
Supplementary Note 1: Details of the model calculation shown in Figure 1(b) 

We begin with a continuous wave carrier, at frequency f0 = 300 GHz. We then modulate this 
carrier using ASK modulation, producing sidebands symmetrically about f0.  These sidebands are 
spaced by the frequency of the modulation, ∆f (in our experiments, this has various values 
between 1.25 GHz and 6 GHz). Thus, we generate sidebands centered at ±∆f, ±2∆f, ±3∆f, etc. 

We then detect this signal using an incoherent detector (power only, not phase). This detector has 
a frequency-dependent detection sensitivity, due to the fact that different frequencies emerge 
from the demux at different angles.  Thus, the detector’s spectral sensitivity is determined by its 
angular aperture relative to the output of the leaky-wave antenna, and the angular acceptance of 
the horn antenna into which the radiation is coupled.  For this analysis, we model this angular 
sensitivity using a simple model function which captures the essential behavior, and we neglect 
any other frequency dependence in the detection process. 

This frequency-dependent detection is essentially a filter function, which peaks at a frequency 
determined by the angular position of the receiver, and falls off on either side.  We assume that 
the filter is symmetric in angle, and we assume a parabolic shape as a function of angle φ, so 
that: 

 ( ) ( )21 CG = − −φ β φ φ  (1) 

where φC is the angle at which the center of the receiver is located and where β is a scale 
parameter which determines the angular width of the detection. We choose the value of β such 
that the width of the function is equivalent to the angular acceptance aperture of the detector in 
our experiments. A value of β = 14.3 (for φ and φC expressed in radians) gives an angular width 
of 2 1 0.53 radians.=β   

This filter function G(φ) is expressed in a linear (not dB) scale, so that the fraction of power at 
frequency f emitted by the demux and detected by the receiver is simply given by G(φ(f)). Of 
course, there is a one-to-one (but not linear) mapping between angle and frequency, as expressed 
by Eq. (3) in the text. At the center of the filter, G(φC) = 1 (i.e., the signal is not degraded at all 
by angular effects). For angles φ far from φC, this analytic form for G(φ) becomes negative.  For 
these values of φ, we assume that there is zero power detected (i.e., the signal simply misses the 
detector), and so we set G = 0. 

We note that this is a rather flat filter, in the sense that G(φ) does not change very much in the 
range of angles that define the modulation bandwidth. For example, if the filter is centered at the 
angle corresponding to the carrier frequency f0, then sidebands located ±10 GHz away from the 
carrier frequency experience less than a 1% decrease in detection sensitivity (i.e., G±10 GHz sideband 
≈ 0.99). 

For a given detector angle φC, we can compute the value of G for the two lowest-order sidebands 
f0 ± ∆f, located at angles φ+ and φ−, respectively: 
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Since ( ) ( )G G+ −≠φ φ , the two sidebands are detected asymmetrically. This asymmetric 
situation can be described as a superposition of amplitude modulation (for which the two 
sidebands are exactly in phase) and phase modulation (for which the two sidebands are π out of 
phase). This superposition is governed by a pair of linear equations, which describe the fact that: 

(a) for the larger of the two sidebands (say, G(φ+)), the amplitude and phase modulated 
signals coherently add; and 
(b) for the smaller of the two (say, G(φ−)), the amplitude and phase modulated signals 
coherently subtract. 

Thus, we have: 
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and therefore the amplitude-modulated portion of the signal has a relative amplitude of  

 2
G GA + −+

=   (4) 

Our detector, which is insensitive to phase, detects only this amplitude-modulated fraction of the 
signal.  Thus, an asymmetric detection leads to a degraded signal-to-noise. Assuming that the 
noise is independent of angle, we determine the change in the signal-to-noise induced by this 
angular filtering as the square of the AM-modulated fraction of the signal: 

 2
/S N A∆ =   (5) 

We note that, due to the nonlinear mapping between angle and frequency, this change in the 
signal-to-noise does not vanish even if the detector is centered precisely at the angle 
corresponding to f0 (i.e., since the filter is symmetric in angle, it is therefore not perfectly 
symmetric in frequency).  However, for a reasonable filter width, this effect is quite small; even 
for a modulation rate of ∆f = 10 Gb/sec, it amounts to only about a 1% decrease in the value of A 
at f0. Thus we may ignore this effect in our analysis. 

We must now convert this signal-to-noise degradation into a degradation in the BER. For 
incoherently detected ASK modulation, the BER is related to the energy/noise ratio by [1]: 
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This represents the change in BER as a function of detector angle.  However, this analysis 
ignores the fact that the BER depends on input power, even if the detector is positioned at the 
optimal angle. Since the BER depends on power level, it is necessary to normalize the minimum 
value of this function to the appropriate BER at the power level used in the measurements. This 
power dependence can be extracted from the data shown in Fig. 2.  We note that, at a given input 
power, the log(BER) depends on the data rate (i.e., on ∆f), in a fashion which is approximately 
linear with data rate. Thus, we normalize the computed BER values according to: 
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where N(∆f) is a normalization factor that varies linearly with ∆f. From Fig. 2, we extract values 
for this linear normalization factor: ( ) 0.74 15.2N f f∆ = ∆ − . Also, log(BER)min is the minimum 
value of the computed BER curve in the absence of normalization, given by: 
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This data-rate-dependent normalization procedure is reasonable because in this analysis we are 
only interested in the change in BER due to a change in the angular position of the receiver, not 
in the absolute BER value at any given angle.   

The result of this model calculation, a plot of log(BER)norm versus φC for different values of ∆f, is 
shown in Fig. 1(d) with no fit parameters.  This family of curves, plotted for the same four values 
of ∆f as used in the experiment (with the same color scheme), satisfactorily reproduces the 
measured angular width of the BER, as well as the weak dependence on data rate. 
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