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Ex vivo multiplex profiling of protein tyrosine kinase activities 
in early stages of human lung adenocarcinoma

SUPPLEMENTARY MATERIALS

Supplementary Text 1: classification analysis 
using partial least squares discriminant analysis

Partial Least Squares Discriminant Analysis (PLS-
DA) is a supervised classification method that has been 
widely applied to classification problems. The method is 
related to classical Linear Discriminant Analysis (LDA). 
However, PLS-DA readily works when the number of 
variables is larger than the number of observations and 
may be particularly suited to cases when there is a high 
degree of collinearity between the predictor variables 
[1]. PLS-DA usually ranks among the best performing 
classifiers with PamChip® peptide microarray data and 
was previously applied to classification problems with 
clinical samples (e.g. [2, 3]).

In the present study we apply PLS-DA without any 
explicit selection of discriminative peptides. PamChip® 
kinase activity arrays contain up to 144 substrate peptides 
of which typically 80-120 peptides are retained for further 
analysis by applying an overall signal threshold during the 
data preprocessing stages. Hence, a subset of peptides is 
selected (here 95 and 76 peptides, respectively) without 
consideration of their discrimination between the classes 
of interest. During training of the PLS-DA classifier all 
retained variables are then implicitly weighted for their 
importance in discriminating between the classes. As 
optimizing a model for predictive performance may not 
be the best way to identify variables of biological interest 
[4, 5]), we prefer other forms of comparative analysis as a 
basis for biological interpretation.

An estimate of the predictive performance (e.g. 
the correct classification rate) when it is applied to new 
observations is best obtained by application to a large set 
of observation of known class, but with the class blinded 
until after the predictions have been submitted. More 
often than not this is infeasible, e.g. because the number 
available observations with known class is too low. In 
that case, cross-validation (CV) can be used to provide 
an estimate of predictive performance with new samples. 
Proper CV will yield an unbiased estimate of prediction 
performance (note: even in the presence of classifier 
overfitting). However, care must be taken to make sure 
that on each iteration of CV the classifier is constructed 
independent of the observations that are used for testing 
[6, 7]. Specifically for the present PLS-DA method, an 
optimal number of PLS components (i.e. the dimension 
reduction) must be selected. This was done by cross 

validation of the training set only (double cross-validation, 
e.g. [8]). Also, per variable mean and standard deviation 
used for autoscaling of the variables were estimated on 
the respective training sets only, and applied to the test 
samples before prediction. In this way, we have applied 
leave-one-out-cross-validation (LOOCV) to our initial 
smaller training set and 10-fold CV to the final pooled 
data set. For the latter, repeated 10-fold cross validation 
yielded a stable result, in most repeats the performance 
quoted in the main text was obtained (correct classification 
70%, PPV 85%, NPV 55%). For a few repeats, the correct 
classification rate was somewhat higher. The selected 
number of PLS components was 1, throughout.

The approximate 2:1 ratio of “long-term survivors” 
and “short-term survivors” observations in the final pooled 
set in this study had to be taken into account while training 
the classifier. This was done by applying a Random Under 
Sampling (RUS) scheme in which for each training-set a 
set of 20 sub-classifiers were trained on all the available 
“short-term survivors” and an equally large random 
subset of “long-term survivors”. A prediction score for 
new samples was calculated as the median prediction 
score of the 20 sub-classifiers. A permutation test was run 
in which the full 10-fold cross validation procedure was 
repeated 500 times but with the “long-term survivor” and 
“short-term survivor” class labels randomly re-assigned 
to the samples. The empirical cumulative distribution 
of the correct classification rate that was obtained under 
this condition of “uninformative data” is shown in 
Supplementary Figure 7. It may be seen that the cross 
validation procedure is essentially unbiased because the 
median correct classification rate under label permutation 
is near 50% (51%). Also, a correct classification rate ≥ 
70% is obtained only in 2-3% of the permuted cases, 
which shows that the classifier obtained with correct label 
assignment has a significant prediction performance (p < 
0.05).
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Supplementary Figure 1: Training cohort classification of TNM stage 1 LuAdCa patients in long- versus short-term 
survivors according to their substrate phosphorylation status in the presence of gefitinib. PLS-DA class prediction for 
TNM stage 1 LuAdCa patients based on 95 peptides. The prediction score was obtained by LOOCV of the PLS-DA classifier. The rate of 
correct classification was 70% (or 65-70% by repeated 10-fold cross-validation). In this prediction score chart, samples with a prediction 
score smaller than zero were allocated to the short-term survivors (red coded) or to the long-term survivors (blue coded) when prediction 
performance values were larger than zero. A prediction score situated further away from the decision boundary set at 0 was less likely to 
actually belong to the opposite group.
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Supplementary Figure 2: Tyrosine phosphorylation of selected peptide substrates in non-neoplastic versus LuAdCa 
resection specimens. The 95 PCA-selected peptides are represented as “norS” values, a Log2-transformed ratio of tyrosine phosphorylation 
for non-neoplastic versus TNM stage 1 LuAdCa resection specimens. The patient LuAdCa resection specimens are plotted in a heatmap 
according to either long- or short-term survivor status. Tyrosine phosphorylation is scaled per peptide, and an orange colour indicates higher 
phosphorylation in tumour versus non-neoplastic samples.
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Supplementary Figure 3: Presence or absence of OCT in extracted protein lysates induce differences in inhibition 
of overall kinase activity. Overall inhibition (y-axis) is plotted as a function of the LuAdCa resection specimen collection time scale 
(x-axis) from the first collection in January 2003 to the last collection in December 2010. Peptide phosphorylation inhibition decreased 
over time along the y-axis. LuAdCa resection specimens embedded with OCT are represented by blue circles, whereas specimens without 
OCT are represented by red circles.
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Supplementary Figure 4: Estimate and correction applied for the difference in overall peptide phosphorylation 
observed in the presence or absence of OCT. OCT was recovered at the time we prepared LuAdCa resection specimen cryosections 
and accumulated into protein lysates. The whitish OCT component dissolved into the protein lysates was then deposited at each pumping 
cycle over the time course of the kinase assay into the porous ceramic material of the microarray. S4a: Boxplots of uncorrected data for 
phosphorylation of a single peptide PLCG1 (764-778) indicate the data for samples embedded in the presence or the absence of OCT. 
Median centring was performed on the “inhS” values of each peptide, separately for the samples with or without OCT. Median values 
are represented in the box-blot by a line. A lower degree of inhibition can be noted for the OCT-embedded samples compared with the 
non- OCT embedded samples, but the inhibition for long-term survivors was higher than that for short-term survivors in both groups. 
S4b: Typical effect of OCT correction. The data for the two types of sample preparations are on the same scale. Long-term and short-term 
survivors are presented in blue and red colours, respectively. This estimate was calculated for all the 144 peptides.
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Supplementary Figure 5: Kinases and pathways affected by ex vivo exposure to gefitinib. Pathway analysis performed in 
MetaCoreTM (Thomson Reuters) with kinase substrates of long-term survivors identified as mostly affected by gefitinib inhibition in our ex 
vivo kinase assay. The kinases involved in the JAK/STAT (EPOR, JAK1, JAK2, FES) or FER/FES (FER, FES, CTNNB1) pathways are 
shown in red circles. Unrepresented in this figure are members of the EphrinA signalling pathways (EPHA1, EPHA2, EPHA7, LCK) and 
of the cytoskeletal remodelling PDGFR pathways (PDGFRB, P85A, PAXI).
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Supplementary Figure 6: Exploratory PCA in the presence of gefitinib. Exploratory PCA for the 20 samples selected to obtain 
the initial model. Each point represents the PCA score for PC1-3 for each of the patient LuAdCa specimens and is coloured according to 
the survival status of the corresponding patient.
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Supplementary Figure 7: Empirical cumulative distribution of the correct classification rate obtained from a 
permutation test. The analysis shown in Figure 2 was repeated 500 times with random re-assignment of the “long-term survivor” and 
the “short-term survivor” class label to the observations. The median correct classification rate under permutation was 51%, and the 95% 
quantile point of the distribution was at 68% with 2-3% of permuted cases resulting in a correct classification rate > 70%.
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Supplementary Table 1: Detailed clinical characteristics of the patients

See Supplementary File 1
 

Supplementary Table 2: List of 144 peptides substrates

See Supplementary File 2


