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1 Rank minus one (RM1) constraint

We seek to minimize a cost function J(x) with respect to model parameter vector x given by

J(x) =
1

2
(d− a(x))T W (d− a(x)) +

1

2
λ (xa − x)T P (xa − x) , (1)

where d is a data vector, a(x) is a non-linear model of parameter vector x, W−1 is a data noise co-
variance matrix, xa is an a priori preferred model parameter state vector with attendant covariance
matrix P−1, and damping parameter λ. In order to find the minimum, we employ a Gauss-Newton
estimator (Seber and Wild, 1989) whose k-th iteration is given by ∆xk =

(
AT

k WAk + λP
)−1 (

AT
k Wrk + λP (xa − xk)

)
,

xk+1 = xk + ∆xk,

(2)

where rk=d − a(xk) and Ak= ∂a
∂xk

are the residual vector and the Jacobian matrix, respectively,
at the nominal state xk of the k-th iteration. In gravity field determination, xk is the vector with
coefficients of a spherical harmonic expansion of the gravity field (and other parameters that are
estimated from the data), the matrix Ak is the matrix with partial derivatives of the measurements
with respect to the estimated parameters for iteration k, the matrix W is the data weight matrix,
the vector rk contains the data residuals, and P is the constraint applied in the inversion.

The familiar Kaula constraint is a smoother whose preferred model state is 0 with attendant diago-
nal covariance matrix K−1 such that Kii = 1/σ2

i , where the σi are specified by a power rule. This
power rule is based on the observation that the standard deviation of the coefficients of the gravita-
tional potential of spherical harmonic degree n follow the rule B/n2 with B a constant depending
on the planet (Kaula, 1966). This constraint has been applied in the estimation of gravity field
models of Mercury (Mazarico et al., 2014), Venus (Konopliv et al., 1999), Mars (Genova et al.,
2016; Konopliv et al., 2016), the Moon (Lemoine et al., 2013, 2014), and for small bodies (Kono-
pliv et al., 2002, 2014). Assuming that all elements of the M -vector xa are non-zero, we consider
a modification to this class of constraints whose preferred model states are 0 and have attendant
inverse-covariance matrices of the following form

P = F
(
I−M−111T

)
F, (3)

where F is an M×M diagonal matrix such that Fii = 1/(xa)i, I is an M×M identity matrix, and
1 is an M -vector of ones. It should be clear that P is a symmetric positive semi-definite matrix
of rank M−1 such that Pxa=0. This means that it can be factored as P=GGT, where G is an
M×M−1 full-rank matrix whose columns are orthogonal to xa. The interpretation of P as an
inverse-covariance matrix is understood in the context that in the direction of xa the matrix P−1

would assign large variances that tend to infinity in some limiting process. The motivation for the
form of P in eq. 3 will be discussed shortly.

What is of interest now is the behavior of the ∆xk correction term as λ → ∞, that is, as the
influence of the constraint increases. For brevity let us define Nk = AT

k WAk and yk = AT
k Wrk.
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Let us also assume that Nk is invertible such that it has a Cholesky decomposition of Nk = LkL
T
k ,

where Lk is a lower-triangular matrix. Using the Sherman-Morrison-Woodbury formula, we now
rewrite ∆xk as

∆xk =
(
Nk + λGGT

)−1 (
yk − λGGTxk

)
,

=
(
Nk + λGGT

)−1
(yk + Nkxk)− xk,

=
[
N−1

k −N−1
k G

(
λ−1I + GTN−1

k G
)−1

GTN−1
k

]
(yk + Nkxk)− xk,

= L−T
k

[
I− L−1

k G
(
λ−1I + GTL−T

k L−1
k G

)−1
GTL−T

k

]
L−1

k (yk + Nkxk)− xk. (4)

We now take the limit as λ→∞

∆xk = L−T
k

[
I− L−1

k G
(
GTL−T

k L−1
k G

)−1
GTL−T

k

]
L−1

k (yk + Nkxk)− xk, (5)

and note that the quantity in the square brackets is a projection matrix onto the null of the column
space of L−1

k G or onto the column space of its orthogonal complement, which is just LT
k xa. Thus,

we can rewrite this as

∆xk = L−T
k

[
LT

k xa

(
xT
a LkL

T
k xa

)−1
xT
a Lk

]
L−1

k (yk + Nkxk)− xk,

= αkxa − xk, (6)

where

αk =
(
xT
a Nkxa

)−1
xT
a (yk + Nkxk) ,

=
(
xT
a AT

k WAkxa

)−1
xT
a AT

k W (rk + Akxk) . (7)

In the case of a linear model, where a(x)=Ax, this reduces to

αk =
(
xT
a ATWAxa

)−1
xT
a ATWd, (8)

and is seen to be the least-squares solution to the system

d = Axaα + ν, ν ∼ N
(
0,W−1

)
, (9)

where x is now constrained to be a scalar multiple of xa. The final update is then given by

xk+1 = αkxa. (10)

It is interesting to note that if P = F2 (which is the Kaula form), then as λ → ∞ we have
xk+1 → 0. This is because P is full-rank. However, in the case presented here, all directions
except that of xa are suppressed, thus leaving the solution in the form of xk+1 = αkxa, where αk is
determined by the data. The solution has a single degree of freedom in the direction of xa because
of the infinite variance in this direction due to P. Because all other directions are suppressed, the
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preferred model state is indeed 0, even though the final model state equals αkxa. The factor αk is
determined fully by the data and we thus do not consider this a constraint.

The form of the RM1 constraint ultimately reflects the belief that the bulk crustal density, ρc, can
describe most of the gravity signal we observe (e.g., Wieczorek and Phillips, 1998) through the
equation

x = xaρc = F−11ρc, (11)

where x and xa are vectors of the observed gravity and gravity-from-topography coefficients, re-
spectively, and 1 is the same as in eq. 3. In order to allow a full description of the gravity field we
consider deviations from ρc by considering deviations from the basis vector 1 by introducing an
M×M−1 full-rank matrix U whose columns are orthogonal to 1 such that

UT1 = 0, UTU = I, UUT = I−M−111T, (12)

which gives

x = F−1
(

1 U
)( ρc

δρ

)
, (13)

where δρ absorb deviations from the effect of ρc. Inverting eq. 13 allows us to obtain, for instance,
ρc from the observed gravity coefficients(

ρc
δρ

)
=

(
M−11T

UT

)
Fx. (14)

The formula for ρc in eq. 14 can be shown in summation notation as

ρc =
1

M

M∑
j=1

(x)j
(xa)j

. (15)

This is an interesting formula from the standpoint that since (xa)j are generally larger for lower
degrees, then the weights applied to (x)j will be larger for higher degrees, i.e., larger degrees will
have more influence on ρc. Note that when λ→∞, then ρc = α.

If we denote

ρ =

(
ρc
δρ

)
, H =

(
M−11 U

)
, E11 =

(
0 0T

0 I

)
, (16)

where E11 is an M×M matrix, then we can consider minimizing the cost function

J(ρ) =
1

2
(d− a(ρ))T W (d− a(ρ)) +

1

2
λδρTδρ, (17)

=
1

2
(d− a(ρ))T W (d− a(ρ)) +

1

2
λρTE11ρ, (18)

where the first term is data misfit and the second is the squared-length of the δρ vector, thus
penalizing deviations away from a pure bulk density. Using eqs. 13 and 14, the k-th iteration of
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the Gauss-Newton estimation is given by ∆ρk =
(
H−1F−1AT

k WAkF
−1H−T + λE11

)−1 (
H−1F−1AT

k Wrk − λE11ρk

)
,

ρk+1 = ρk + ∆ρk,

(19)

which reduces to eq. 2. Therefore, we can minimize eq. 17 with respect to ρ by running the
Gauss-Newton iterations on x via eq. 2 and transforming using eq. 14. The reason for working
with x rather than ρ is that we have natural access to Normal Equation systems with respect to the
former.

2 Rank minus S (RMS) constraint

One can also imagine applying several separate constraints of this form on several sub-sets of
parameters. For example, we could create sub-sets per degree n, to have more degrees of freedom
(in the limit of λ → ∞) in the effective density spectrum. Without loss of generality, we may
assume that the parameter sub-sets are contiguous within each of S sets such that P and G take on
a block-diagonal forms

P =

 P1 . . . 0
... . . . ...
0 . . . PS

 , G =

 G1 . . . 0
... . . . ...
0 . . . GS

 . (20)

The derivation proceeds as before except now the orthogonal complement of L−1
k G is the M×S

matrix LT
k Xa, where

Xa =

 xa1 . . . 0
... . . . ...
0 . . . xaS

 , (21)

and xT
a =

[
xT
a1
. . .xT

aS

]
. This results in a correction

∆xk = Xaαk − xk, (22)

where

αk =
(
XT

a NkXa

)−1
XT

a (yk + Nkxk) ,

=
(
XT

a AT
k WAkXa

)−1
XT

a AT
k W (rk + Akxk) . (23)

Therefore, each sub-set of xk+1 is a scalar multiple of the corresponding sub-set of xa due to the
S degrees of freedom available to the estimator.

Applying this rank-minus-S (RMS) constraint instead of the RM1 constraint implies that rather
than estimating one single αk factor, we estimate multiple scale factors. These constitute ρestim(n) =
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αkn ·ρ0 if we take each subset of xk+1 to be that subset of gravity coefficients with the same degree
n. We have tested solutions using this RMS constraint instead of the RM1 constraint, but found
that in general they resulted in effective density spectra similar to those using the RM1 constraint
(if λ was not too large), with larger variations. This shows that RM1 solutions also contain the
information on laterally varying density (since the RMS constraint is designed to specifically have
variations per degree). If λ increases, the variations in especially the higher degrees increase ac-
cordingly, in contrast to the behavior of the RM1 constraint which results in a flat effective density
spectrum for large values of λ. We attribute this to the extra degrees of freedom (S compared to
only 1) in the solution, and the fact that those extra degrees of freedom are distributed with equal
weight, where some (those describing ρestim(n) for large n) might be poorly determined from the
data. Conceivably one could include further weights where those scale factors for ρestim(n) for
large n are constrained further.

3 Effective density

For the computation of density from gravity and topography we use the same method that was used
for GRAIL in Wieczorek et al. (2013). We model the estimated gravity gobs from our inversions
using satellite tracking data by relating it to gravity induced by surface relief grelief (Wieczorek
and Phillips, 1998). If we express both estimated and modeled gravity in spherical harmonics,
assume some density ρ0 (e.g.,, a “unit” density of 1000 kg m−3 as we used in our analysis) when
we compute grelief, and assume a constant crustal density ρestim, then for each degree n and order
m, observed gravity is related to the gravity induced by the relief following:

gobs,nm = ρestim grelief,nm + Inm (24)

where Inm is that part of the estimated gravity not modeled by topography, and it is assumed to be
uncorrelated with grelief and to have a zero mean. An unbiased estimate for the crustal density at
each degree n then follows from Wieczorek et al. (2013):

ρm(n) = Sgobs grelief(n)/Sgrelief grelief(n) (25)

where crosspower Sab(n) (or autopower, if both quantities a and b are the same) is defined as:

Sab(n) =
m=l∑

m=−n

anmbnm (26)

With equation (24), and the fact that for xa we chose grelief, it now also follows in a straightforward
way that the factor αk determines the actual model density ρestim through ρestim = αk · ρ0, and this
is how we obtain our estimates for the effective density spectrum.
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4 Obtaining the bulk density

The average bulk crustal density for the Moon was derived by averaging the GRAIL-derived ef-
fective density spectrum over the degree range n = 150-310 (Wieczorek et al., 2013). Global
admittance values for Mars become stable after around degree n = 25 (e.g., Konopliv et al., 2006),
and we find a value for the lunar density from our SGM150J-RM1 model over the range n = 60–
130 that is very close to the GRAIL value, indicating that we can use similar degree ranges for our
Mars models (with have a maximum degree of either 120 or 150). Averaging the density spectrum
over the degree range n = 30–115 for each of our clone models, and taking the average of that set,
results in an average crustal density of 2536 kg m−3. Following the GRAIL results, the associ-
ated error is computed from the density variations over the same range around this average value,
resulting in an error of 167 kg m−3.

This is a uniformly weighted average, the same as was done for the GRAIL results. As Fig. 2A
in the main text shows however, the variations are larger than those for the Moon, and, because
of noise in the data, they increase for n ≥ 110. Alternatively, we can therefore also compute an
average weighted by an error estimate (or rather, the inverse thereof). We obtain error estimates
for the density at each degree from our set of clones: for each clone, we compute the effective den-
sity spectrum, and then we compute the standard deviation at each degree around the average of all
clones. Figure S12 shows the Mars effective density spectrum together with such an error estimate.
We can then again compute the average over the same degree range n = 30–115, weighted by the
inverse of the error at each degree. This results in a higher bulk density of 2660 ± 209 kg m−3,
where the error is again obtained from the variations around the average value. Figure S13 shows
an alternative error spectrum, where the errors are taken as the minimum and maximum value for
each degree that occur in the set of clone models. This produces a conservative error spectrum, but
the weighted average is not much different, at 2657 ± 206 kg m−3, probably because mostly this
leads to scaled errors (for example at 3 or 4 times the standard deviation). However, the errors for
the coefficients of gravity models increase with increasing degree due to decreased data sensitivity,
see for example Fig. 5 in Genova et al. (2016), and this means that such a weighted average will
always obtain results where higher degrees have less influence. Apart from the consideration of
errors in the models however there is not necessarily a strong reason to take such a weighted aver-
age, because at higher degrees it is expected that the model describes shallower parts of the crust,
and there is thus no reason to expect them to contribute less to the average crustal density.

As explained in section 1, our choice of constraint also provides a different way of computing
the bulk density, as given by eq. 15. As stated, this gives more influence to the higher degrees.
Computing the average density in this way for all the clones, again using the degree range n=30–
115, produces an average density of 2582 kg m−3, which is in between the uniform and weighted
average values. The spread around this value in the clones set is very small, at only 9 kg m−3.
We adopt this value as our preferred bulk crustal density. We use the larger error value to reflect
current uncertainties in the value due to noise and the variations in density that are inherent to the
models.

The range of degrees over which the averages, or over which eq. 15, are taken do influence the
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obtained bulk density to some extent: due to the downward trend, an average obtained from starting
at a higher degree will be lower. Likewise, when the gravity field of Mars is determined up to
resolutions similar to GRAIL’s at the Moon, it is likely that the average density will be lower, with
even lower surface densities, as was the case at the Moon (e.g., Besserer et al., 2014). On the
other hand, our estimate can be biased upwards by the densities of the volcanoes. The density
map shown in Fig. 2C shows lower densities in other areas. Our estimates however do not change
within the given error bounds when different degree ranges are used, given the current knowledge
of the gravity field of Mars (where we cannot expect GRAIL-like resolutions). Moreover, the
asymptotic density that we find, at 2597 kg m−3, is close to our average.

5 GRAIL primary mission data only and the RM1 constraint

To further verify that our constraint estimates the correct crustal density, in addition to applying it
to a pre-GRAIL least-squares system, we also apply it to the system of the GRAIL primary mission
model GRGM660PRIM (Lemoine et al., 2013). We again compare the results of this analysis with
those from the model based on GRAIL extended mission data, GRGM900C (Lemoine et al., 2014).
This model far surpasses the resolution of the primary mission models, and it serves as truth, as
this extended mission model is mostly constraint-free for the degree range of GRGM660PRIM.
In Fig. S1 we show the effective density for GRGM660PRIM, GRGM900C, and a model based
on the GRGM660PRIM system that uses our RM1 constraint. The model GRGM660PRIM was
derived using a Kaula constraint applied for n > 330, and Fig. S1 clearly shows that the effective
density drops for high degrees. The model that uses our RM1 constraint (also applied for n > 330)
however follows the extended mission model result much closer, over its full degree range. The
results in Fig. S1 used a damping factor λ = 1. We use a slightly lower value for λ in this case,
compared to the value λ = 10 for the SGM150J case, because the GRAIL system has much better
resolution than the SGM150J system. We thus increase the influence of the constraint for the
SGM150J case by increasing λ slightly. Using λ = 1 for the SGM150J case results in slightly
more variations in the density curve.

6 The RM1 constraint and parameter dependencies

These two different lunar cases (for SGM150J and GRGM660PRIM) show that our RM1 constraint
gives a reliable estimate of the effective density, as was also exemplified by the quoted values for
the density from the SGM150J RM1 results in the main text. In addition, we stress that our RM1
constraint does not bias the results to the a priori density value used for computing gravity-from-
topography: choosing a density different from 1000 kg m−3 in our computation of gravity-from-
topography is equivalent to using a slightly different damping factor λ, but the same effective
density is still obtained. For large damping factors, the effective density becomes flat by definition
(it is given by αk times the used “unit” density, at all degrees n), and the density value we then
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obtain for the GRGM660PRIM results is close to the value of the density at the degree where the
constraint is applied (Fig. S2). Because at very low degrees gravity is controlled by large scale
signals in the deep interior and thus does not necessarily correlate well with topography, the RM1
constraint should not be applied over the full degree range of the model (i.e. for n ≥ 2).

For the Mars results we applied the RM1 constraint from different degrees (e.g., n ≥ 50 and
n ≥ 85) and this results in effective density spectra that are very close to one another, as can
be seen in Fig. S4A. Correlations for both these solutions are shown in Fig. S4B, and it can be
seen that for the solution with RM1 applied for n ≥ 85 the correlations jump up, whereas the
correlations gradually increase for the solution with RM1 applied n ≥ 50. The effective density
estimate however is not affected at all by this jump as shown in Fig. S4A.

The damping parameter λ is discussed throughout the main text and this document. The factor
determines the relative weight between the data system and the constraint system. As discussed
extensively, as λ goes to infinity, the correlations between the solution x and the solution xa go
to ±1, but the path of how the correlations change depends on the relative contributions of the
data and constraint. In Figure S3 we show the effective density spectrum and correlations for the
SGM150J case. We applied different values of λ to obtain the models. From this Figure it can
be clearly seen that the correlations gradually become unity, and that they only become unity for
large values of λ. For smaller values (1, 10 and 100) the correlations take on the shape of those
provided by GRGM900C, with the correlations for λ = 10 falling on top of them. We note that
the correlations are not constrained to follow the GRAIL shape. Moreover, the effective density
spectrum is not much affected by the different correlations. Variations within the effective density
per degree, which are interpreted as indicating lateral density variations (see also below, Section 8),
become smaller as λ increases, but they are still substantial at λ = 10, larger than those from the
”truth” model GRGM900C. The variations exhibited in the density spectrum for the RM1 model
thus are a combination of actual lateral variations, and the influence of noise on the data. Because
the variations only decrease for very large values of λ and because we prefer smaller values (λ = 1
for the Mars results discussed later, λ = 10 for the SGM150J), it is not immediately clear that our
RM1 models would suppress the lateral variations. It is likely that in the case of Mars, the actual
variations in the effective density spectrum will become smaller for higher degrees, just like it is
the case for the GRAIL results, but we will not know this until we have GRAIL-like resolution
data at Mars. The average values of the density are not influenced very much by these variations,
as our averaged SGM150J results show, but of course our error estimate is.

7 Kaula and the RM1 constraint

As mentioned in the main text and here in section 1, the Kaula constraint that is generally ap-
plied in the determination of gravity field models from satellite tracking data forces the solution
towards zero, because the preferred model state is 0. We illustrate this further by comparing the
effective density spectrum of a Kaula constrained model with that of an unconstrained model in
Fig. S5A. The unconstrained GMM-3 model was obtained by inverting the data matrix, which is
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possible owing to the global coverage of the Mars tracking data, even if the southern hemisphere
has better coverage with lower altitude data than the northern hemisphere (Genova et al., 2016).
The effective density for the unconstrained GMM-3 model shows large variations, yet its effective
density spectrum is extended to higher degrees than that for the standard Kaula constrained model
GMM-3. This clearly shows that the Kaula constraint suppresses the information in the higher de-
grees, as the density spectrum quickly decreases for GMM-3. The density spectrum for the RM1
constrained model reduces the variations in the density values per degree (as also demonstrated in
Fig. S2), and it extends the density spectrum further. This indicates that the RM1 constraint indeed
extracts information from the data, because the data-only system of the unconstrained GMM-3
model indicates similar densities although with larger (unrealistic) variations. The RM1 constraint
thus allows us to extract the density values by looking at the part of the model space that aligns
with gravity-from-topography (our choice for xa from section 1). The determined density is fur-
thermore not dependent on the density ρ0 that was used when generating xa because the factor αk

is determined freely from the data, as explained in the main text and in section 1.

For degrees smaller than about 85, all models produce the same density values. The Kaula con-
straint, applied for degrees n ≥ 90 for GMM-3 (Genova et al., 2016), does not have much of an
influence in this range if the correlations between higher degree coefficients are not too strong (i.e.,
if they are separable). The RM1 constraint when applied for n ≥ 50 can have an influence in this
range, depending on the constraint factor λ. A small enough factor will still allow the solution to be
mostly determined by the data. As we increase lambda, we will obtain a flatter and flatter density
spectrum, as we showed in Fig. S2. However, we do not expect the models to be different in this
degree range, because the data themselves are strong enough there to fully determine the solution.
Indeed, the GMM-3 model itself thus already produces a good estimate of the bulk crustal density.
Our RM1 constraint in this case helps to extend the degree range over which we can average the
results, making the estimate more robust since it is more likely that gravity and topography are
correlated better at higher degrees. In addition, our RM1 constraint helps to determine regional
variations (see the main text and below), something we can not do with confidence with the Kaula
constrained model. To illustrate this further, we also included results for an extended model in
Fig. S5A. We processed the Mars Reconnaissance Orbiter (MRO) data in the same way as was
done for GMM-3, but instead generated partial derivatives of the measurements with respect to
the coefficients of a spherical harmonic expansion of the gravity field up to a maximum degree
and order of 150 instead of 120. We did this only for MRO because it has the lowest altitude of
the spacecraft data used in GMM-3. We then again applied the same RM1 constraint, and Fig.
S5A shows that the effective density spectrum is further extended. Our density results however do
not change significantly when we use this degree and order 150 model over the results of the 120
model. The correlations with topography, shown in Fig. S5B, are also further extended for this
150 model. We note that the correlations for the Kaula constrained and the unconstrained model
are nearly identical, despite different density spectra.
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8 Local density estimates

While the RM1 constraint depends on gravity-from-topography that assumes a constant density,
our results can still derive local variations. As we have shown, for the case λ → ∞ the density
spectrum collapses, and we find indeed a constant crustal density. Decreasing the value for λ
allows variations in the effective density spectrum, which come from lateral variations. We keep
in mind that some of the variations can be through noise, or the effects of bottom-loading, but
these variations are also present in the lunar spectrum, and for Mars they are present in the degree
range that is fully determined by the data (n ≤ 80). Localization can then extract the local density
variations by comparing the estimated gravity field with the gravity-from-topography field (using
a “unit” density), in principle determining the scale factor for that chosen density at each location.
The same localization approach, with the same assumption of a constant density when computing
gravity-from-topography, was used for GRAIL (e.g., Besserer et al., 2014; Han et al., 2014).

To compute regional values, as we do for the Tharsis complex for Mars (Fig. S10), we apply
localized spectral analysis (Wieczorek and Simons, 2005). Similar to the method of computing the
localized admittance between gravity and topography, we compute the ratio as given in eq. 25 with
each function multiplied by a spherical cap localization window at a given location using a given
radius for the cap, using the freely available software SHTOOLS (Wieczorek and Meschede, 2015).
We used two different approaches using this windowing method: one to compute the spectrum for
Mons Pavonis as given in Fig. S10, and one to compute the laterally varying density map as given
in the main text in Fig. 2C.

For the Tharsis region, we apply one taper. We choose a cap centered on Pavonis Mons (247.04◦E,
1.47◦N) with a spherical cap radius of 20◦, and the spherical harmonic bandwidth of the localizing
window Lwin is 20, resulting in a concentration factor larger than 99.99% for the first (and only)
taper. We obtain our density estimate for the Pavonis area by averaging the effective density spec-
trum between degrees n = 50 − 85 (uniformly weighted, so each degree contributes in the same
way). To construct a global map in a similar way, we repeat this localization procedure on nodes
spaced at 5◦ intervals, covering the whole globe. We use the same windowing size Lwin=20, again
with a cap radius of 20◦. For plotting purposes, we resample the output grid from a resolution
of 5◦ to 0.5◦. Using one taper only in this procedure, we obtain wildly varying densities, due to
varying correlations over the areas and effective density spectra that are not well-behaved. By av-
eraging over multiple tapers instead of one (we settled on 30 tapers), the correlations and effective
density spectra are in general better behaved. We again average the effective density spectrum be-
tween n = 50− 85. However, the resolution for the Mars models is limited, making it difficult to
robustly perform a multi-taper analysis (e.g., Wieczorek, 2008). The multi-taper result still shows
varying effective density spectra in many locations, resulting in many areas with relatively low den-
sities. Although a recent analysis of the Medusae Fossae Formation produces a density of around
1800 kg/m3 (Ojha et al., 2017), attributing this to a pyroclastic deposit (dense material with high
porosity), our map shows widespread low densities. While the result is broadly consistent with
expectations, we stress that the current model resolution does not allow a similar robust treatment
as was possible with the GRAIL models (Besserer et al., 2014), and our density map thus mainly
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serves as an example of how density may vary laterally on Mars. Correlations between gravity and
gravity-from-topography are varying spatially as well (see Fig. 2D in the main text), complicating
especially the interpretation of gravity in the northern highlands.

Considering only those locations that have average correlations in a given degree range larger than
0.8 (a signal-to-noise ratio better than 1.78 (Wieczorek, 2008; Grott and Wieczorek, 2012)), and that
have variations in correlations in that degree range that are smaller than 0.05 in a root-mean-square
sense, we obtain a density map (shown in Fig. S11) that leaves the northern hemisphere as well as
parts of the southern hemisphere undetermined. This map shows the regions on Mars where we are
more confident about our density estimates. Not surprisingly, it covers mostly the volcanic regions,
and some of their surroundings. According to this map, densities in the northern hemisphere can
not be determined with the same amount of confidence. If we increase the threshold for correlations
to 0.9 (not shown), the area shrinks further. However, we used our fully global laterally varying
density map in one of our crustal thickness estimates in Fig. 3 in the main text because the densities
are broadly consistent with geophysical and geological expectations, and to show how an example
of a varying density map affects the crustal thickness estimates.

9 Exploring models of porosity stratification

A decrease in density with increasing spherical harmonic degree is an indication that porosity plays
an important role in determining the crustal structure (Wieczorek et al., 2013; Besserer et al., 2014;
Han et al., 2014). Here, we explore the analytic models from Han et al. (2014) for the effective
density to determine whether we can estimate parameters related to the increase of density with
depth, since our effective density spectrum shows a decrease with increasing degrees (see Fig. 2A
in the main text). Two straightforward models can be readily used to describe the dependence of
density with depth: a linear model and an exponential one. The linear model assumes a constant
increase in density with depth (Besserer et al., 2014):

ρ(z) = ρsurf + az (27)

where ρsurf is the surface density, a the gradient, and z the depth (positive for increasing depth). The
exponential model describes an asymptotic exponential increase of density with depth (Besserer
et al., 2014):

ρ(z) = ρsurf + (ρ0 − ρsurf)(1− e−z/d) (28)

where ρ0 is the density at depth (the zero-porosity density) and d is the e-folding scale. The
latter model especially can be readily related to a model of pore closure due to compaction (Han
et al., 2014). Analytic models for the effective density spectrum for both can be readily derived,
valid either globally (Han et al., 2014) or locally in a more Cartesian approach (Besserer et al.,
2014).

Ideally the determination of parameters such as ρsurf and a or d would be done in a localized fash-
ion similar as used to derive the GRAIL results (Besserer et al., 2014; Han et al., 2014) and as
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how we derived our laterally varying density map, since it is to be expected that these parameters
vary spatially. Volcanic complexes likely have different depth-dependencies than the highlands.
However, while we were able to derive a density map that is broadly consistent with the expecta-
tions, see also section 8, we found that the current resolution of the Mars models is not sufficient to
reliably determine multi-parameter depth-dependencies. We illustrate this with a misfit plot in Fig.
S14 where we show the misfit between analytic models and the effective density spectrum for our
RM1 model, taken between degrees n = 60 and n = 120, for an exponential depth-dependency
model (assuming ρ0 = 2900 kg m−3 in this case). While a minimum exists, it is not well-defined,
and there are many models with widely varying values for ρsurf and d that fit the data equally well.
Misfit plots for the linear model are similar. The models we find are consistent with increasing
densities with depth, and in general we find smaller e-folding scales for Mars than for the Moon
(which suggests that density for Mars increases faster than at the Moon, which is to be expected
considering likely higher pressures and temperatures, and higher surface gravity). However, we
applied the same modeling to a GRAIL model using the same degree range (n = 60 − 120) and
found that while the misfit for the Moon is much narrower, we could not reproduce the published
results (Besserer et al., 2014) in this degree range. We thus find we can not estimate the parame-
ters of a depth-dependent model with confidence. Our results indicate the likelihood that density
increases with depth, but for our analysis of for example crustal thickness, we assume crustal
densities that remain constant with depth. Future missions that increase the current resolution of
gravity field models of Mars can resolve the issue of stratification within the crust in a similar way
as GRAIL did for the Moon.

10 Crustal thickness modeling

We use the methodology of potential anomalies on the sphere due to finite amplitude relief and
downward continuation of the Bouguer anomaly (the estimated free-air anomaly minus the con-
tribution in gravity of the relief) to determine the thickness of the crust, following Wieczorek and
Phillips (1998). We did not filter the anomalies, but instead use gravity up to degree n = 90, and
determine the expansion of the sub-surface relief that determines the crustal thickness up to degree
n=80. We use a mantle density of 3500 kg m−3 (e.g., Neumann et al., 2004). For crustal thickness
modeling one also needs to assume either a mean crustal thickness, or a certain crustal thickness at
a given location (Wieczorek, 2015). We select the average crustal thickness to be 42 km, following
the results for GMM-3 as given by Genova et al. (2016). We note that these are choices in the
process to determine the crustal thickness, and these choices are not constrained by our data.

We present three different crustal thickness models in Fig. 3 in the main text: one based on the
standard crustal density of 2900 kg m−3, one based on a density map that uses the new lower
value of 2582 kg m−3 everywhere except in designated volcanic areas where a value of 2900 kg
m−3 was used (this value, lower than 3200 kg m−3, was chosen to prevent convergence issues;
see Fig. S15 for the density map), and one based on the laterally varying density map we derived
from our RM1 solution (again, capping the density values at 2900 kg/m3, for comparison with the
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other density models). The use of laterally varying density maps has been incorporated into the
crustal thickness computations (Wieczorek and Phillips, 1998; Wieczorek, 2015). Using the lower
constant crustal density for Mars of 2582 kg m−3 for the whole crust reveals a mismodeling of the
crustal roots beneath volcanic complexes, as the resulting thickness would appear to be too low
for the Tharsis complex on Mars for instance: the topography of the volcano should at least be
partially compensated by thicker crust with a density smaller than that of the mantle. Our localized
density estimates (both the one over Pavonis, and the example from the analysis of laterally varying
densities) confirm this departure from the low average crustal density for the volcanoes, and we
thus used laterally varying density maps that take this into account.

11 Supplementary Figures
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Figure S1: Effective density for various lunar gravity field models: a GRAIL model using only pri-
mary mission data (GRGM660PRIM), a GRAIL model with extended mission data (GRGM900C),
and a model based on the GRGM660PRIM system using our new ”rank minus one” (RM1) con-
straint.

14



1500

1750

2000

2250

2500

2750

3000

E
ff
e
c
ti
v
e
 d

e
n
s
it
y
 [
k
g
/m

3
]

200 300 400 500 600

Degree, n

GRGM900C
GRGM660prim
RM1 constraint, λ=0.64
RM1 constraint, λ=1
RM1 constraint, λ=10
RM1 constraint, λ=100
RM1 constraint, λ=108

Figure S2: Effective density for the GRGM660PRIM model with the RM1 constraint, applying
various damping factors λ. With increasing λ, the effective density per degree n becomes constant.
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Figure S3: (A) Effective density for the SGM150J results for various damping factors λ. (B)
Correlations between gravity and gravity-from-topography for the same models.
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Figure S4: (A) Effective density for the Mars results for models with the RM1 constraint applied
for either n ≥ 50 or n ≥ 85. (B) Correlations between gravity and gravity-from-topography for
the same models.
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Figure S5: (A) Effective density for the Mars results models with a Kaula constraint (GMM-3),
the RM1 constraint, or no constraint. The “L150” model is an extended GMM-3 model up to
degree and order 150. (B) Correlations between gravity and gravity-from-topography for the same
models.
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for various values of elastic thickness Te. The measured admittance is best represented by models
with high Te.
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Figure S9: Misfit between measured admittance using the RM1 model and theoretical models
using a crustal thickness of 43 km and varying values for the crustal density and elastic thickness
Te. The lowest misfit location is indicated with a diamond. (A) Results for the misfit between the
admittances using the degree range n = 10–15. (B) The same but for the range n = 30–115. Our
density estimate and its associated error using the effective density spectrum are indicated above
each map (square with error bars). Both degree ranges exclude small values of Te and estimated
densities are in agreement with the estimate from the effective density spectrum. The lowest misfit
in (B) occurs for the highest Te value in the search space used, indicating the solutions are not
sensitive to Te for that range.
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Figure S10: (A) Effective density over the Pavonis area. (B) Correlations with gravity-from-
topography. Both were computed from localized spectra (Wieczorek and Simons, 2005) using a
cap radius of 20◦ and a spherical harmonic bandwidth of the localizing window Lwin = 20. While
GMM-3 already gives a reasonable estimate for the lower degrees, the quick drop in correlations
with gravity-from-topography results in abnormally high densities. The results for the RM1 con-
straint are much more stable. The estimated density of 3231 ± 95 kg m−3 is in agreement with
other estimates in the literature. We obtain our estimate for the RM1 model that applies the con-
straint for n ≥ 50, by taking the average effective density and its variation around this average in
the degree range n = 50− 85. Using different degree ranges does not affect the density within the
listed error.
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Figure S11: Laterally varying densities (using our RM1 model from the degree and order 150
expansion), the same as in Fig. 2C in the main text, but in this case we retain only those locations
where averaged correlations with topography between degrees n = 50 and n = 85 are larger
than 0.8 and variations between the same degrees are smaller than 0.05. This map thus shows the
regions where we are more confident about our local density estimates.
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Figure S12: Effective density spectrum for Mars from Fig. 2A in the main text, with the errors
computed as standard deviation in the effective density values per degree from the full set of clone
models. The average of the trend in the set of clones, fitted between degrees n=40–100, is also
indicated, resulting in a function that is described by ρ̄(n) = 2836− 4.18 · n [kg m−3].
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Figure S13: The same as Fig. S12, with the errors now given by the minimum and maximum
effective density values per degree from the set of clone models.
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density spectrum from our RM1 model. The analytic models assume an exponential increase of
density with depth, which can readily be related to pore closure through compaction (Han et al.,
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Figure S15: A map of laterally varying crustal density for Mars. The map is in Mollweide pro-
jection centered on the prime meridian. Our average value of 2582 kg m−3 is used everywhere
except for the following volcanic complexes: Alba, Tharsis, Olympus Mons and Elysium Mons.
For those, a value of 2900 kg m−3 is used (instead of a value close to 3200 kg m−3, for comparison
with the standard value, and to avoid convergence issues in the crustal thickness determination
process), and the density is transitioned smoothly using a cosine taper and assigned radius around
the center (15◦, 25◦, 8◦, and 5◦ for the aforementioned volcanoes, respectively).
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