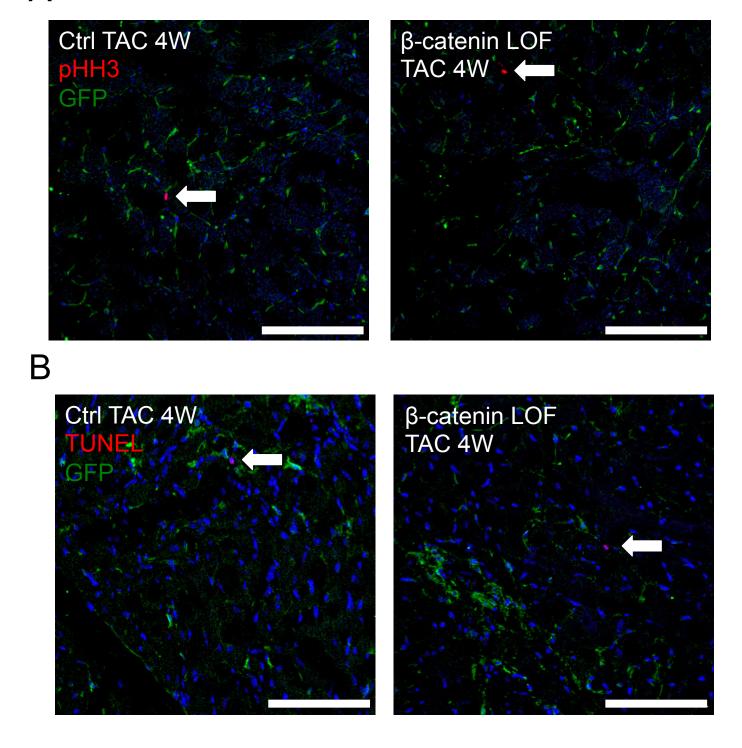
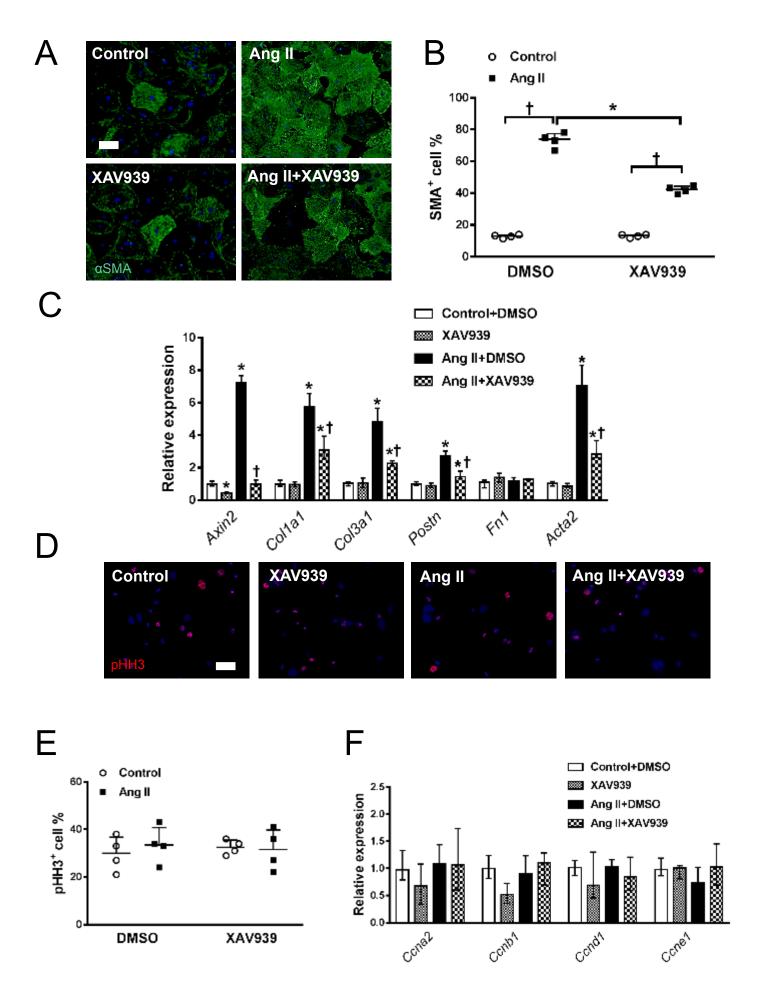

B

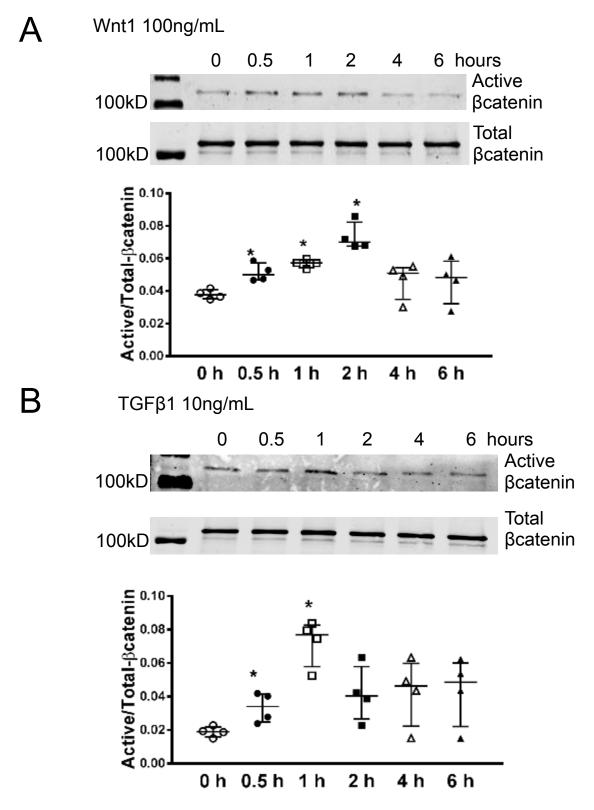
Supplementary Figure 1. Co-localization of Tcf21 and Postn lineage CFs with Collagen 1/3 in mouse hearts subjected to TAC. Representative images of GFP (Green) and Collagen 1/3 (Red) co-staining in $Tcf21^{MCM}$; $R26^{mTmG}$ (A) and $Postn^{MCM}$; $R26^{mTmG}$ (B) hearts 2 weeks (W) or 8W after sham or TAC surgeries are shown. GFP+ cells are present in areas of Col1/3 deposition (arrows). Scale bar=50 μ m.



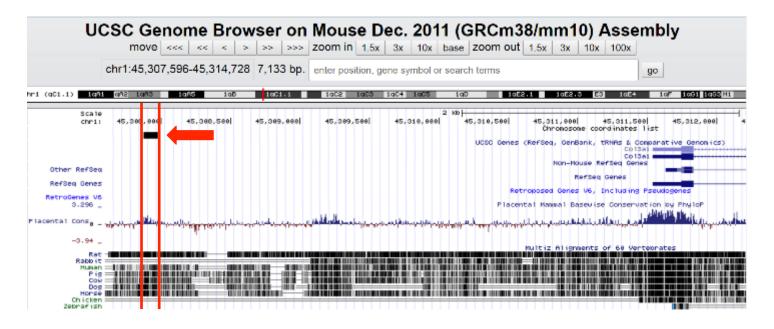
Supplementary Figure 2. Experimental design for conditional β-catenin loss-of-function (LOF) in adult Tcf21 and Postn lineages after cardiac pressure overload (TAC). A) Illustration of the βcatenin LOF locus with *loxp* sites flanking Exons 2 and 6 of the *Ctnnb1* gene. B) *Tcf21*^{MCM}; *Ctnnb1*^{fl/fl} and Postn^{MCM}; Ctnnb I^{fl/fl} mice were used for CF-specific β-catenin LOF. Cre-negative Ctnnb I^{fl/fl} littermate mice were used as control groups. At the age of 2 months, both groups were randomly subjected to either sham or TAC surgery. CF-specific β-catenin LOF was induced after surgery via tamoxifen food (≈40 mg/body weight/day). Mice were maintained on tamoxifen food until termination. Eight weeks post-surgery, echocardiography was performed and mice were sacrificed. Heart samples were harvested for further experiments. C) Tcf21^{MCM};R26^{mTmG};Ctnnb1^{fl/fl} (β-catenin LOF) mice were used to label and trace Tcf21 lineage CFs with β-catenin LOF. *Tcf21^{MCM};R26^{mTmG}*; Ctnnb1^{fl/+} (control) mice were used as controls. At 2 months, both groups were randomly subjected to TAC or sham surgery. CF-specific β-catenin LOF was induced right after surgery via tamoxifen food (≈40 mg/body weight/day). Mice were maintained on tamoxifen food for 4 weeks. Four weeks post-surgery, hearts were collected for immunostaining or isolation of GFP-labeled CFs. D) Loss of β-catenin in GFP⁺ cells from Tcf21^{MCM};R26^{mTmG};Ctnnb1^{fl/fl} (β-catenin LOF) hearts was confirmed by Western blot analysis in N=2 experiments of 3 hearts each. E) Expression of Axin2 mRNA was also significantly reduced in GFP⁺ cells from *Tcf21^{MCM}*; *R26^{mTmG}*; *Ctnnb1^{fl/}*β-catenin LOF hearts compared to controls. N=6 hearts/group. Data points are shown with median and interquartile ranges indicated. Statistical significance was determined using unpaired Mann-Whitney U tests: *P<0.05 versus control.

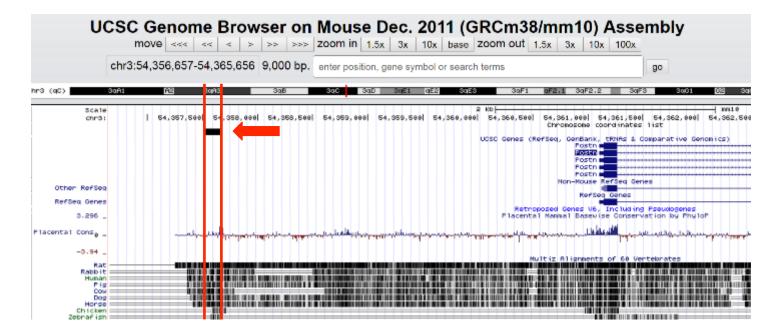


Supplementary Figure 3. Capillary density 8 weeks after TAC. A,C) Representative images of Lectin1 staining in Ctrl and β-catenin LOF hearts 8 weeks after TAC are shown. Myocardial capillary density significantly decreased 8 weeks after TAC but no difference was observed between Ctrl and $Tcf21^{MCM}$; $Ctnnb1^{fl/fl}$ (B) and $Postn^{MCM}$; $Ctnnb1^{fl/fl}$ mice (D) N=5-7 hearts/group. Data points are shown with median and interquartile ranges indicated. Statistical significance was determined using unpaired Mann-Whitney U tests: *P<0.05 vs Ctrl. Scale bar=100μm.

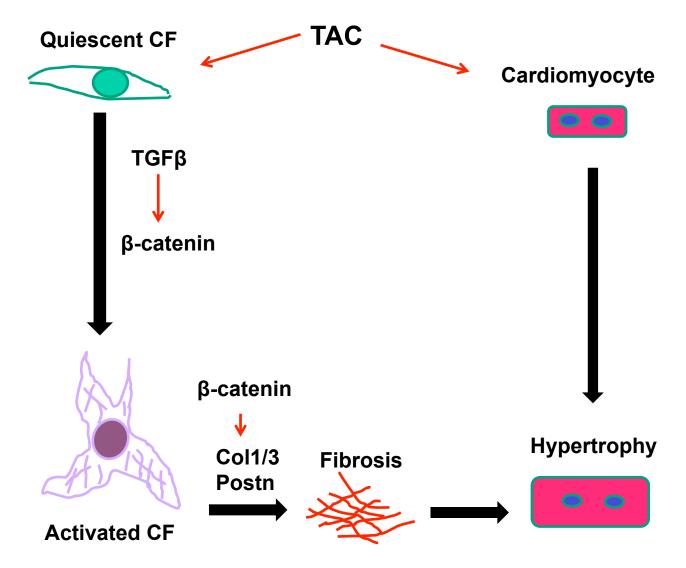

A

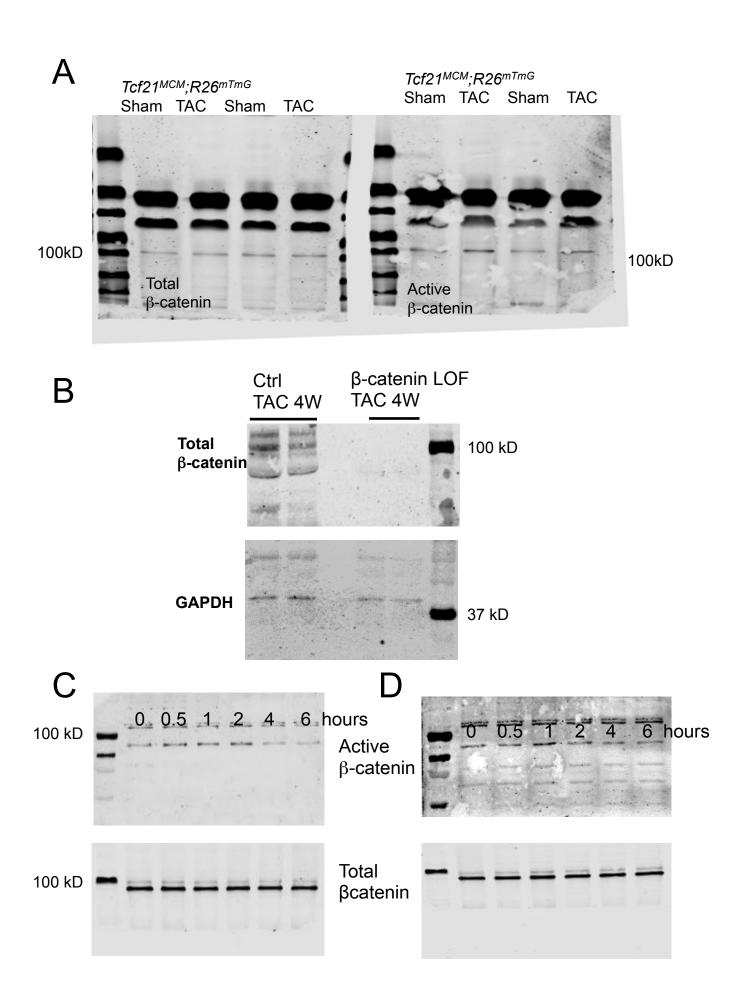
Supplementary Figure 4. Proliferation and apoptosis were barely detected in GFP⁺ Tcf21 lineage CFs 4 weeks after TAC. A) Representative images of GFP (Green) and pHH3 (Red) co-staining in $Tcf21^{MCM}$ β-catenin LOF and control hearts 4 weeks after TAC are shown. B) Representative images of GFP (Green) and TUNEL (Red) co-staining in β-catenin LOF and control hearts 4 weeks after TAC are shown. Very few pHH3⁺/GFP⁺ and TUNEL⁺/GFP⁺ cells (white arrows) were found in myocardium. Scale bar=100μm.


Supplementary Figure 5. Wnt/β-catenin signaling contributes to Angiotensin II (Ang II) induced cardiomyocyte CF activation. A) Representative images of αSMA (Green) staining in cultured P60 CFs under indicated conditions are shown. Scale bar=100μm. B) Ang II (100nM) induces significantly more αSMA+ CFs relative to DMSO controls in cultured P60 CFs. Inhibition of Wnt/β-catenin signaling by XAV939 (5μM) partially abrogated Ang II-induced αSMA expression in CF. *P<0.05 vs DMSO groups, † P<0.05 vs. Control. C) mRNA expression of the Wnt target gene *Axin2*, and ECM genes *Col1a1*, *Col3a1*, *Postn* and *Acta2* in P60 CFs with indicated treatments was measured by qPCR. *P<0.05 vs control,† P<0.05 vs. DMSO. D) Representative images of pHH3 (Red) staining in cultured P60 CFs under indicated conditions are shown. Scale bar=100μm. No difference in proliferating CF percentage (E) and cell-cycle genes (F) *Ccna2*, *Ccnb1*, *Ccnd1* and *Ccne1* expression was observed among groups. N=4 independent cultures/group. Statistical significance was determined by Kruskal-Wallis tests followed Mann-Whitney U tests for pairwise comparisons using Bonferonni adjustments to control for multiple testing. Data points are shown with median and interquartile ranges indicated.


Supplementary Figure 6. Wnt1 and TGFβ1 induce β-catenin activation in cultured P60 CFs. A) Wnt1 induces β-catenin activation in cultured P60 CFs as determined by Western analysis. B) TGFβ1 induces β-catenin activation in cultured P60 CFs as determined by Western analysis. Data points are shown with median and interquartile ranges indicated. Statistical significance was determined using unpaired Mann-Whitney U tests: *P<0.05 versus 0 h. N=4 independent cultures.

B


ChIP sequence tracks for Col3a1


ChIP sequence tracks for *Postn*

Supplementary Figure 7. Genomic sequences containing LEF binding domains for *Col3a1* and *Postn* loci amplified in β -catenin ChIP assays. Screen shots of UCSC genome browser21 (UCSC Genome Browser on Mouse Dec 2011 (GRCm38/mm10)) show LEF binding domains (red arrow) for Col3a1 (A) and Postn (B) that were amplified in β -catenin ChIP assays. These sequences have high conservation among species.

Supplementary Figure 8. Model for Wnt/β-catenin signaling in CFs after pressure-overload injury induced by TAC. In TAC-induced pressure overload injury, Wnt/β-catenin is required for the synthetic phenotype in CFs as indicated by fibrotic gene expression, including *Col1a1*, *Col3a1* and *Postn*. With loss of β-catenin in Tcf21or Postn lineage cells, reduced fibrotic ECM gene expression and cardiomyocyte hypertrophy is the primary outcome after TAC-induced pressure overload injury in mice. Moreover, Wnt/β-catenin may also act downstream in TGFβ induced CF activation. Therefore, Wnt/β-catenin in CFs plays an important and integral role for fibrosis and hypertrophy development.

Supplementary Figure 9. Original Western blot images. Original Western blot images are shown for Figure 1C (A), Supplementary Figure 2D (B), Supplementary Figure 6A (C), and Supplementary Figure 6B (D).

Supplementary Table 1: Cardiac function measured by echocardiography 8 weeks post-TAC or sham surgery:

	Control	Tcf21 ^{MCM} ;Ctnnb1 ^{fl/fl}	Control	Tcf21 ^{MCM} ;Ctnnb1 ^{fl/fl}
	sham N=5	sham N=5	MI N=6	MI N=6
IVSd (mm)	0.78±0.03	0.72±0.09	1.07±0.07*	1.09±0.07*
IVSs (mm)	1.17±0.05	1.04±0.12	1.26±0.05	1.37±0.08
LVIDd				
(mm)	3.67±0.16	3.87±0.06	5.20±0.15*	4.22±0.08*†
LVIDs				
(mm)	2.51±0.13	2.59±0.11	4.55±0.17*	3.38±0.10*†
LVPWd				
(mm)	0.89±0.09	0.70±0.12	1.05±0.07	1.03±0.03
LVPWs				
(mm)	1.10±0.10	1.00±0.13	1.15±0.07	1.17±0.03
EF (%)	60.61±1.88	62.33±2.84	26.98±2.35*	41.16±2.01*†
FS (%)	31.78±1.30	33.24±1.97	12.66±1.19*	19.95±1.14*†
LV mass	109.67±15.40	96.18±17.04	262.83±17.41*	187.21±11.35*†
LV mass				
corrected	88.34±12.32	77.55±13.63	210.86±13.93*	150.36±9.08*†
LV Vol d				
(µL)	57.89±6.21	64.99±2.46	130.40±8.38*	79.54±3.59*†
LV Vol s				
(μL)	22.90±2.79	24.72±2.72	95.86±8.49*	47.01±3.34*†
HR (bpm)	448.80±11.28	458.20±12.94	441.50±5.96	443.67±10.51
Pressure				
gradient				
(mmHg)			51.17±1.72	50.50±2.17

	Control	Postn ^{MCM} ;Ctnnb1 ^{fl/fl}	Control	Postn ^{MCM} ;Ctnnb1 ^{fl/fl}
	sham N=5	sham N=5	MI N=6	MI N=6
IVSd (mm)	0.95±0.05	0.90±0.03	1.12±0.05	1.08±0.08
IVSs (mm)	1.21±0.16	1.19±0.08	1.30±0.04	1.37±0.09
LVIDd				
(mm)	4.02±0.15	4.18±0.06	5.16±0.06*	4.33±0.14*†
LVIDs				
(mm)	2.83±0.15	2.91±0.07	4.75±0.07*	3.50±0.15*†
LVPWd				
(mm)	0.62±0.04	0.65±0.01	1.20±0.12*	1.05±0.10
LVPWs				
(mm)	1.01±0.08	1.11±0.02	1.25±0.11	1.23±0.12
EF (%)	57.44±2.48	58.31±1.87	17.27±1.62*	39.90±2.47*†
FS (%)	29.88±1.65	30.52±1.27	7.85±0.76*	19.32±1.35*†
LV mass	114.58±8.92	119.11±2.61	293.46±17.26*	196.82±18.56*†
LV mass				
corrected	92.27±7.13	95.89±2.09	235.37±13.81*	158.06±14.85*†
LV Vol d				
(µL)	71.57±6.47	77.80±2.49	127.19±3.23*	85.26±6.44*†
LV Vol s				
(µL)	30.82±4.12	32.49±1.98	105.32±3.86*	51.82±5.28*†
HR (bpm)	448.60±15.3	457.20±15.86	453.86±8.21	454.57±11.77
Pressure				
gradient				
(mmHg)			52.57±2.89	52.43±2.89

Data are mean \pm SEM. Significance was determined using Kruskal-Wallis test followed by Bonferroni corrections. *P<0.05 vs. sham; †P<0.05 vs. STG MI. IVSd: interventricular septum thickness in diastole; IVSs: interventricular septum thickness in systole; LVIDd: left ventricular end-diastolic diameter; LVIDs: left ventricular end-systolic diameter; LVPWd: left ventricle posterior wall thickness in diastole/systole; LVPWs: left ventricle posterior wall thickness in diastole/systole; EF: ejection fraction; FS: fractional shortening; LV Vol d: left ventricular end-diastolic volume; LV Vol s: left ventricular end-systolic volume; HR: heart rate.

Supplementary Table 2: Cardiac function measured by echocardiography after tamoxifen treatment for 8 weeks:

	Tcf21 ^{MCM+/-}	Tcf21 ^{MCM-/-}	Postn ^{MCM+/-}	Postn ^{MCM-/-}
		Ctnnb1 ^{fl/fl}		Ctnnb1 ^{fl/fl}
	N=6	N=6	N=6	N=6
IVSd (mm)	0.78±0.02	0.78±0.03	0.93±0.02	0.91±0.02
IVSs (mm)	1.15±0.02	1.27±0.07	1.30±0.03	1.42±0.09
LVIDd (mm)	3.53±0.14	3.79±0.07	3.68±0.13	3.94±0.07
LVIDs (mm)	2.35±0.12	2.48±0.08	2.50±0.12	2.66±0.08
LVPWd (mm)	0.79±0.07	0.74±0.04	0.94±0.07	0.89±0.05
LVPWs (mm)	1.00±0.08	1.07±0.08	1.15±0.08	1.22±0.08
EF (%)	63.35±2.07	64.66±1.65	61.26±2.11	61.64±1.37
FS (%)	33.67±1.48	34.79±1.19	32.28±1.45	32.67±0.94
LV mass	93.67±11.51	99.63±3.60	126.76±11.01	134.23±5.58
LV mass				
corrected	75.53±9.21	80.30±2.88	102.01±8.81	107.99±4.46
LV Vol d (µL)	52.60±5.15	61.89±2.70	57.96±4.96	67.9±3.02
LV Vol s (µL)	19.48±2.48	22.00±1.82	22.64±2.53	26.21±1.99
HR (bpm)	454.33±9.52	453.17±8.74	453.17±9.46	450.17±8.70

Data are mean \pm SEM.

Supplementary Table 3: Primers for qRT-PCR and ChIP

Genotyping primers			
Gene	Forward Sequence	Reverse Sequence	
Cre	GCGGTCTGGCAGTAAAAACTATC	GTGAAACAGCATTGCTGTCACTT	
Ctnnb l ^{fl/fl}	AAGGTAGAGTGATGAAAGTTGTT	CACCATGTCCTCTGTCTATTC	
$ROSA^{mTmG}$	CTCTGCTGCCTCCTGGCTTCT	TCAATGGGCGGGGGTCGTT	
qRT-PCR	primers		
Gene	Forward Sequence	Reverse Sequence	
<i>L7</i>	AAGACGAAGGAGCTGCAGAAC	GAAGCTCATCTATGAGAAGGC	
Axin2	GAGTAGCGCCGTGTTAGTGACT	CCAGGAAAGTCCGGAAGAGGTATG	
Collal	TCCTGACGCATGGCCAAGAAGACA	TCCGGGCAGAAAGCACAGCACTC	
Col3a1	GCACAGCAGTCCACCGTAGA	TCTCCAAATGGGATCTCTGG	
Postn	CGAAGGGACAGTATCTCCA	AGGTCGGTGAAAGTGGTTTG	
Fn1	ATGTGGACCCCTCCTGATAGT	GCCCAGTGATTTCAGCAAAGG	
Acta2	GTCCCAGACATCAGGGAGTAA	TCGGATACTTCAGCGTCAGGA	
Myh7	ATGTGCCGGACCTTGGAAG	CCTCGGGTTAGCTGAGAGATCA	
ChIP prin	ners		
Gene	Forward Sequence	Reverse Sequence	
Axin2	P+1828: TCCCGTGTCACTGTTTCT	P+1944: AGGTGCTCGTCTCAAGTAT	
Col3a1	P-4700:	P-4566:	
	ACCAACAGATTGGGAAAGG	CTCGGGTGAGAATTCTTTGT	
Postn	P-3585:	P-3458:	
	GGAAGAGACTGCTAATTCCTAC	GAGACATCTAGTGGAGAAAGTG	
negative	ATGGTTGCCACTGGGGATCT	TGCCAAAGCCTAGGGGAAGA	