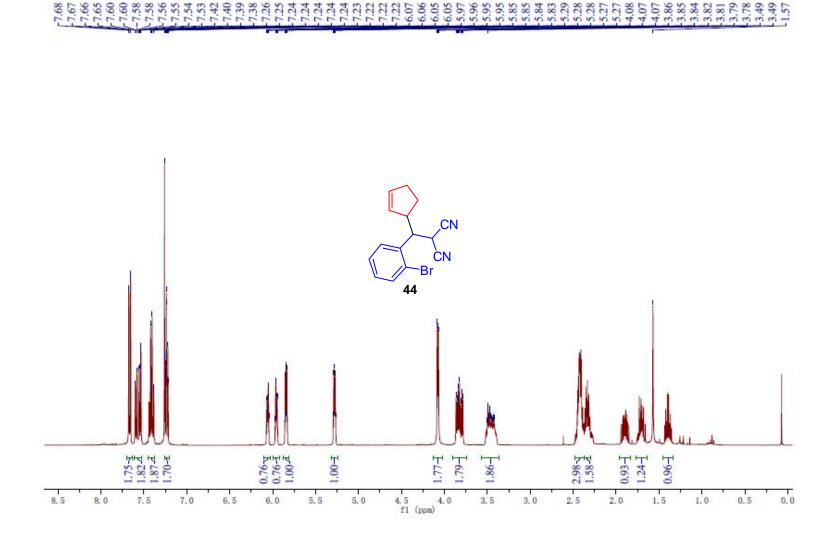


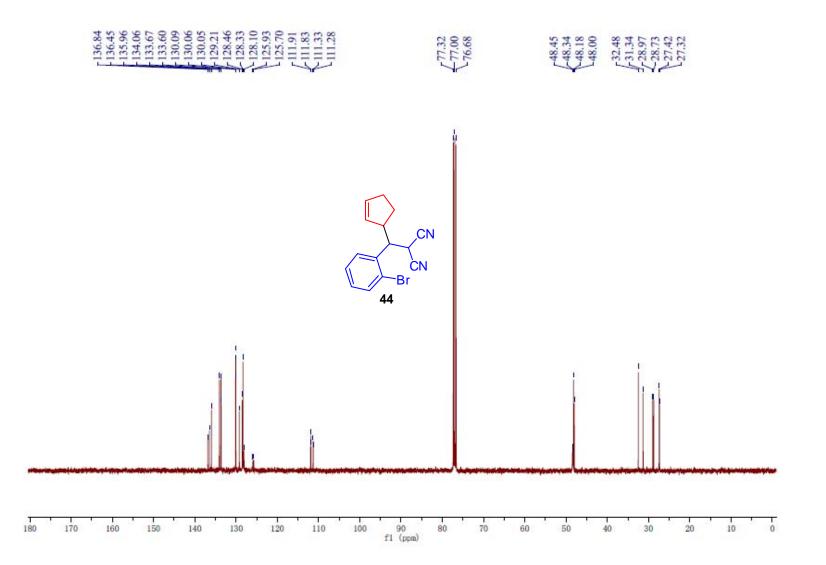


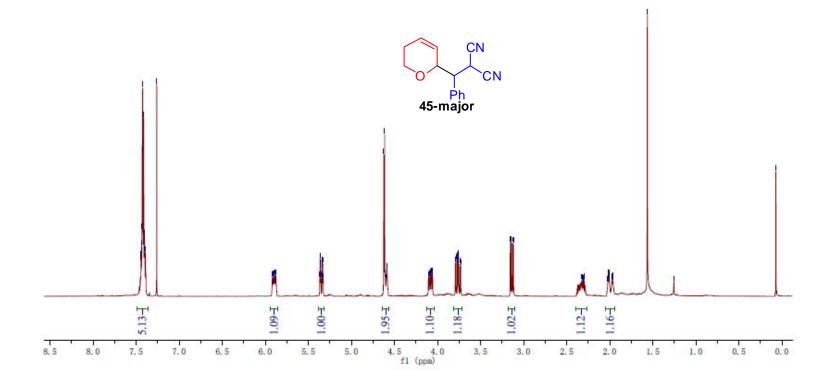


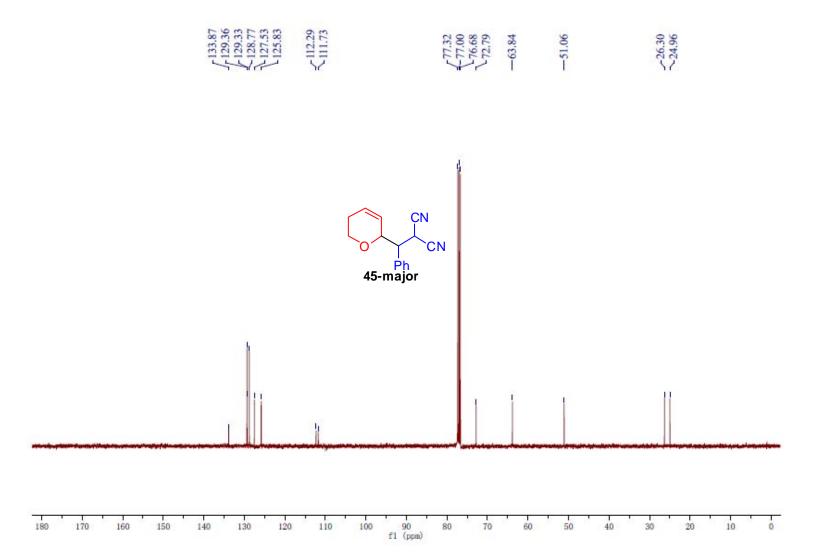


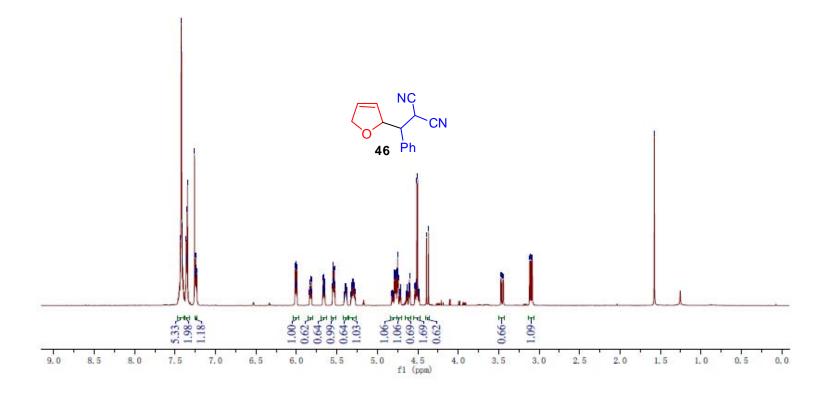


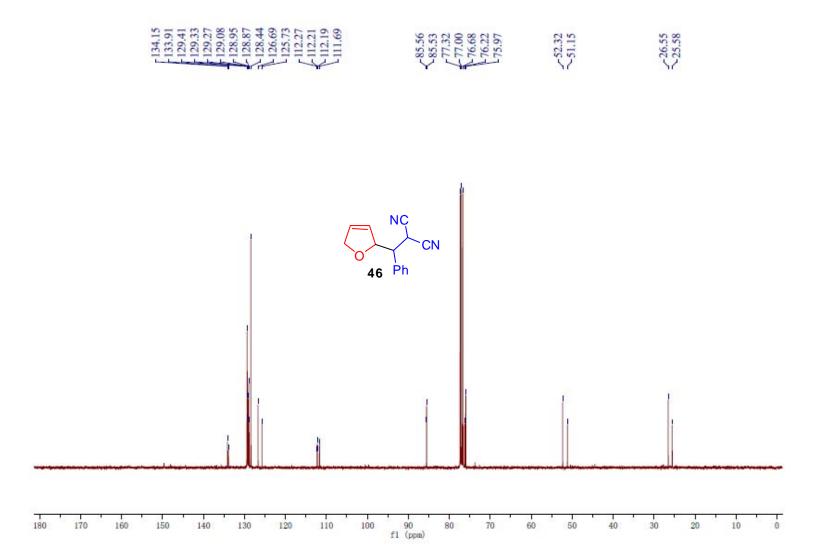


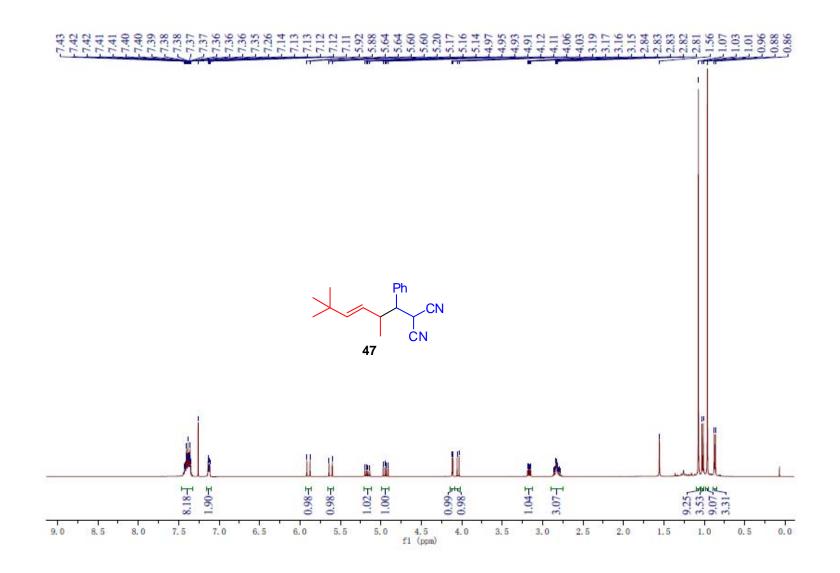


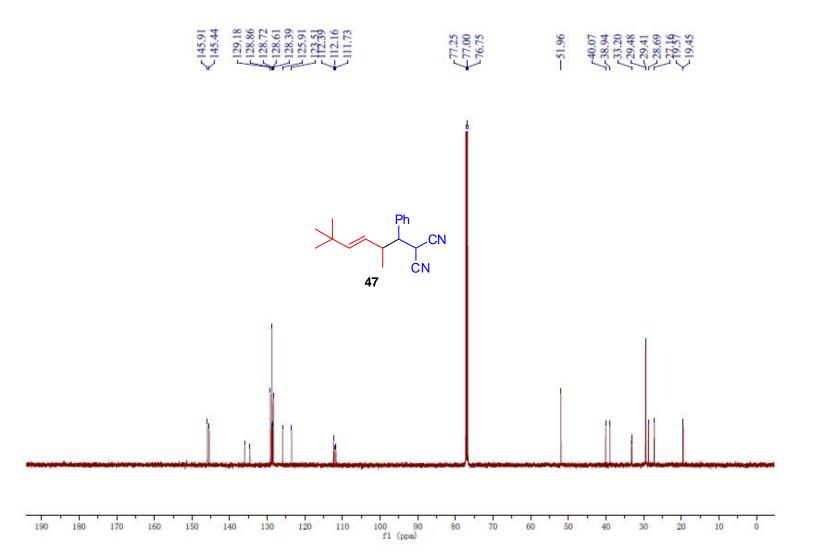


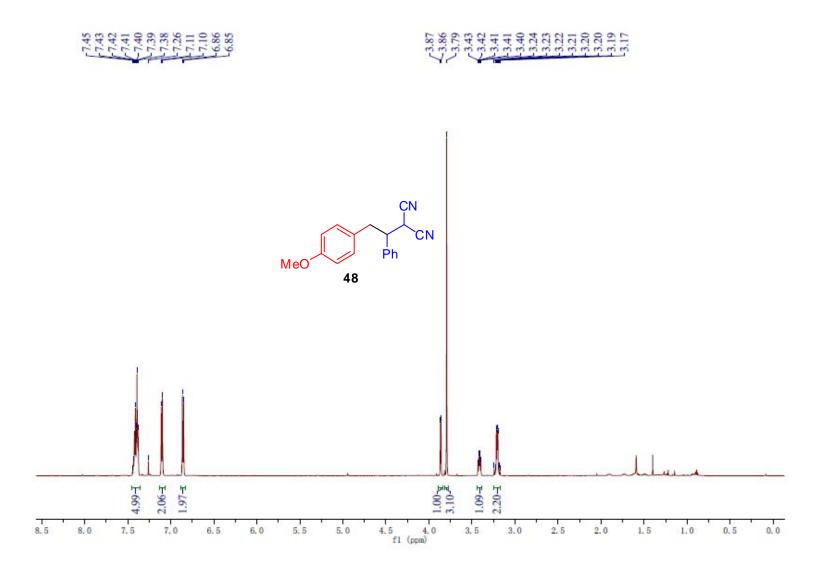


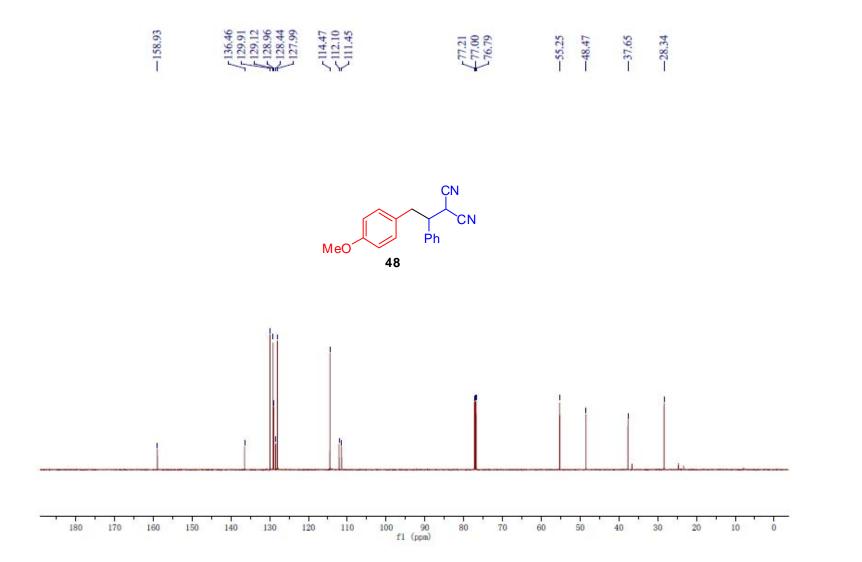


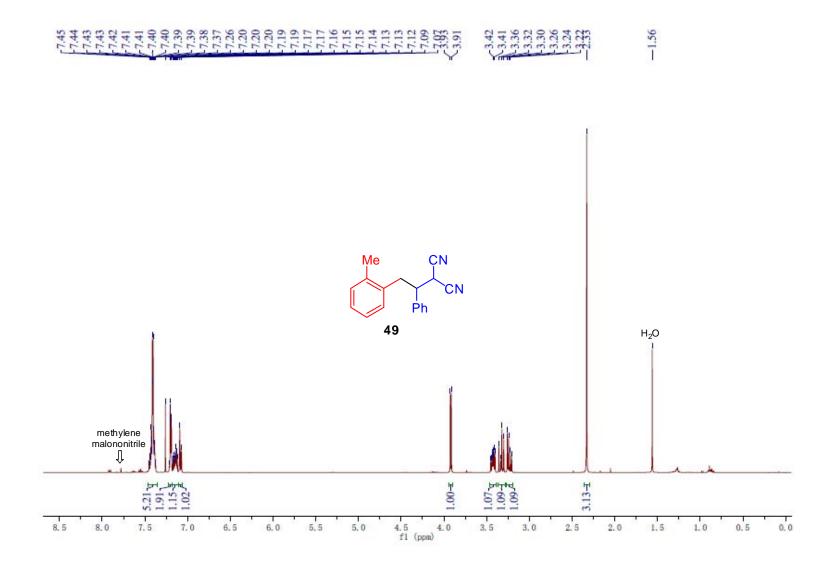


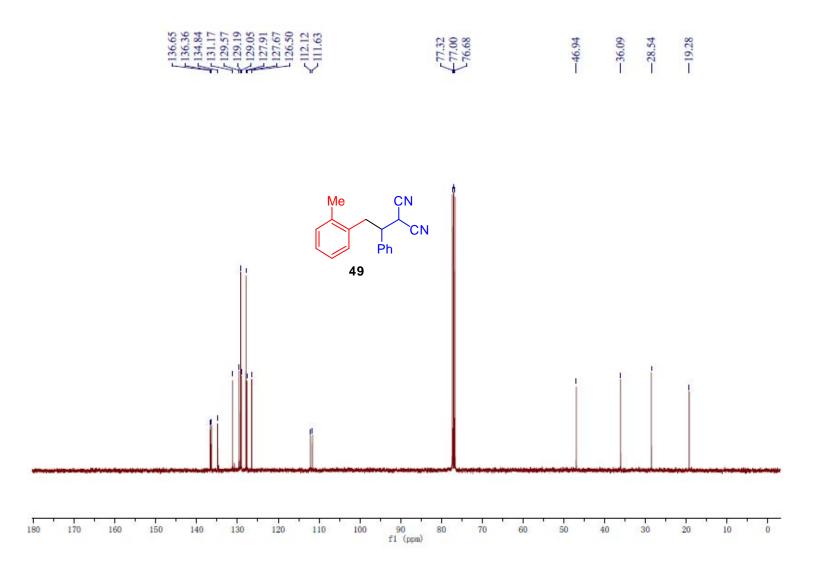


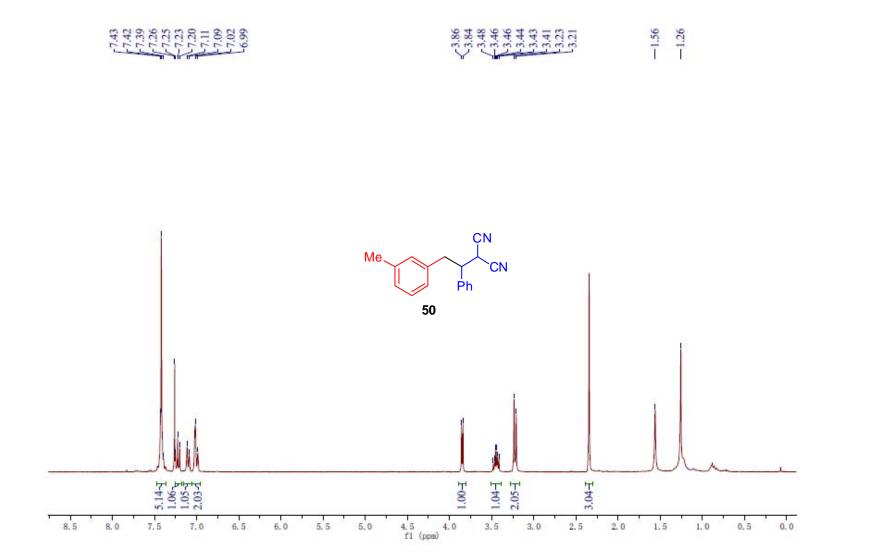


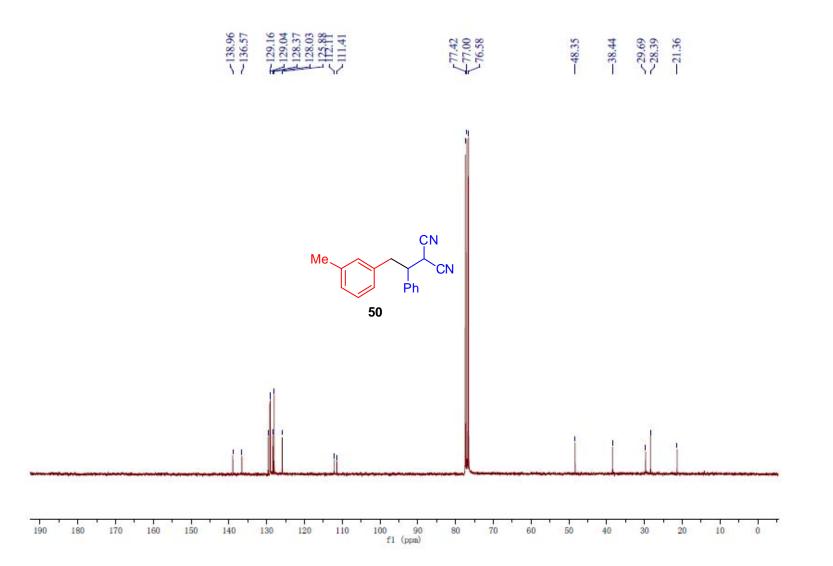


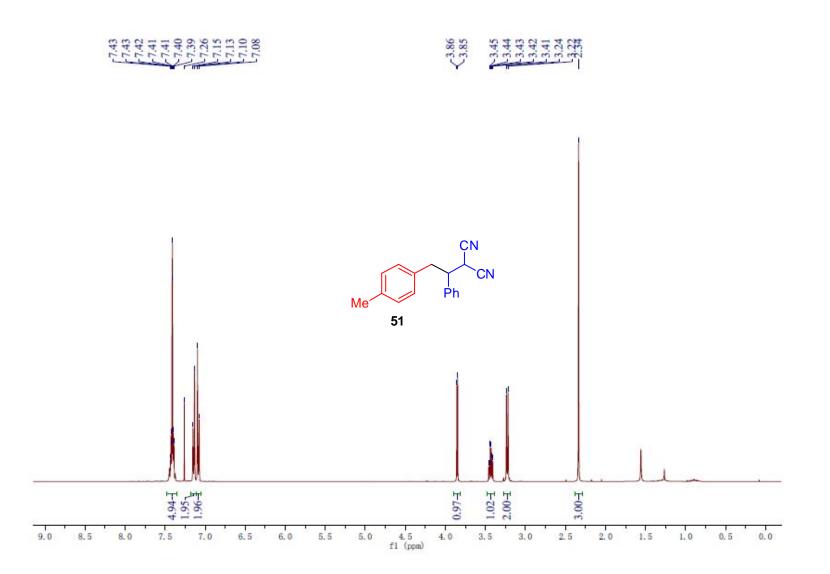


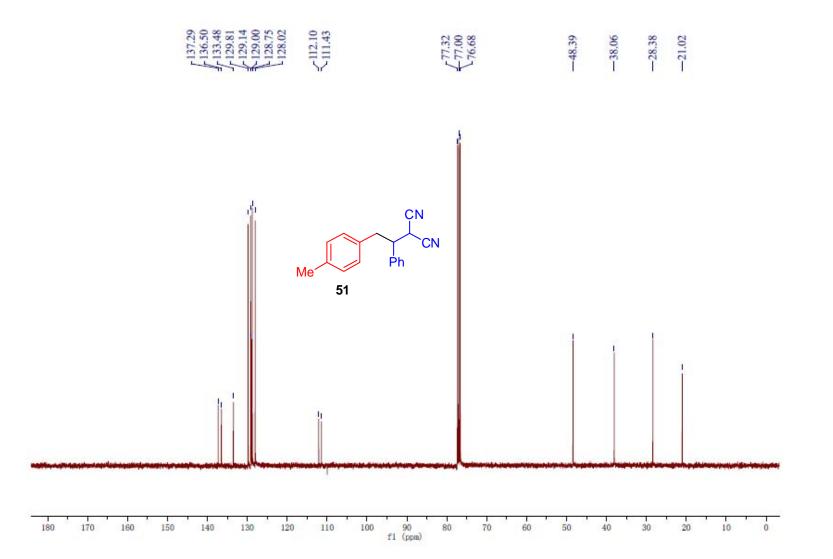


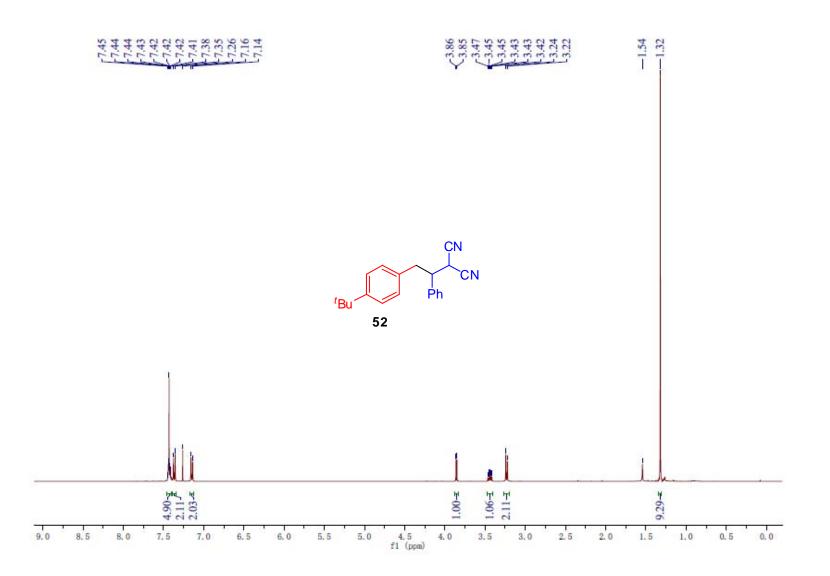


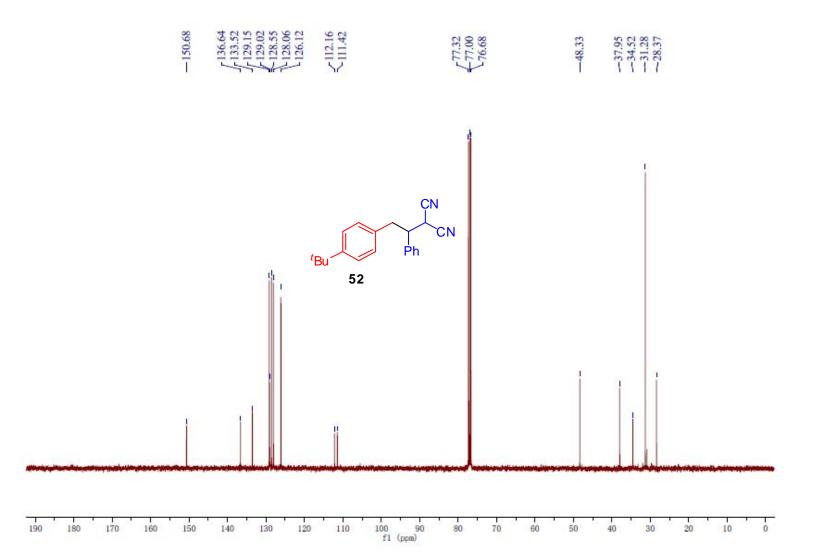

S135

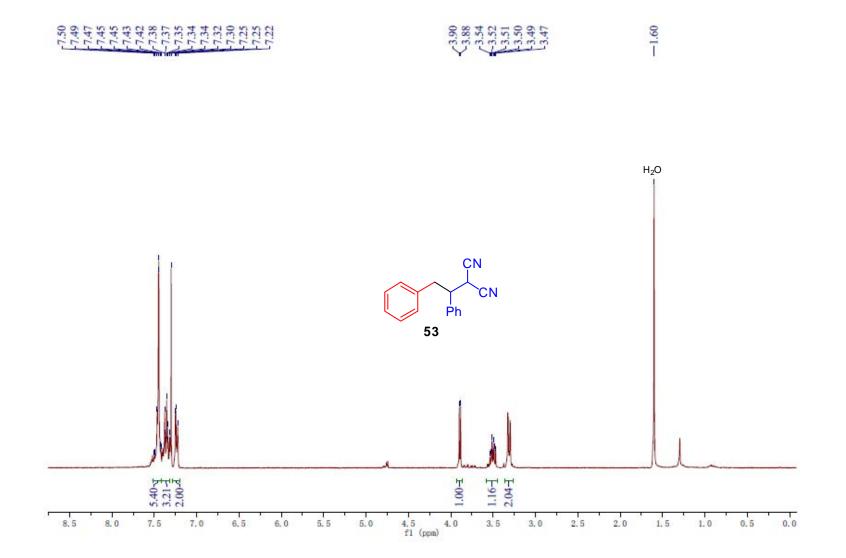


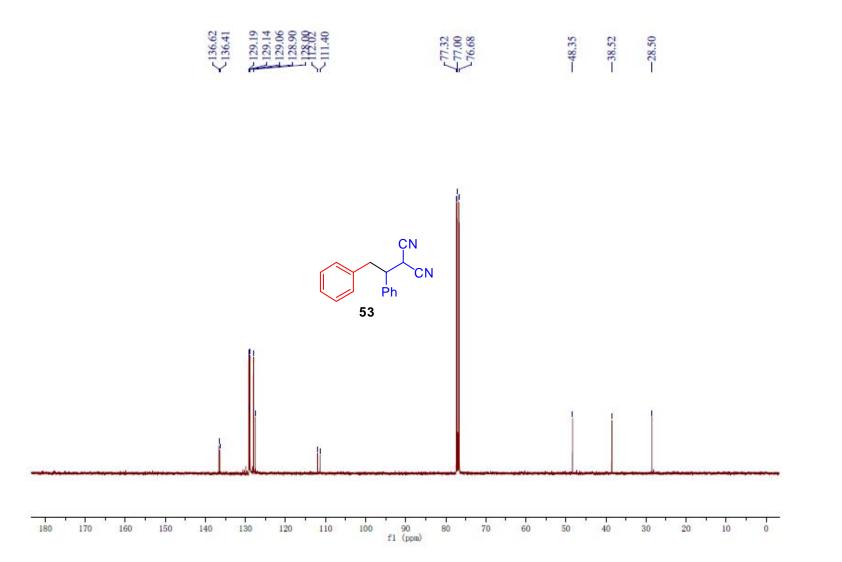


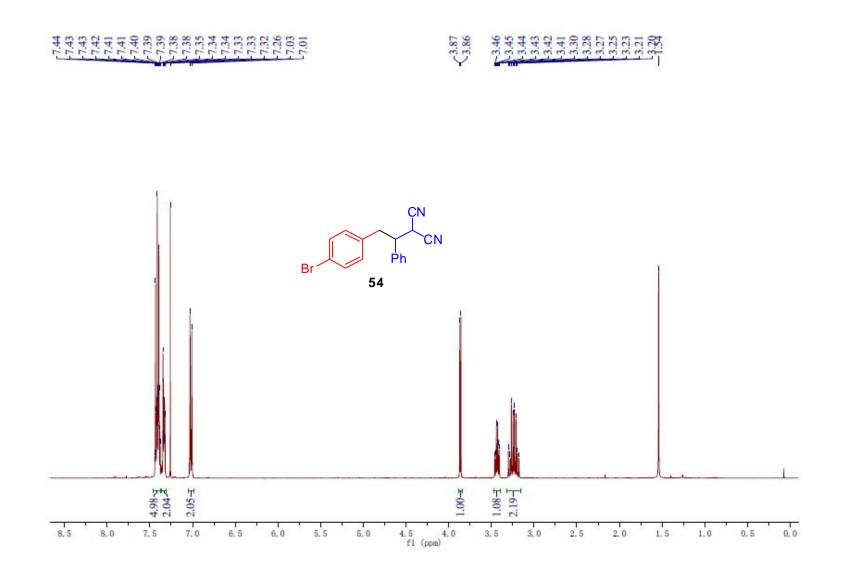


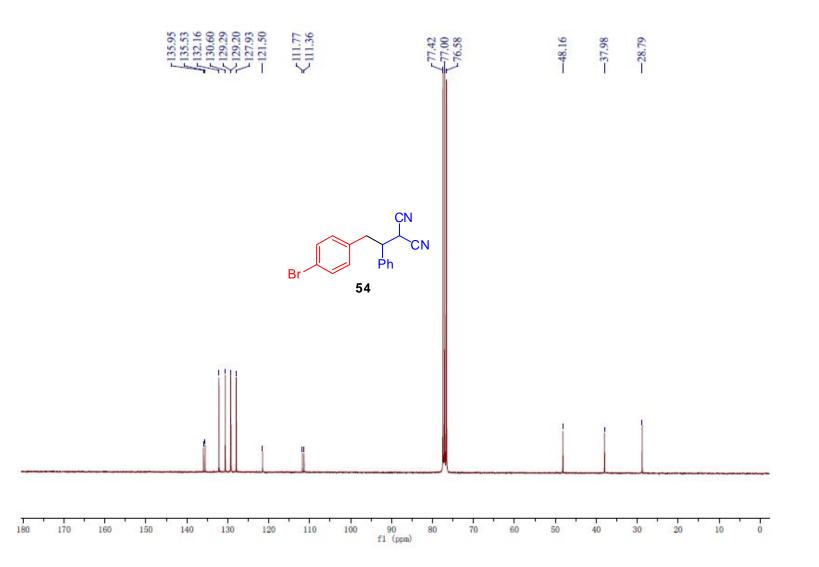


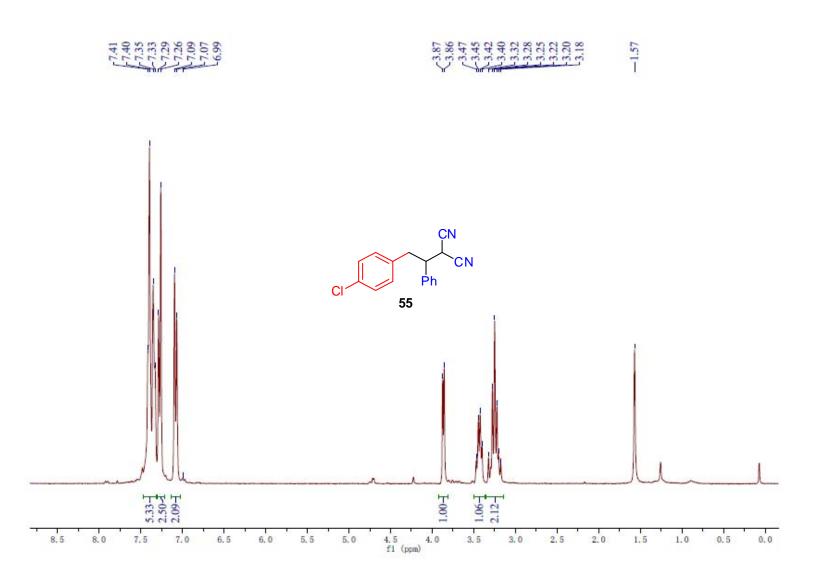


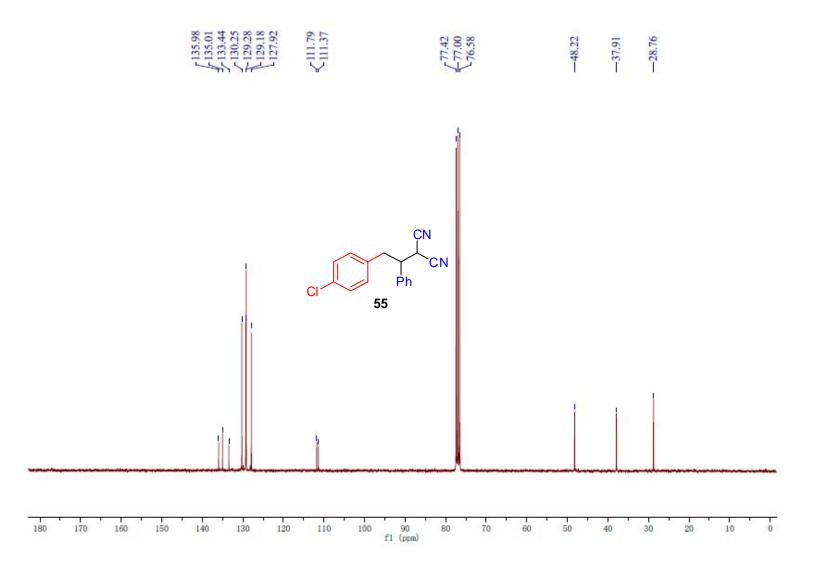


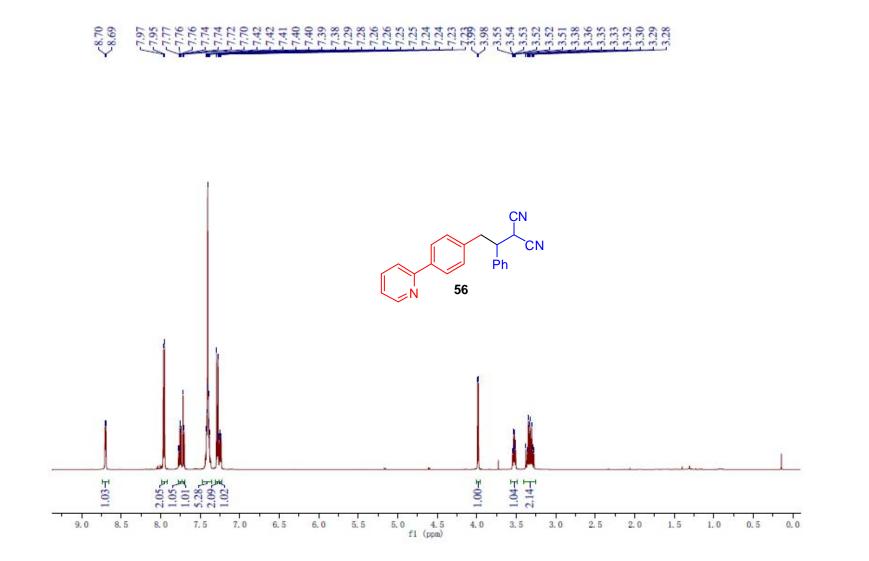


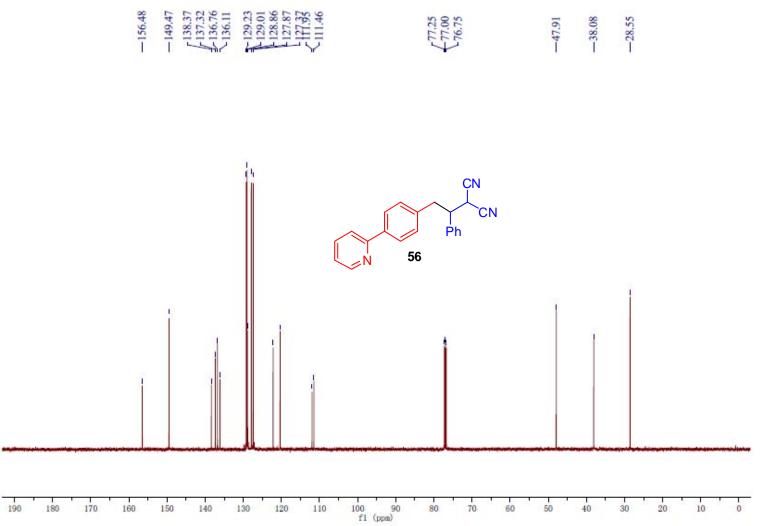


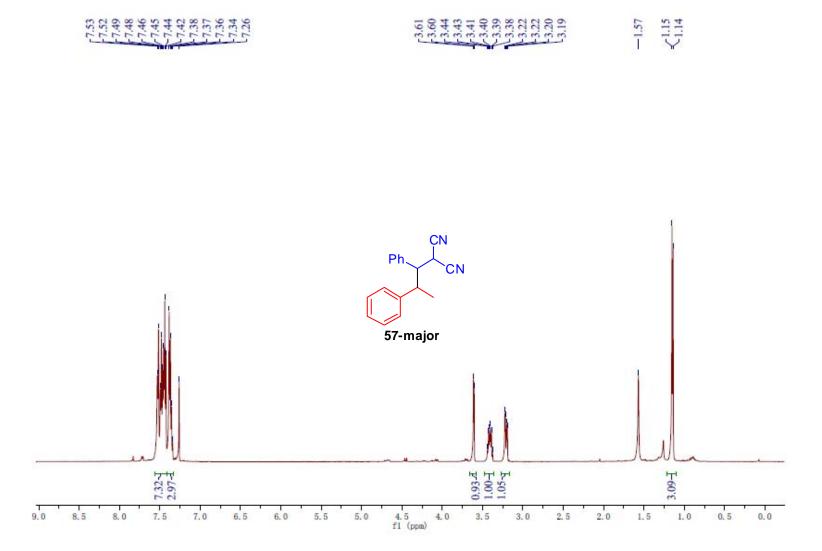


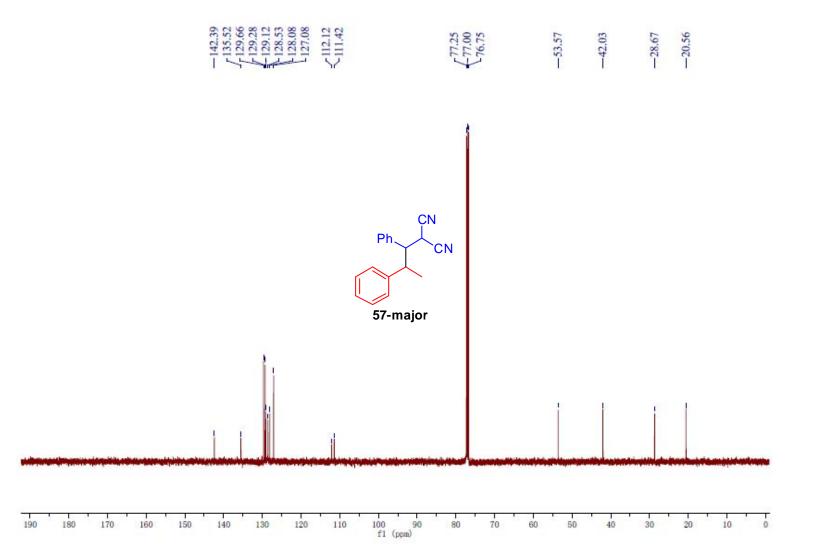


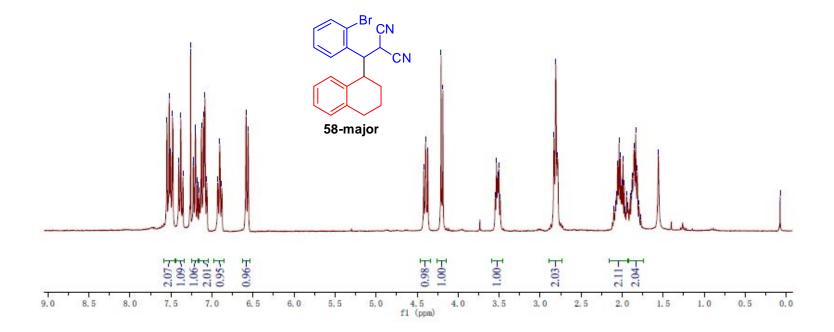


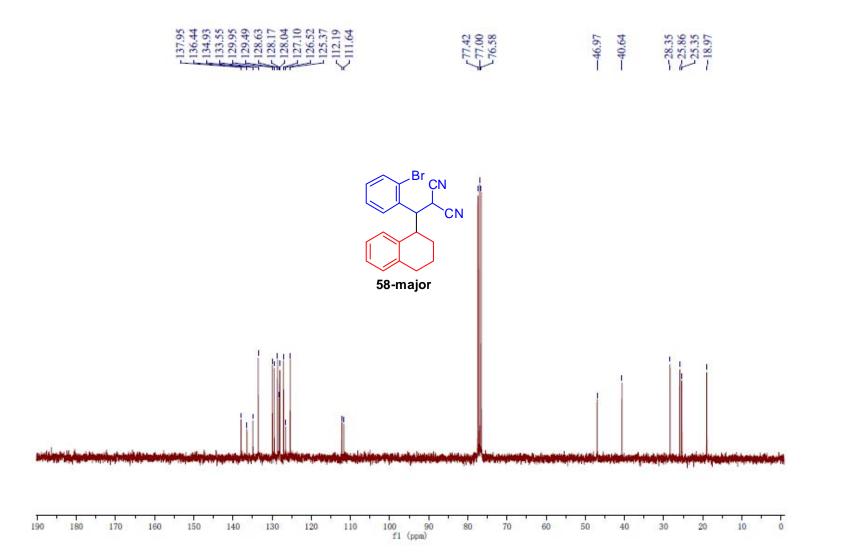


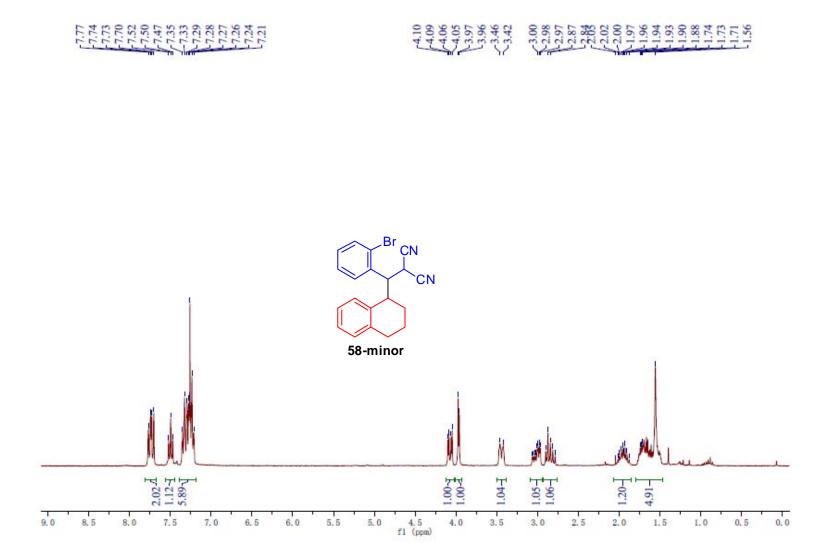


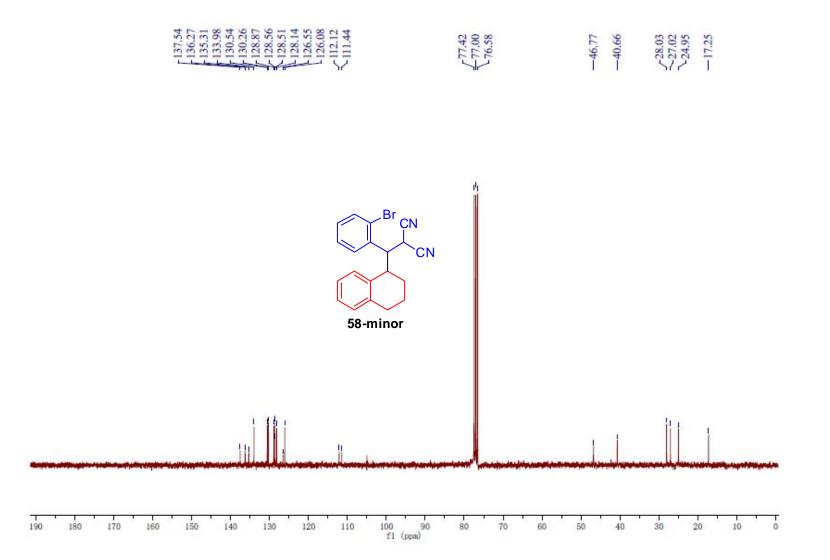


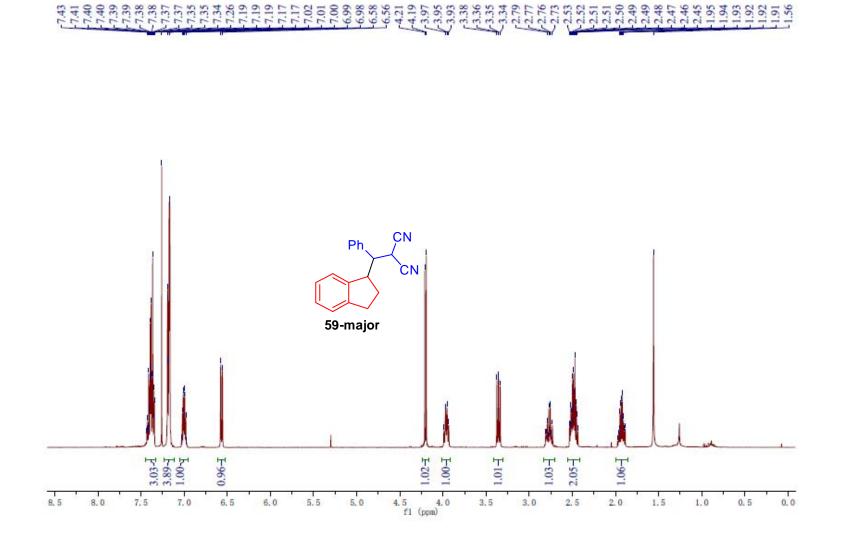


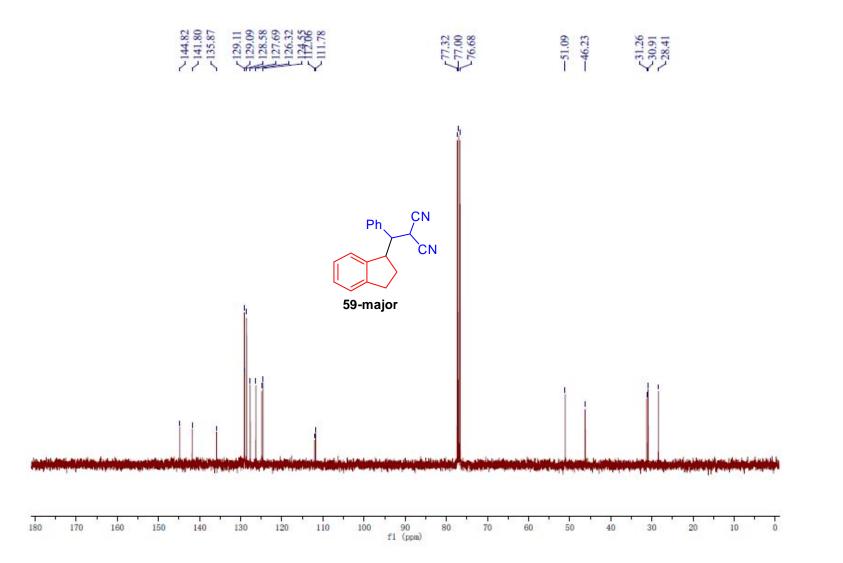


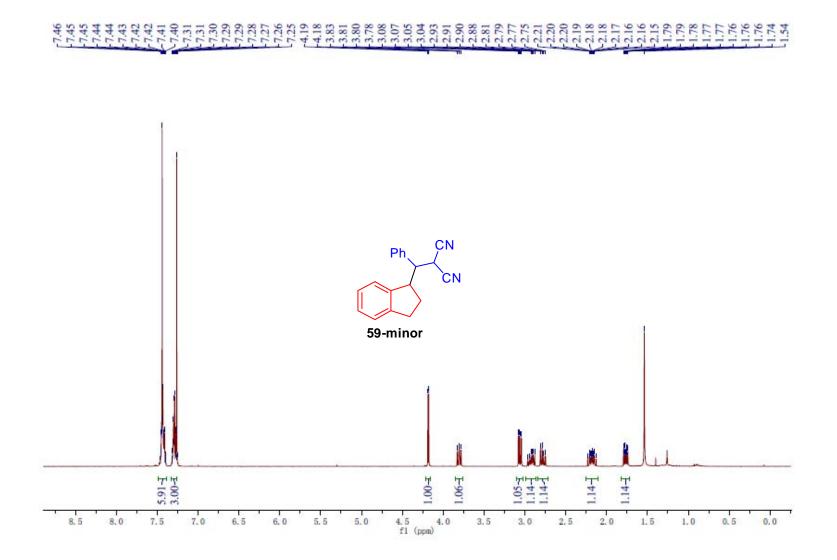


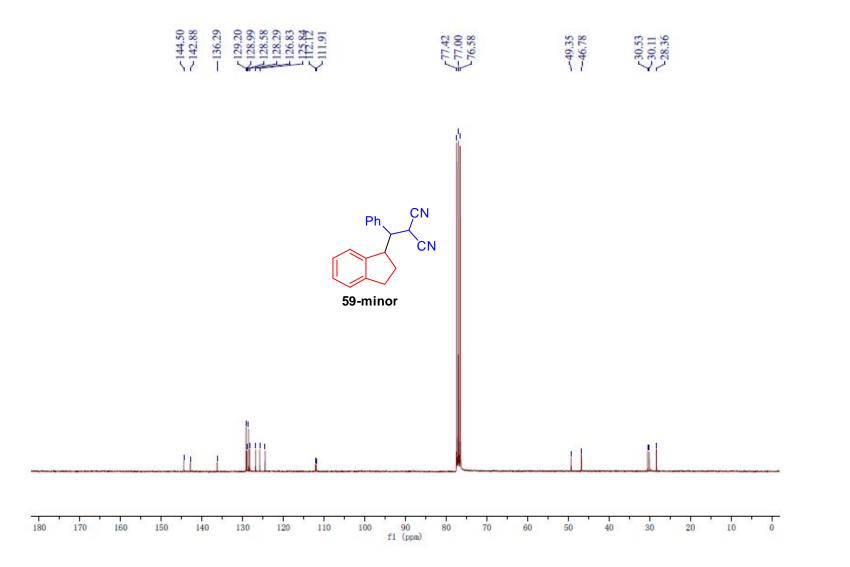

S154

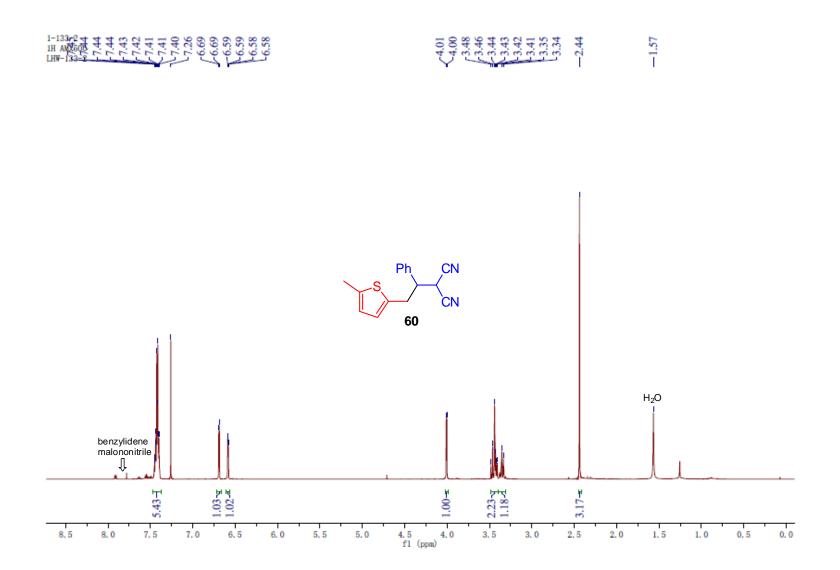


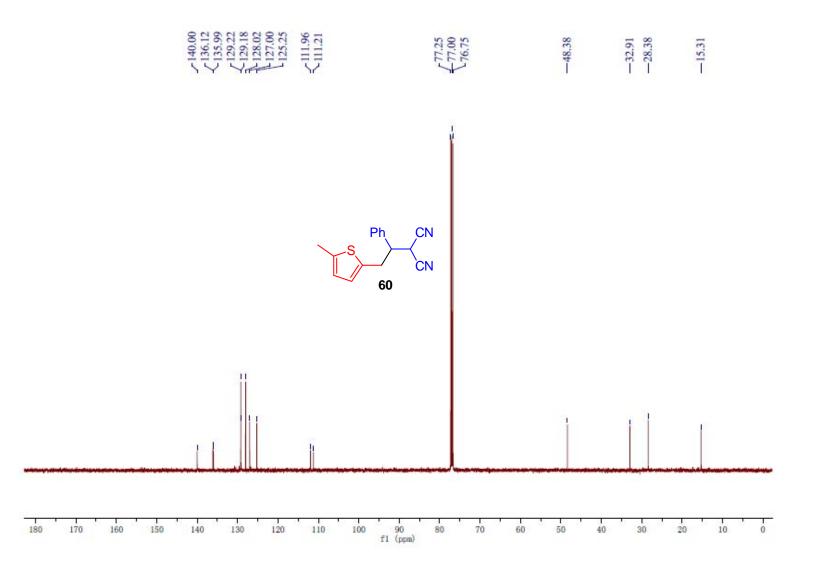


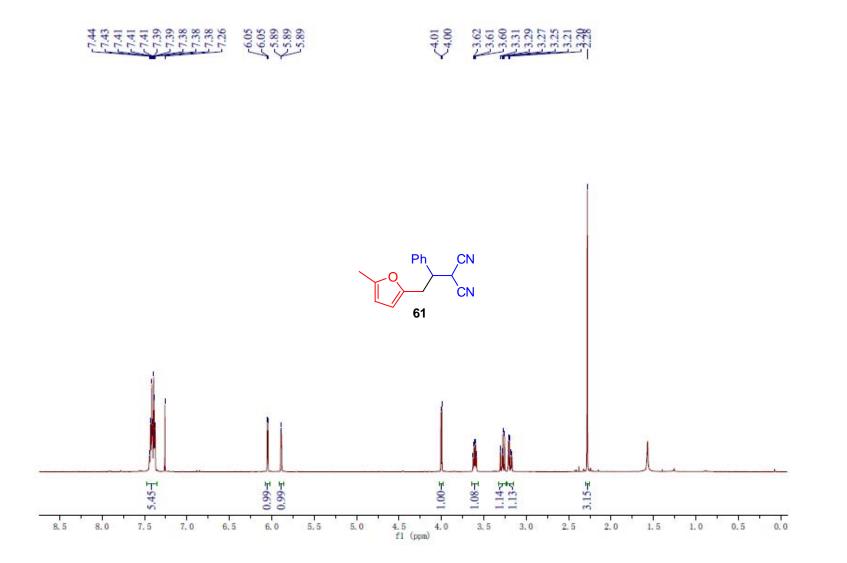


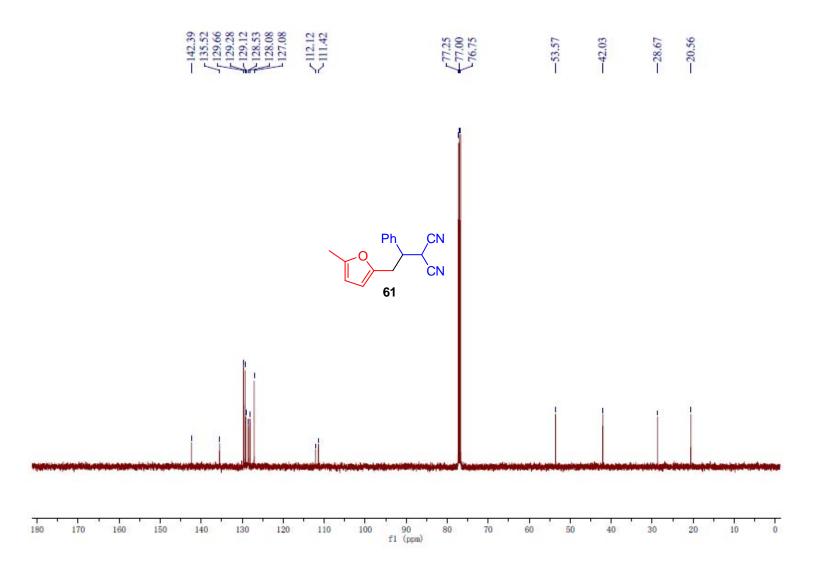


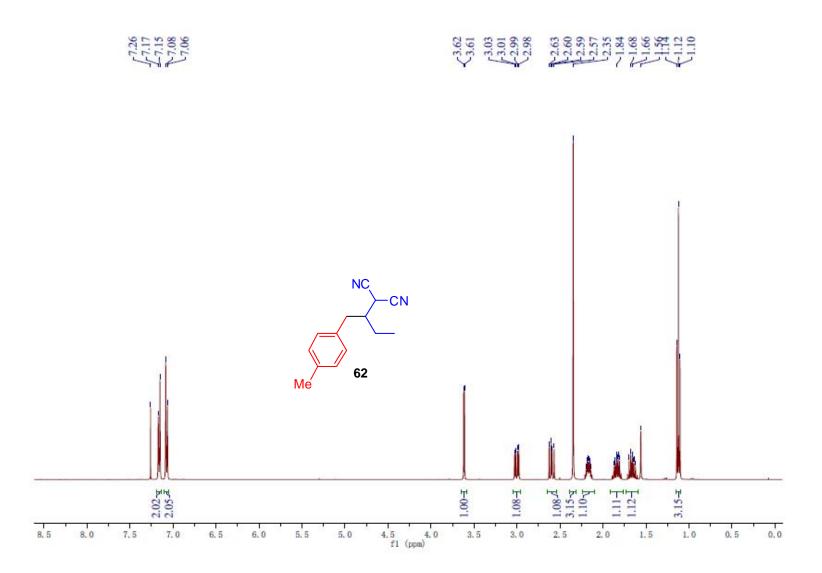


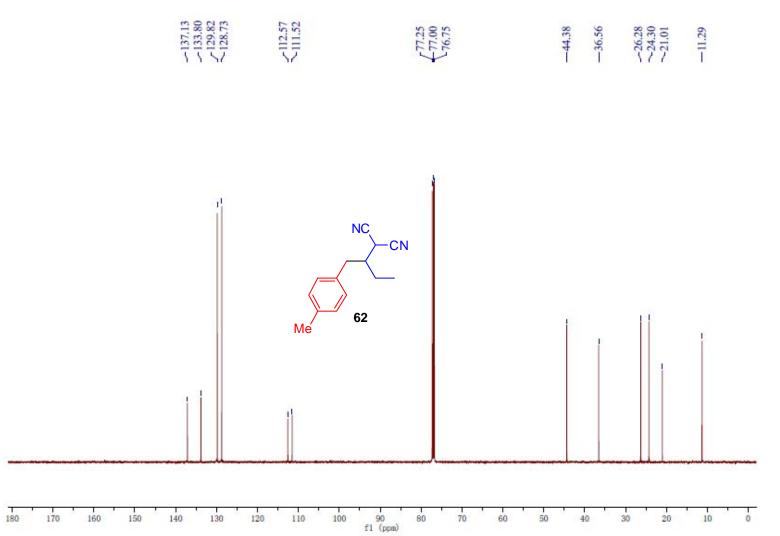


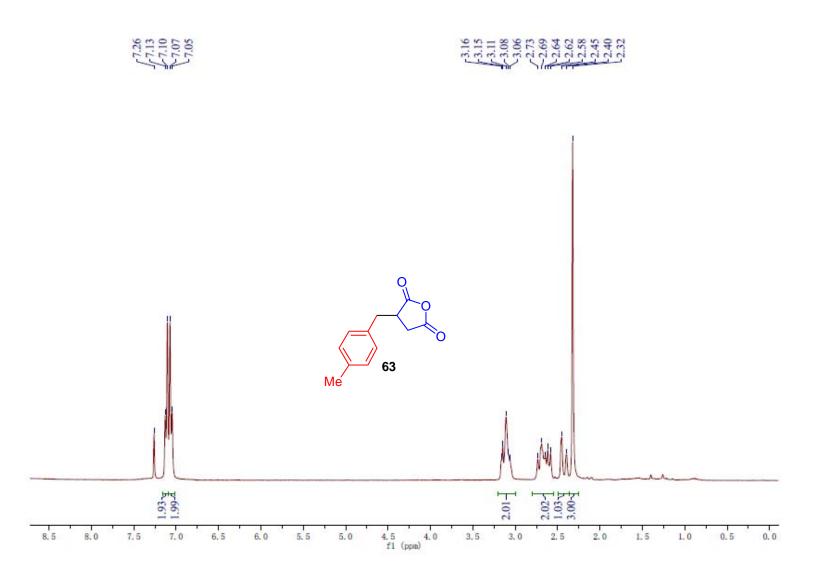

S160

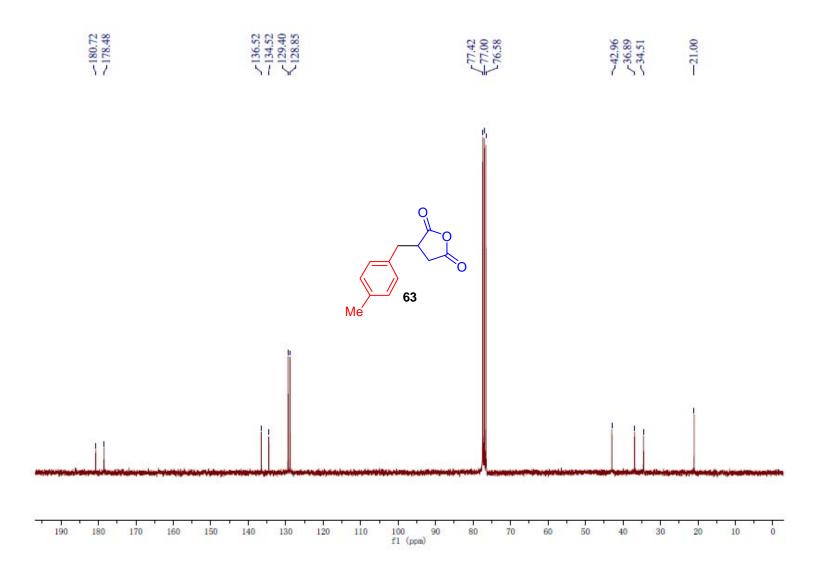


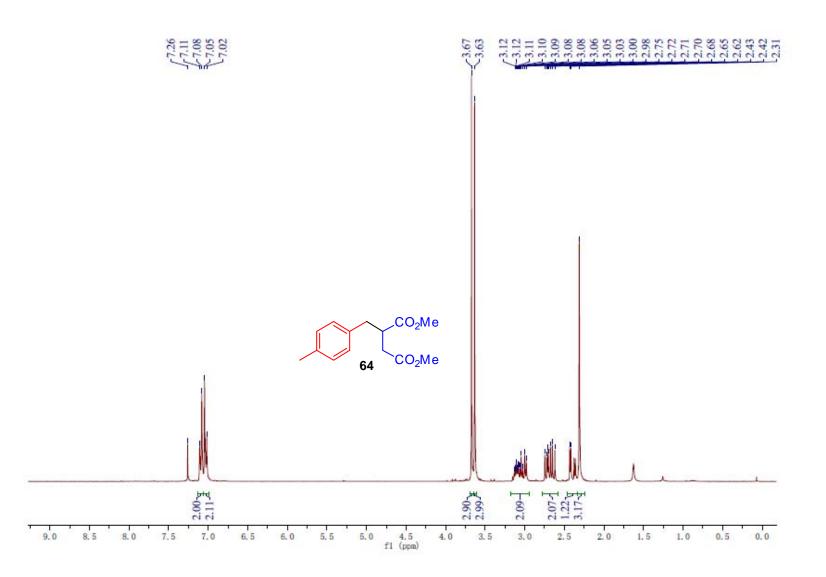


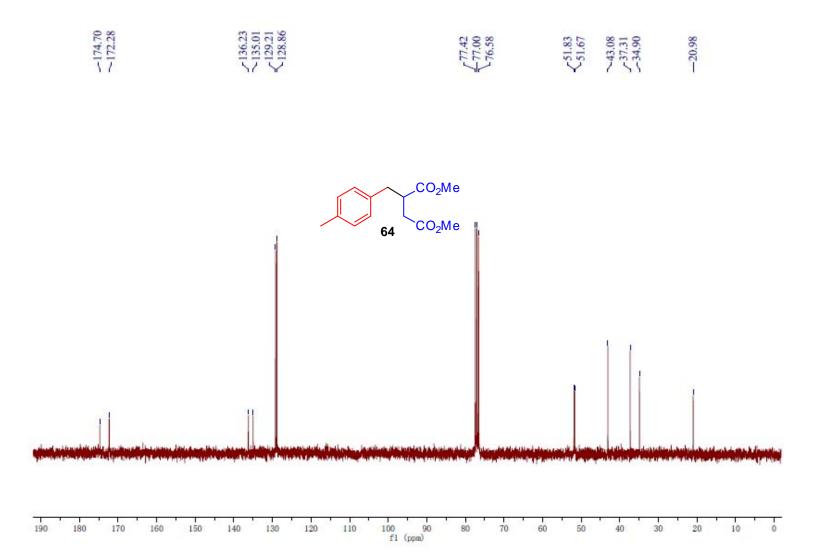


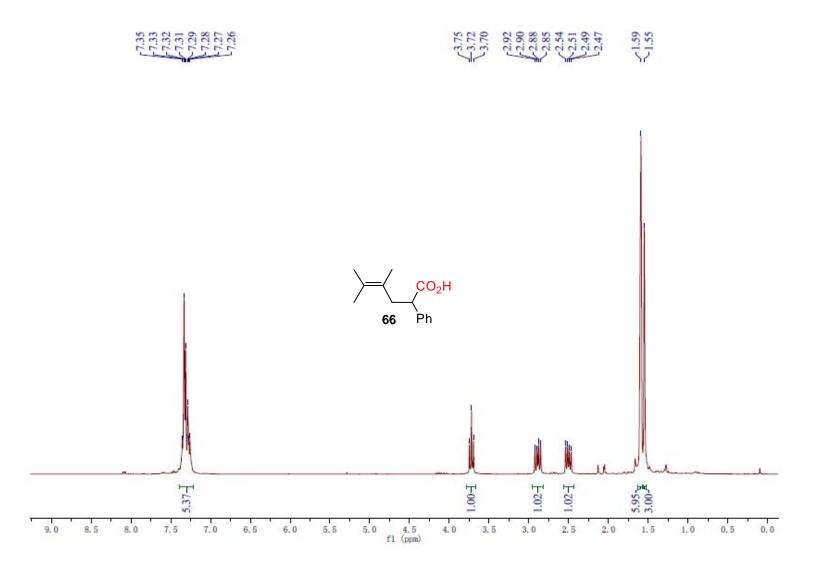


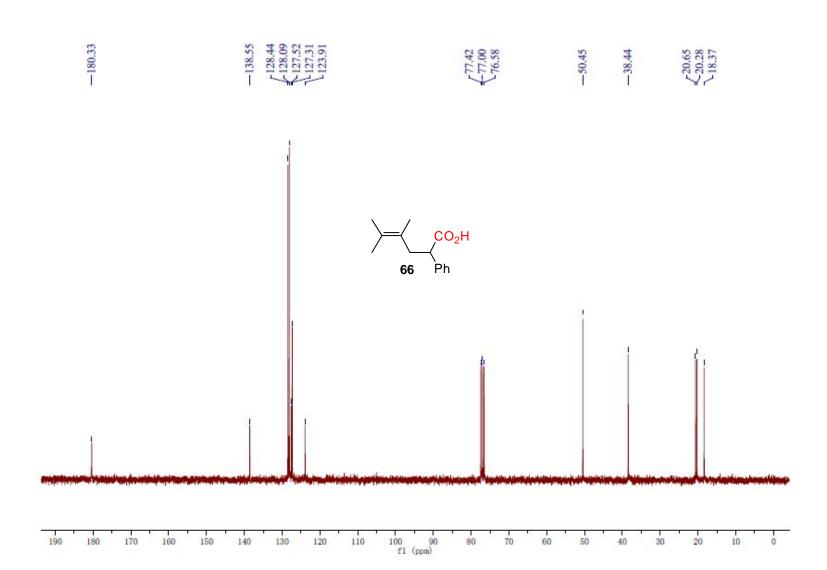


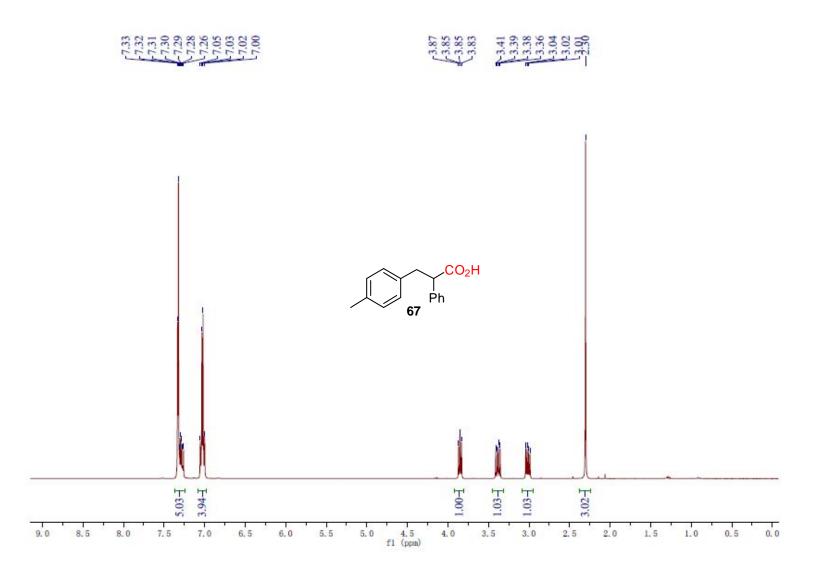


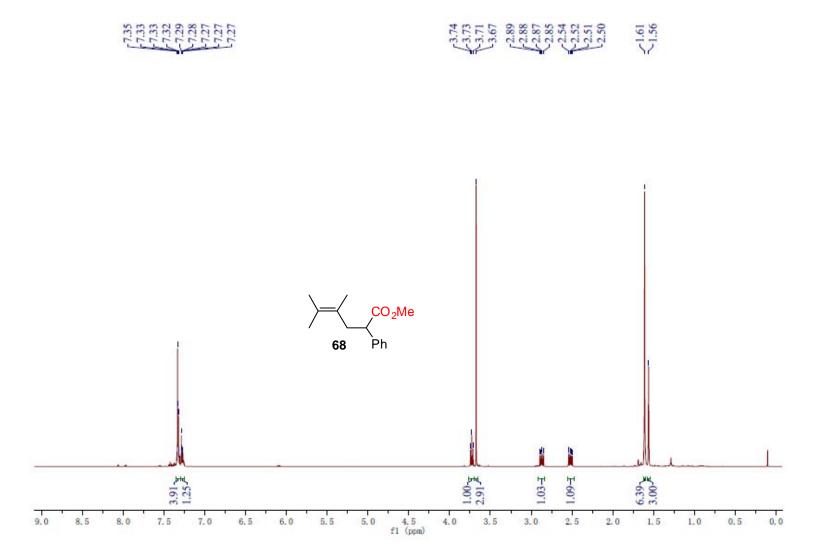


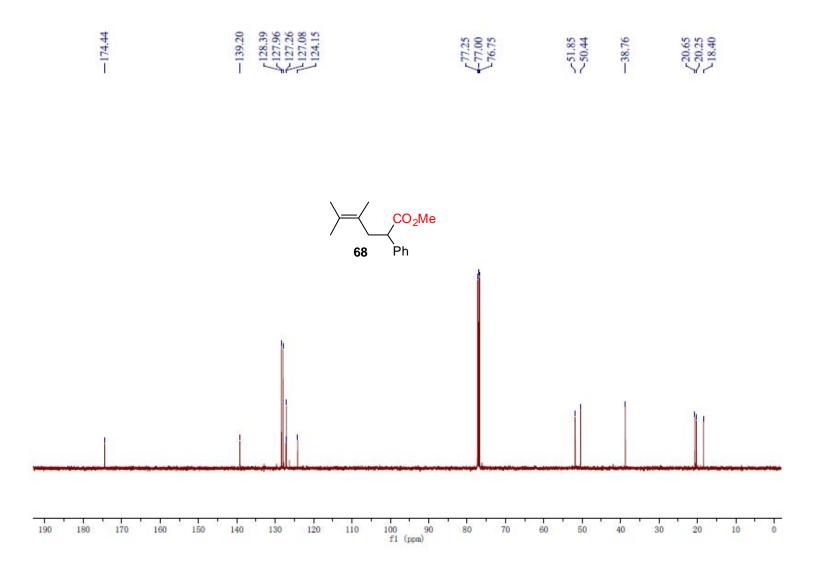


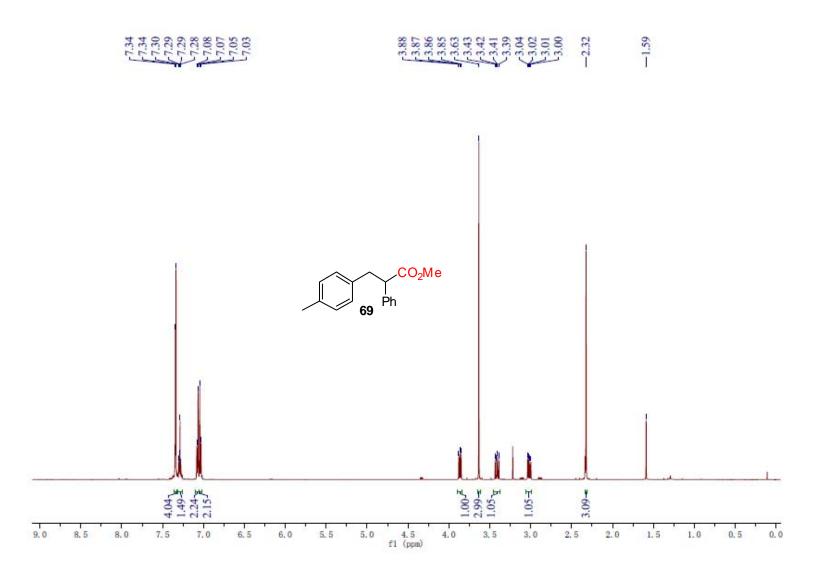


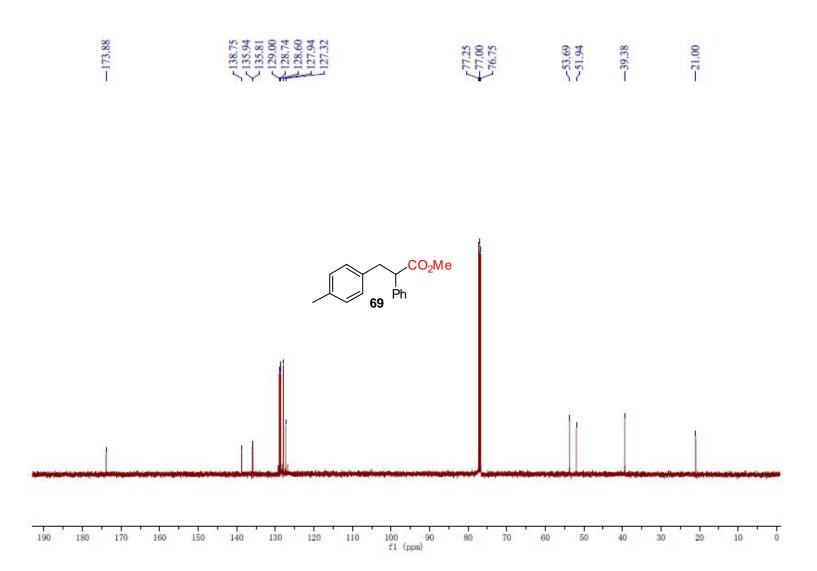


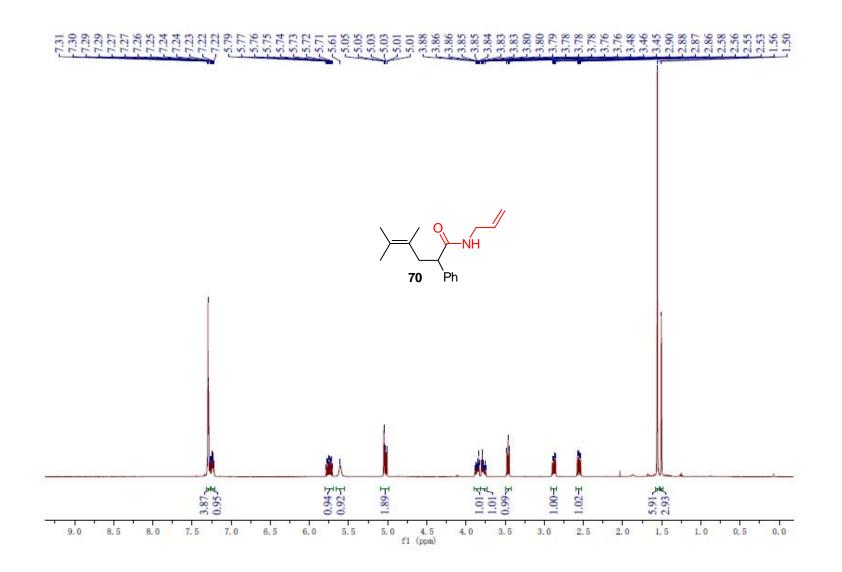


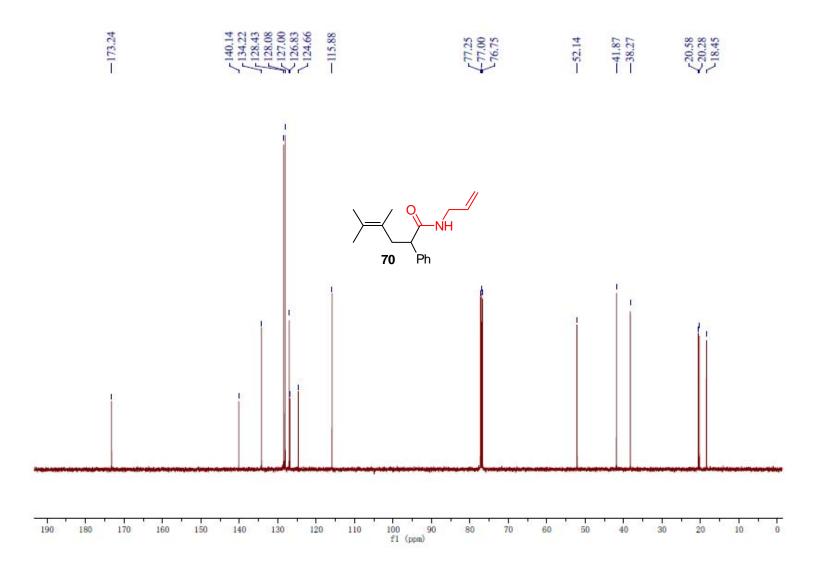


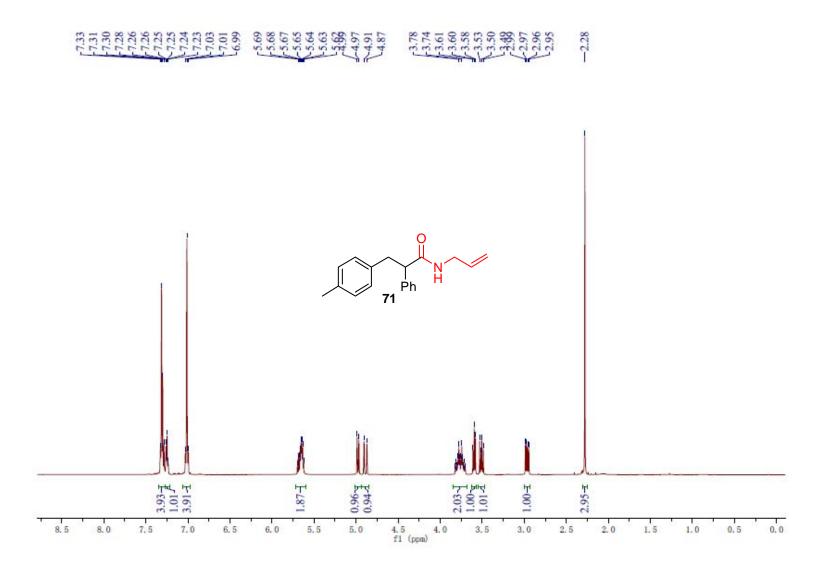


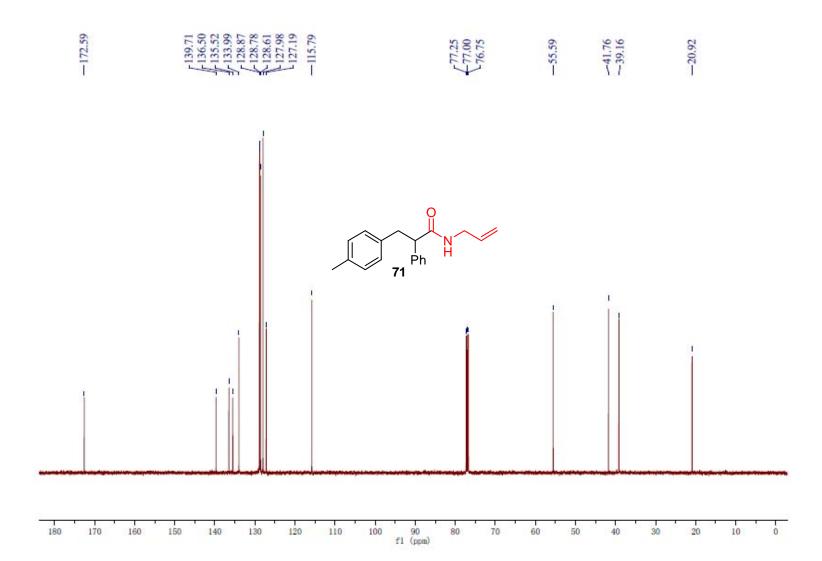


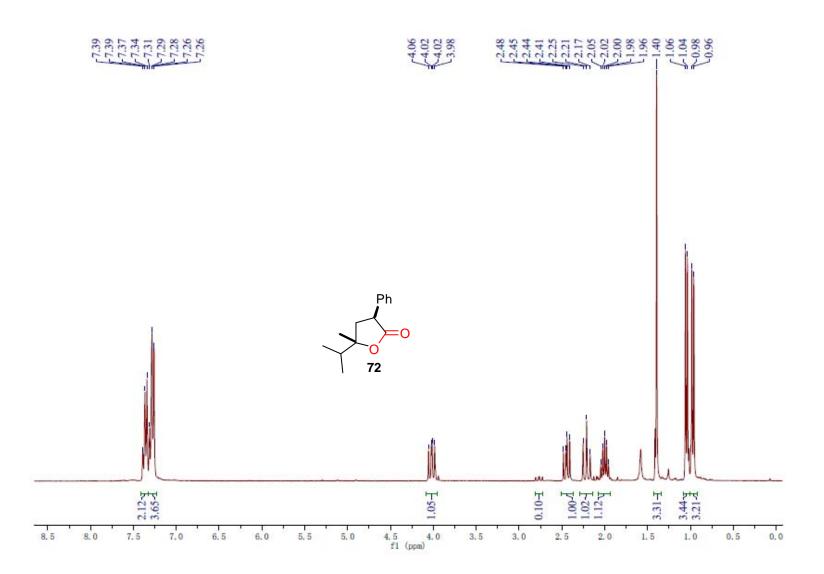


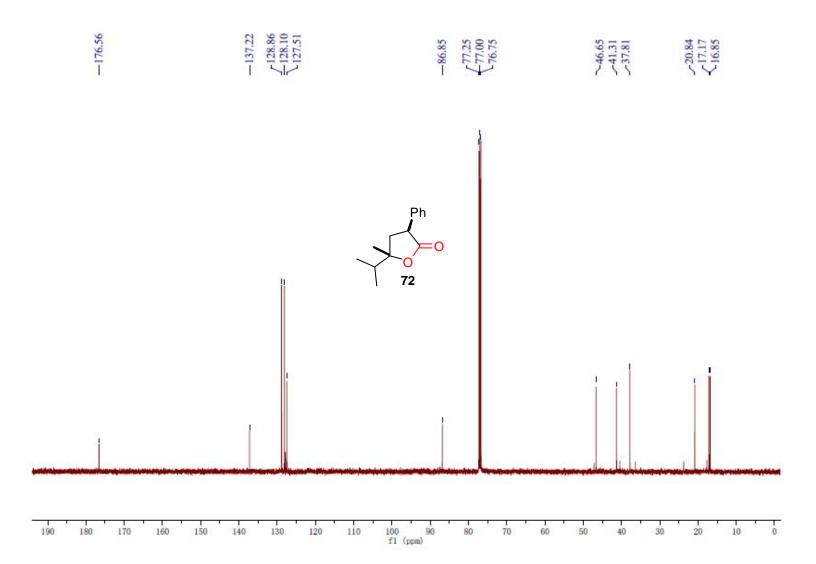


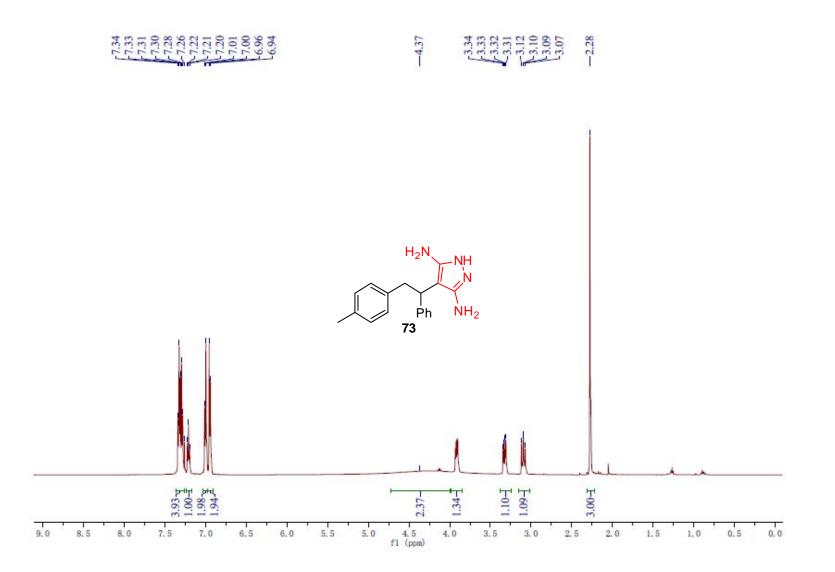


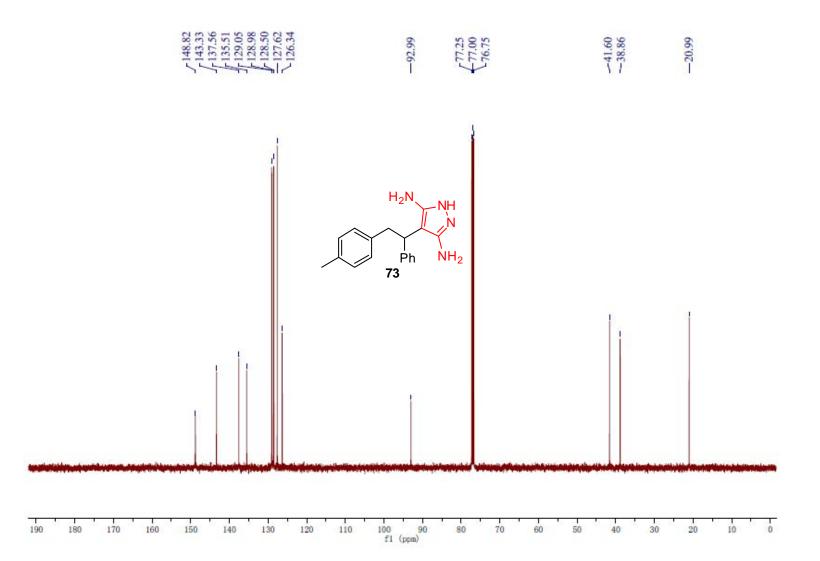


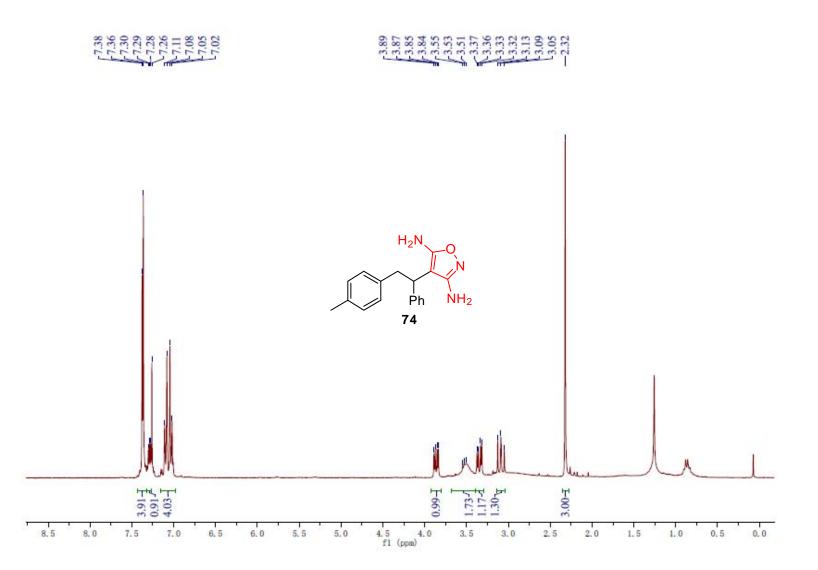


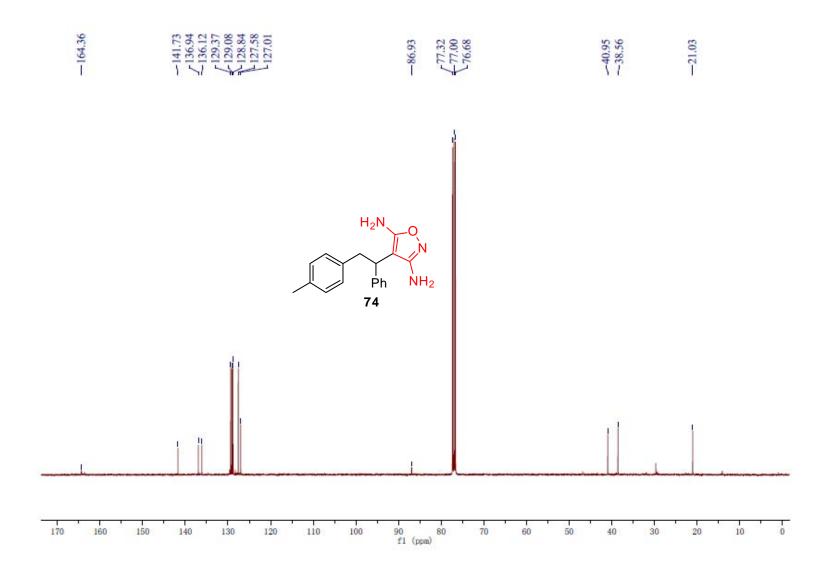


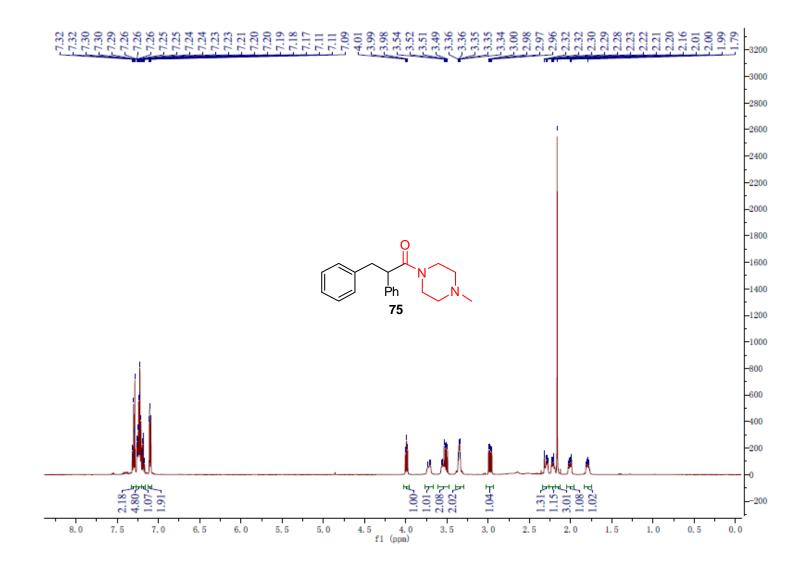


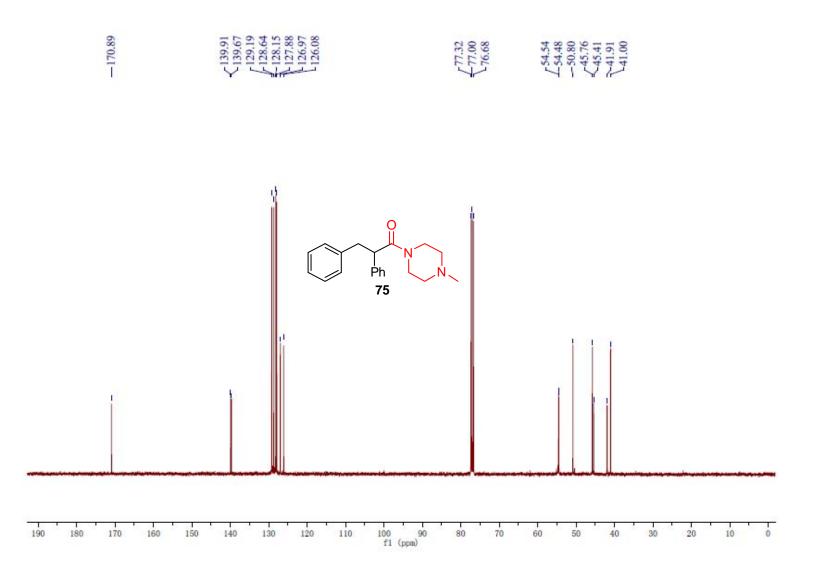


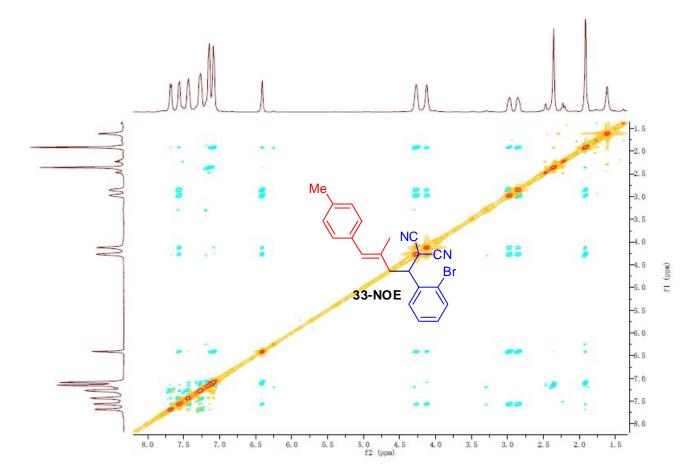


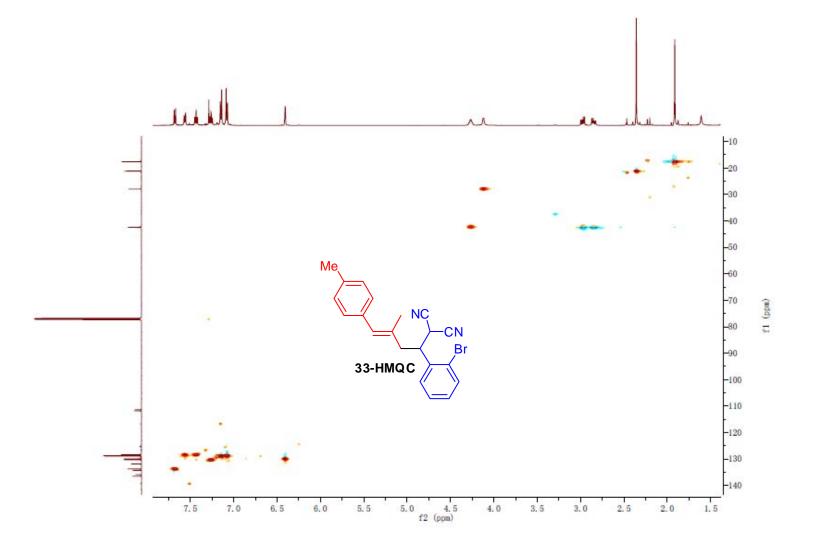


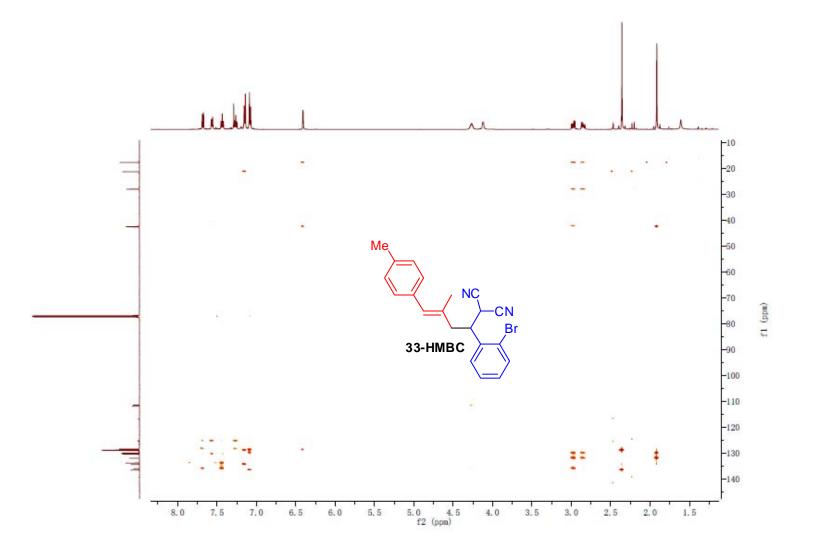




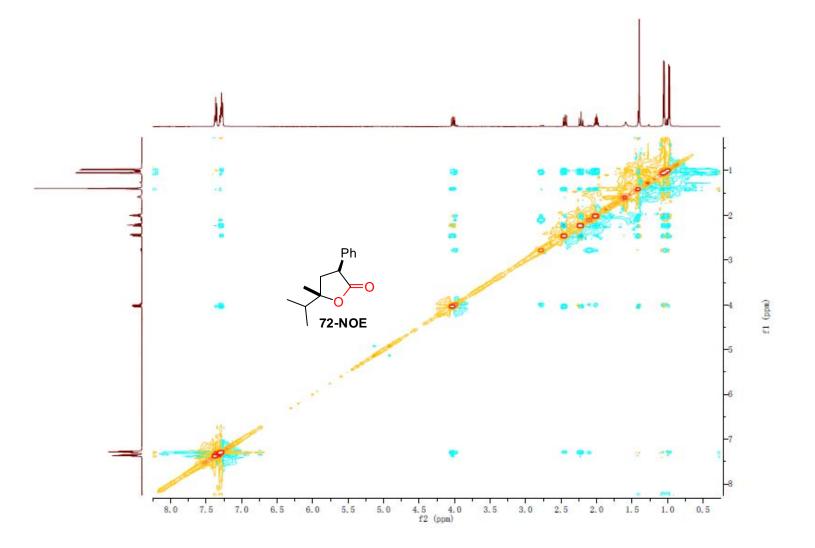








XIV. NOESY, HMQC, and HMBC Spectra of Representative Compounds



S195

S196

