
Supplementary Files 1: This compressed folder contains all the raw images organized into folders:
movie1-7, and data_set1-4. The folders movie1-7 correspond to the live movies, while the folders
data_set1-4 correspond to stained fixed images. The description of the datasets can be found within
each folder or in S1 Text. The files can be accessed at https://github.com/paulvill/data-fusion-
images.

Supplementary Files 2: Colored movie. The compressed folder contains frames of a colored movie,
with, in the main folder, all the channels combined, nuclei (gray), dpERK (red), Dl (pink), rho
(yellow), ind (blue), Twi (green), using the color map presented in S4 Table. The number of each
image corresponds to a time step, and they have been extracted from movie 5. The subfolder
“grayscale” contains the actual value of the variables in separate frames, the name of each image
indicates the variable considered, while the number of each image corresponds to the time step. The
files can be accessed at https://github.com/paulvill/data-fusion-output.

Supplementary Software: The compressed folder contains the MATLAB library implementing the
data fusion algorithm on an illustrative example and on experimental cross-sections of develop-
ing fly embryos. The files can be accessed at https://github.com/paulvill/data-fusion. The file
README.md contains instructions on how to run the code. The main scripts are found in the
examples and experiments folders and consist of:

• spiral_example.m: implements the data fusion algorithm on a non-linear 1-dimensional
trajectory in a 3-dimensional space, nicknamed “spiral”.

• spiral_example_cross_validation.m: implements the K-fold cross-validation on the “spiral”.

• experimental_dataset.m: implements the data fusion on the experimental datasets leading to
a multimodal movie containing the spatio-temporal dynamics of 5 chemical species on top of
morphological changes.

• experimental_dataset_cross_validation.m: implements the K-fold cross validation on the
experimental datasets.

When working on the spiral example, the structure of the code can be decomposed into the
following steps:

1. Simulate the data

• The simulation is performed directly by implementing the system of equations (8) in S1
Text.

2. Pairwise differences and affinity matrix

• d = distances(vecs);
This function calculates the euclidean distance between vectors vecs.

• [A,eps]=AffinityFromDistance(d, numNeighbors)
This function computes an affinity matrix from given distances d. Aij = exp(d2

ij/(
√
εi
√
εj),

where εi a scaling constant around the i-th point. εi is taken to be the average of the
square of the distances from the i-th point to its numNeighbors nearest neighbors.

3. Harmonic extension

Villoutreix et al. 1

https://github.com/paulvill/data-fusion-images
https://github.com/paulvill/data-fusion-images
https://github.com/paulvill/data-fusion-output
https://github.com/paulvill/data-fusion

• [inv_u] = ssl_estimate(W, indl, indu)
This function computes the matrix required to obtain the predicted sample values on
unlabeled data points from labeled data points. W is the affinity matrix containing the
pairwise difference wi,j between all the data points. The output of this function is the
matrix inv_u, which is necessary to compute the predicted labels from the unlabeled
ones, f_u = inv_u*Y where Y correspond to the labels.

When working on the experimental datasets, the structure of the code can be decomposed into
the following steps which include additional preprocessing steps to the artificial toy example:

1. Load datasets

• movies = load_movie_set(movie_opt);
This function takes as input an options structure specifying the location and format of
the movie or snapshots files and returns a structure containing the loaded movies or
snapshots.

2. Preprocessing steps

• IMAGE2 = mean_center_image(IMAGE, CHANNEL, RESIZE_IMAGE, edge_tol)
This function translates an image so that it is (approximately) mean-centered in the
frame. It is used for individual images.

• IMAGE_STACK2 = mean_center_zstack(IMAGE_STACK, CHANNEL, RESIZE_IMAGE, edge_tol)
This function coherently translates a set of z-stacks so that they are (approximately)
mean-centered in the frame. It is used for centering entire movies and avoid potential
flickering.

• IM1 = ROTATE_IMAGE(IM2, R)
This function rotates the image im2 using rotation matrix R

• images = resize_images(images, npixels)
This function resizes a collection of images to the target size defined by npixels.

• images = local_normalize_images(images, sigma, epsilon)
This function locally normalizes images by average value. At each point, the local average
is calculated using the Gaussian kernel of width sigma. The value of the image at that
point is then multiplied by y/(y2 + epsilon2).

• images = increase_contrast_images(images, a, b)
This function increases contrast images through logistic function, 1/(1+exp(−a∗(images−
b))).

3. Scattering transform

• [Wop, filters] = wavelet_factory_2d(size_in, filt_opt, scat_opt)
This function creates a wavelet cascade from morlet filter bank.

• S_images = scat_images(images, Wop, ave_angles, pad_factor)
This functions computes the scattering transform of the images using the wavelet cascade
obtained from wavelet_factory_2d.m

2 Villoutreix et al.

4. Pairwise differences

• D = calc_pairwise_distances(images)
This function calculates pairwise distances between images using euclidean distance.

5. Diffusion maps (to explore the underlying manifold)

• [~, UWighted]= DiffusionMapsFromDistanceGlobal(d,t,numNeighbors)
This function computes diffusion distance and an embedding from a matrix of pairwise
distances using the Diffusion Maps algorithm.

6. Affinity matrix

• [A,eps] = AffinityFromDistance(d, numNeighbors)
This function computes an affinity matrix from given distances. Aij = exp(−d2

ij/(
√
εi
√
εj)),

where εi is a scaling constant around the i-th point and εi is taken to be the average of
the square of the distances from the i-th point to its numNeighbors nearest neighbors.
The value of numNeighbors is 10 in our example. This value can be adjusted depending
on the density of the sampling of the underlying manifold. The output A is the (n x n)
affinity matrix with entries Aij

7. Harmonic extension

• [inv_u] = ssl_estimate(W, indl, indu)
This function computes the matrix required to obtain the predicted sample values on
unlabeled data points from labeled data points. It uses W, the affinity matrix containing
the pairwise difference wi,j between all the data points, indl, the indices of the labeled
points, indu, the indices of the unlabeled points. The output is inv_u, it is the matrix
necessary to compute the predicted labels from the unlabeled ones, f_u = inv_u*Y where
Y correspond to the labels.

Villoutreix et al. 3

