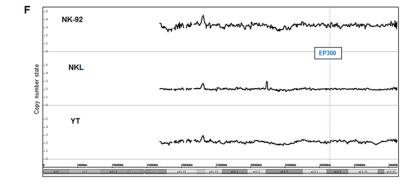
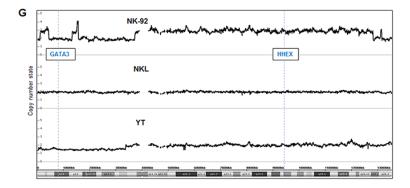

## NKL homeobox gene MSX1 acts like a tumor suppressor in NKcell leukemia


## SUPPLEMENTARY MATERIALS




Supplementary Figure 1: Genomic profiling data. Data from selected chromosomes are shown to indicate copy number alterations and particular gene loci, including (A) MSX1, (B) MIR17HG, (C) SMAD3. (*Continued*)

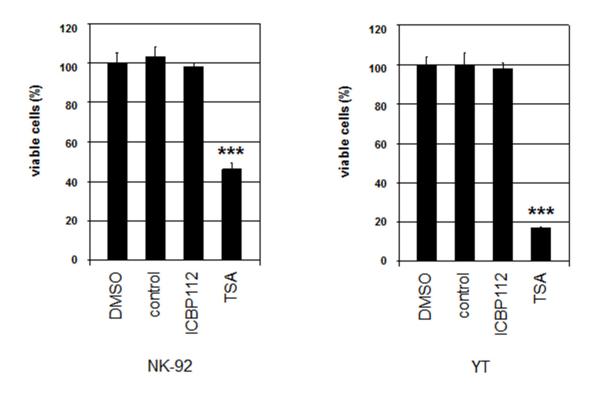








Supplementary Figure 1: Genomic profiling data. (*Continued*)Data from selected chromosomes are shown to indicate copy number alterations and particular gene loci, including (D) IL7R, (E) MIR155HG, (F) EP300, (G) GATA3 and HHEX.


| Category     | ≑ <u>Term</u>                               | ¢ RT | Genes        | Count 4 | <u>%</u> ( | P-Value | ¢ <u>Benjamini</u> ¢ |
|--------------|---------------------------------------------|------|--------------|---------|------------|---------|----------------------|
| KEGG_PATHWAY | Metabolic pathways                          | RT   |              | 79      | 9,7        | 2,5E-2  | 2,8E-1               |
| KEGG_PATHWAY | Cell cycle                                  | RT   | <b>=</b>     | 36      | 4,4        | 2,1E-17 | 5,6E-15              |
| KEGG_PATHWAY | Biosynthesis of antibiotics                 | RT   | <b>=</b>     | 24      | 2,9        | 5,6E-4  | 2,1E-2               |
| KEGG_PATHWAY | HTLV-I infection                            | RT   | <b>a</b>     | 24      | 2,9        | 6,5E-3  | 1,2E-1               |
| KEGG_PATHWAY | Epstein-Barr virus infection                | RT   | Ξ.           | 21      | 2,6        | 1,8E-3  | 5,2E-2               |
| KEGG_PATHWAY | Viral carcinogenesis                        | RT   | <b>a</b>     | 21      | 2,6        | 4,4E-3  | 9,2E-2               |
| KEGG_PATHWAY | Oocyte meiosis                              | RT   | Ξ            | 20      | 2,4        | 2,4E-6  | 3,2E-4               |
| KEGG_PATHWAY | Purine metabolism                           | RT   | <b>a</b> (1) | 20      | 2,4        | 1,8E-3  | 5,6E-2               |
| KEGG_PATHWAY | Huntington's disease                        | RT   | Ξ.           | 18      | 2,2        | 2,1E-2  | 2,5E-1               |
| KEGG_PATHWAY | RNA transport                               | RT   | <b>a</b> (1) | 17      | 2,1        | 1,6E-2  | 2,2E-1               |
| KEGG_PATHWAY | Ribosome                                    | RT   | ÷            | 16      | 2,0        | 4,2E-3  | 9,6E-2               |
| KEGG_PATHWAY | Biosynthesis of amino acids                 | RT   | 2 - C        | 15      | 1,8        | 2,0E-5  | 1,8E-3               |
| KEGG_PATHWAY | Carbon metabolism                           | RT   | ÷            | 15      | 1,8        | 1,9E-3  | 4,9E-2               |
| KEGG_PATHWAY | p53 signaling pathway                       | RT   | 2 - C        | 14      | 1,7        | 3,0E-5  | 2,0E-3               |
| KEGG_PATHWAY | Progesterone-mediated oocyte maturation     | RT   | ÷            | 14      | 1,7        | 4,7E-4  | 2,0E-2               |
| KEGG_PATHWAY | Protein processing in endoplasmic reticulum | RT   | 2 - C        | 14      | 1,7        | 9,7E-2  | 6,0E-1               |
| KEGG_PATHWAY | Pvrimidine metabolism                       | RT   | ÷            | 13      | 1,6        | 7,1E-3  | 1,2E-1               |
| KEGG_PATHWAY | Hepatitis B                                 | RT   | 2 - C        | 13      | 1,6        | 7,1E-2  | 5,7E-1               |
| KEGG_PATHWAY | Oxidative phosphorylation                   | RT   | ÷            | 12      | 1,5        | 8,2E-2  | 5,9E-1               |
| KEGG_PATHWAY | Sphingolipid signaling pathway              | RT   | ÷            | 11      | 1,3        | 9,1E-2  | 6,2E-1               |

| Category     | ⇔ <u>Term</u>                             | ¢ RT      | Genes        | Count 1 | <u>%</u> \$ | P-Value \$ | <u>Benjamini</u> 🖨 |
|--------------|-------------------------------------------|-----------|--------------|---------|-------------|------------|--------------------|
| KEGG_PATHWAY | Pathways in cancer                        | RT        | =            | 23      | 3,5         | 1,5E-2     | 1,2E-1             |
| KEGG_PATHWAY | Natural killer cell mediated cytotoxicity | RT        | <b>a</b> 100 | 20      | 3,0         | 2,5E-8     | 5,5E-6             |
| KEGG_PATHWAY | Chemokine signaling pathway               | RT        | ÷            | 18      | 2,7         | 2,0E-4     | 8,7E-3             |
| KEGG_PATHWAY | Osteoclast differentiation                | RT        | <b>=</b>     | 17      | 2,6         | 9,1E-6     | 9,7E-4             |
| KEGG_PATHWAY | FoxO signaling pathway                    | RT        | Ξ.           | 16      | 2,4         | 4,9E-5     | 3,5E-3             |
| KEGG_PATHWAY | MAPK signaling pathway                    | <u>RT</u> | <b>a</b> (1) | 16      | 2,4         | 2,9E-2     | 1,7E-1             |
| KEGG_PATHWAY | Tuberculosis                              | RT        | Ξ.           | 15      | 2,3         | 2,9E-3     | 4,4E-2             |
| KEGG_PATHWAY | Endocytosis                               | <u>RT</u> | <b>a</b>     | 15      | 2,3         | 5,9E-2     | 2,6E-1             |
| KEGG_PATHWAY | Leukocyte transendothelial migration      | <u>RT</u> | Ξ.           | 14      | 2,1         | 1,9E-4     | 9,9E-3             |
| KEGG_PATHWAY | Rap1 signaling pathway                    | RT        | <b>E</b>     | 14      | 2,1         | 2,8E-2     | 1,8E-1             |
| KEGG_PATHWAY | Non-alcoholic fatty liver disease (NAFLD) | <u>RT</u> | ÷            | 13      | 2,0         | 5,5E-3     | 6,8E-2             |
| KEGG_PATHWAY | Focal adhesion                            | <u>RT</u> | a            | 13      | 2,0         | 5,0E-2     | 2,5E-1             |
| KEGG_PATHWAY | Regulation of actin cytoskeleton          | <u>RT</u> | ÷            | 13      | 2,0         | 5,8E-2     | 2,6E-1             |
| KEGG_PATHWAY | Ras signaling pathway                     | RT        | ÷            | 13      | 2,0         | 8,6E-2     | 3,1E-1             |
| KEGG_PATHWAY | Cytokine-cytokine receptor interaction    | RT        | ÷            | 13      | 2,0         | 9,5E-2     | 3,2E-1             |
| KEGG_PATHWAY | T cell receptor signaling pathway         | <u>RT</u> | ÷            | 12      | 1,8         | 7,5E-4     | 1,8E-2             |
| KEGG_PATHWAY | Sphingolipid signaling pathway            | RT        | ÷            | 12      | 1,8         | 2,6E-3     | 4,6E-2             |
| KEGG_PATHWAY | Proteoglycans in cancer                   | RT        | ÷            | 12      | 1,8         | 8,1E-2     | 3,0E-1             |
| KEGG_PATHWAY | NF-kappa B signaling pathway              | RT        | ē            | 11      | 1,7         | 7,3E-4     | 2,0E-2             |
| KEGG_PATHWAY | Neurotrophin signaling pathway            | RT        | ÷            | 11      | 1,7         | 7,9E-3     | 8,2E-2             |
| KEGG_PATHWAY | Adrenergic signaling in cardiomyocytes    | RT        | ÷            | 11      | 1,7         | 2,8E-2     | 1,8E-1             |
| KEGG_PATHWAY | Transcriptional misregulation in cancer   | RT        | ÷            | 11      | 1,7         | 6,3E-2     | 2,6E-1             |
| KEGG_PATHWAY | Influenza A                               | RT        | ÷            | 11      | 1,7         | 7,6E-2     | 2,9E-1             |
| KEGG_PATHWAY | Fc epsilon RI signaling pathway           | <u>RT</u> | ÷            | 10      | 1,5         | 4,8E-4     | 1,7E-2             |
| KEGG_PATHWAY | 8 cell receptor signaling pathway         | RT        | ÷            | 10      | 1,5         | 5,3E-4     | 1,6E-2             |
| KEGG_PATHWAY | Ec gamma R-mediated phagocytosis          | <u>RT</u> | ÷            | 10      | 1,5         | 2,2E-3     | 4,2E-2             |
| KEGG_PATHWAY | Choline metabolism in cancer              | RT        | ÷            | 10      | 1,5         | 7,6E-3     | 8,7E-2             |
| KEGG_PATHWAY | Chagas disease (American trypanosomiasis) | <u>RT</u> | ÷            | 10      | 1,5         | 9,1E-3     | 9,0E-2             |
| KEGG_PATHWAY | Platelet activation                       | <u>RT</u> | ÷            | 10      | 1,5         | 3,4E-2     | 1,9E-1             |
| KEGG_PATHWAY | Tight junction                            | <u>RT</u> | ÷            | 10      | 1,5         | 4,5E-2     | 2,3E-1             |
| KEGG_PATHWAY | Cell adhesion molecules (CAMs)            | <u>RT</u> | ÷            | 10      | 1,5         | 5,5E-2     | 2,6E-1             |
| KEGG_PATHWAY | Hepatitis B                               | RT        | ÷            | 10      | 1,5         | 6,1E-2     | 2,5E-1             |
| KEGG_PATHWAY | Oxytocin signaling pathway                | <u>RT</u> | ÷            | 10      | 1,5         | 9,3E-2     | 3,2E-1             |

**Supplementary Figure 2: Gene-annotation enrichment analysis data (DAVID).** The top 1000 differentially expressed genes between NK-cell lines and primary NK-cells were analyzed to identify deregulated cell functions according to KEGG pathways. Aberrantly activated functions are shown above, suppressed functions below.

| H.sapiens<br>G.gorilla<br>M.mulatta<br>C.familiaris<br>B.taurus<br>S.scrofa<br>M.musculus<br>G.gallus<br>X.tropicalis<br>D.rerio | exon 1<br>MDGPTRGHGLrkkrrsrsqrdrerrsrgglgagaaggggagrtralslaSSSGSDKEDNG<br>MDGPTRGHGLRKKRRSRSQRDRERRSRGGLGAGAAGGGGAGRTRALSLASSSGSDKEDNG<br>MDGPTRGHGLRKKRRSRSQRDRERRSRGGLGAGAAGGGGAGRTRALSLASSSGSDKEDNG<br>MDGPTRGHGLRKKRRSRSQRDRERRSRGGLGAGAAGGGGAGRTRAPSLASSSGSDKEDNG<br>MDGPTRGHGLRKKRRSRSQRDRERRSRGGLGAGAAGGGGAGRTRAPSLASSSGSDKEDNG<br>MDGPTRGHGLRKKRRSRSQRDRERRSRGGLGAGAAGGGGAGRTRAPSLASSSGSDKEDNG<br>MDGPTRGHGLRKKRRSRSQRDRERRSRGGLGAGAAGGGGAGRTRAPSLASSSGSDKEDNG<br>MDGPTRGHGLRKKRRSRSQRDRERRSRGGLGAGAAGGGGAGRTRAPSLASSSGSDKEDNG<br>MDGPTRGHGLRKKRRSRSQRDRERRSRGGLGAGAAGGGGAGRTRAPSLASSSGSDKEDNG<br>MDGPTRGHGLRKKRRSRSQRDRERRSRGGLGAAGGIGAGRTRAPSLASSSGSDKEDNG<br>MDGPARCNGLRKKRRSRSQRDRERRSRGLGVARTGSLLSSSGSEKEDNE<br>MDGP-RCSGIRKKRKSRSVRNRERISNGIRNNHVRGSVLRFSSDSEKED-G<br>**** * *:****:*: *:*: : * * ::*:**                                                                                           | 60<br>60<br>60<br>60<br>60<br>58<br>49                      |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| H.sapiens<br>G.gorilla<br>M.mulatta<br>C.familiaris<br>B.taurus<br>S.scrofa<br>M.musculus<br>G.gallus<br>X.tropicalis<br>D.rerio |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>120<br>120<br>120<br>120<br>120                      |
| H.sapiens<br>G.gorilla<br>M.mulatta<br>C.familiaris<br>B.taurus<br>S.scrofa<br>M.musculus<br>G.gallus<br>X.tropicalis<br>D.rerio | LTKKKREALTNGLSFHSKKSRLSHPHHYSSDRENDRNLCQHLGKRKKMPKALRQLKPGQN<br>LTKKKREALTNGLSFHSKKSRLSHPHHYSSDRENDRNLCQHLGKRKKMPKALRQLKPGQN<br>LTKKKREALTNGLSFHSKKSRLSHPHHYSSDRENDRNLCQHLGKRKKMPKALRQLKPGQN<br>LIKKKREALTNGLSFHSKKSRLSHPHHYSSDRENDRNLCQHLGKRKKMPKGLRQLKPGQN<br>LTKKKREALTNGLSFHSKKSRLSHPHHYSSDRENDRNLCQHLGKRKKMPKGLRQLKPGQN<br>LTKKKREALTNGLSFHSKKSRLSHPHHYSSDRENDRNLCQHLGKRKKMPKGLRQLKPGQN<br>LTKKKREALTNGLSFHSKKSRLSHPHHYSSDRENDRNLCQHLGKRKKMPKGLRQLKPGQN<br>LTKKKREALTNGLSFHSKKSRLSHPHHYSSDRENDRNLCQHLGKRKKMPKGLRQLKPGQN<br>LTKKKREALTNGLSFHSKKSRLSHPHHYSSDRENDRNLCQHLGKRKKMPKGLRQLKPGQN<br>LTKKKREALTNGLSFHSKKSRLSHSHHYSSDRENDRNLCQHLGKRKKLLKGLRQLKPGQN<br>LKKKREALTNGLSYLPKKNRLHH-HQYSSDRENDRNLCQHLGKRKKLLKGLRQLKPGQN<br>LTKKKREILSNGLPYKSQK-NNKLSPNYGSDRENDRSLCQQFG-KKTFQKRYKQLKARQN<br>LRKKKPGRVANGLSLDLHKDRLNHSNHQHSDQENNPRLARTHS-KKKKKKHLQKLKPGQN                                                      | 180<br>180<br>180<br>180<br>180<br>180<br>180<br>174<br>167 |
| H.sapiens<br>G.gorilla<br>M.mulatta<br>C.familiaris<br>B.taurus<br>S.scrofa<br>M.musculus<br>G.gallus<br>X.tropicalis<br>D.rerio | exon 4   exon 5   exon 6<br>SCRDSDSESASGESKGFHRSSSRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>SCRDSDSESASGESKGFHRSSSRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>SCRDSDSSASGESKGFHRSSSRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>SCRDSDSSASGESKGFHRSSSRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>SCRDSDSESASGESKGFHRSSSRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>SCRDSDSESASGESKGFHRSSSRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>SCRDSDSESASGESKGFHRSSSRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>SCRDSDSESASGESKGFHRSSSRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>NCRDSDSESASGESKGFHRSSSRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>NCRDSDIESPMKETKPSKRNASRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>NCRDSDIESPMKETKPSKRNASRERLSDSSAPSSLGTGYFCDSDSDQEEKASDASSEKLF<br>NCRDSDIESPMKETKPSKRNASRERLSDSSAPSSLGTGYFCDSDSDQEEKVSDASSEKLF<br>NCKDSDSESVSGESKPSIRSSSRDRLTDPSAPSKTGLGHYCDSESDQEDKGSDASSEKLF<br>.*:*** :* *:* *:****** | 240<br>240<br>234<br>227                                    |

**Supplementary Figure 3: AUTS2 alignment.** The illustrated alignment was obtained from Beunders et al. (2013) [50], showing the N-terminal part of AUTS2 from the indicated vertebrates. Conserved amino acid residues are indicated by an asterisk, similar residues by dots. The red stars indicate the here identified mutated positions, the red arrow marks the position of deduced protein truncation.



**Supplementary Figure 4: Cell viability analysis.** MTT assay was performed in NK-92 (left) and YT (right) after treatment with histone acetyltransferase inhibitor ICBP112 and histone deacetylase inhibitor TSA. The statistical significance is indicated by asterisks.

Supplementary Table 1: Comparative expression profiling. The data demonstrate gene activities from primary NK-cells and NK-cell lines, showing (A) overexpressed and (B) downregulated genes between these two groups. Genes analyzed in this study are indicated in red and green, respectively.

See Supplementary Files 1A and 1B