Supporting information

Borylation of Fluorinated Arenes with the Boron-centred Nucleophile $B(CN)_3^{2-}$ – a Unique and Convenient Access to Aryltricyanoborates

Johannes Landmann,^a Philipp T. Hennig,^a Nikolai V. Ignat'ev,^b and Maik Finze^{*a}

Affiliations

^a Institut für Anorganische Chemie, Institut für nachhaltige Chemie & Katalyse mit Bor

(ICB), Julius-Maximilians Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Web: https://go.uniwue.de/finze-group. E-mail: maik.finze@uni-wuerzburg.de.

^b Consultant, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany⁻

*Correspondence to: maik.finze@uni-wuerzburg.de.

Table of Contents

1.	General Synthetic Aspects	S3
2.	Analytical Instruments and Details	S3
3.	Chemicals	S4
4.	Syntheses	S4
5.	Table of Experimental and Calculated Chemical Shifts	S24
6.	Crystal Structure Determinations	S27
7.	Experimental and Calculated Bond Lengths	S30
8.	References	S32

1. General Synthetic Aspects

Reactions involving air-sensitive compounds were performed either in round bottom flasks or in glass tubes equipped with valves with PTFE stems (Rettberg, Göttingen and Young, London) under argon using standard Schlenk line techniques.

2. Analytical Instruments and Details, DFT Calculations

¹H, ¹¹B and ¹³C NMR spectra were recorded at 25 °C in (CD₃)₂CO on a Bruker Avance 500 or on a Bruker Avance III HD 300 spectrometer. NMR signals were referenced against TMS (¹H and ¹³C; Ξ (¹³C) = 25.145020 MHz) and BF₃·OEt₂ in CDCl₃ (Ξ (¹¹B) = 32.083974 MHz).¹ Chemical shifts were calibrated against the residual solvent signal and the solvent signal, respectively (δ (¹H): (CD₂H)(CD₃)CO 2.05 ppm; δ (¹³C): (CD₃)₂CO 206.26 and 29.84 ppm.² The labeling of the nuclei according to Figure S1.

Figure S1. Labeling of the nuclei and positions of the borate anions.

The assignment of the NMR signals is aided by chemical shifts derived from DFT calculations.³ DFT-GIAO⁴ NMR shielding constants $\sigma(^{11}B)$, $\sigma(^{13}C)$, $\sigma(^{1}H)$ and $\sigma(^{19}F)$ were calculated at the B3LYP/6-311++G(2d,p) level of theory using the geometries computed at the B3LYP/6-311++G(d,p) level of theory. The ¹¹B, ¹³C, ¹H and ¹⁹F NMR shielding constants were calibrated to the respective chemical shift scale $\delta(^{11}B)$, $\delta(^{13}C)$, $\delta(^{1}H)$ and $\delta(^{19}F)$ using predictions on diborane(6), Me₄Si, and CFCl₃ with chemical shifts of 16.6 ppm for B₂H₆⁵ and 0 ppm for Me₄Si and CFCl₃.⁶ All calculations were performed using the Gaussian09 program suite.⁷

Elemental analyses (C, H, N) were performed either with a Euro EA3000 instrument (HEKA-Tech, Germany) or with an Elementar Vario MICRO cube instrument (Elementar Analysensysteme, Germany).

3. Chemicals

All standard chemicals were obtained from commercial sources und used without further purification. Solvents were dried according to standard protocols⁸ and stored in flasks equipped with valves with PTFE stems (Young, London) under an argon atmosphere. $K_2B(CN)_3$ (K_21) was synthesized according to known procedures.⁹

4. Syntheses

General procedures for the syntheses of the borates.

If not stated otherwise, the synthesis of the borate anions were performed according to method A (without LiCl) or method B (in the presence of LiCl). The work-up procedure described for method B was applied for the removal of $[BH(CN)_3]^-$, in general.

<u>Method A:</u> $K_2B(CN)_3$ (K_21) was suspended in THF (5–8 mL). The fluoroarene was added in a single portion at room temperature either as neat compound (liquid fluoroarenes) or as a solution in THF (solid fluoroarenes) using a syringe. The end of the reaction was either evident from decolorization of 1 (yellow compound) or by ¹⁹F and ¹¹B NMR spectroscopy. For the NMR spectroscopic control experiments, a small sample of the suspension was taken while stirring and dissolved in H₂O to give a clear solution. Residual solid 1 was converted into [BH(CN)₃]⁻ and the hydridoborate anion was detected by ¹¹B NMR spectroscopy. If necessary, the reaction mixture was stirred at elevated temperatures.

All solid material that had formed (mainly KF) was separated by filtration through a plug of Celite. The Celite plug was washed with THF ($3 \times 5-10$ mL), the solvent of the combined THF layers was removed, and the residue was dried in a vacuum (removal of excess arene). The residue was dissolved in THF (5 mL) again and the product was precipitated by slow addition of CH₂Cl₂. Fractional precipitated allowed the separation of by-and/or side products. The off-white to colourless solids were dried in a vacuum.

<u>Method B:</u> In contrast to method A, LiCl (ca. 1.5 equivalents) was added to the reaction mixture. After completion of the reaction (see method A) the combined THF layers were dried in a vacuum. The residue was dissolved in slightly acidified H₂O (ca. 20 mL) and an aqueous solution of an excess of [Me₃NH]Cl or [Et₃NH]Cl was slowly added, which resulted in the precipitation of the respective organic salt either as a solid that was filtered off or the formation of an oily material. In the latter case the mixture was extracted with CH_2Cl_2 (3 × 15

mL) and the combined organic layers were washed with H₂O (5 × 2 mL). After removal of all volatiles the oily remainder of the CH₂Cl₂ phases, H₂O (25 mL) and an excess of K₂CO₃ was added in several portions. After dissolution, the mixture was concentrated under reduced pressure until K₂CO₃ began to precipitate. The mixture was extracted with THF (3 × 20 mL), the combined organic layers were dried with K₂CO₃, filtered and concentrated to a volume of ~5 mL. CH₂Cl₂ (20 mL) was added and an off-white to colourless precipitate formed that was collected by filtration and dried in a vacuum.

K[1-{(NC)₃B}-C₆H₅] (KB1): <u>Method B</u> was employed for the preparation of KB1, using **B**(CN)₃ fluorobenzene (ca. 0.5 mL, 5.4 mmol), K₂1 (200 mg, 1.20 mmol) and LiCl (150 mg, 3.54 mmol). The reaction mixture was heated to 80 °C for 2 days. Yield: 110 mg (0.536 mmol, 45%). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -28.9$ ppm (s, 1B). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.54-7.49$ (m, 2H, H3/5), 7.21–7.16 ppm (m, 1H, H4). ¹H{¹¹B} NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.54-7.49$ (m, 2H, H2/6), 7.28–7.24 (m, 2H, H3/5), 7.21–7.16 ppm (m, 1H, H4). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 140.6$ (q, 1C, ¹J(¹³C, ¹¹B) = 56 Hz, C1), 133.3 (s, 2C, C2/6), 129.7 (q, 3C, ¹J(¹³C, ¹¹B) = 64 Hz, CN), 128.3 (s, 2C, C3/5), 127.2 ppm (s, 1C, C4). Elemental analysis: calculated (%) for C₉H₅BKN₃, C 52.71, H 2.46, N 20.49; found, C 51.89, H 2.55, N 20.77. (–)-ESI-MS, m/z, [(C₆H₅)B(CN)₃]⁻: calculated 166.06 (100.0%), 165.06 (24.8%), 167.06 (9.7%); found 166.06 (100.0%), 165.06 (25.5%), 167.06 (9.7%).

K[1-{(**NC**)₃**B**}-2-F-C₆**H**₄] (K**B**2a): Method <u>B</u> was employed for the preparation of K**B**2a, using 1,2-difluorobenzene (0.5 mL, 5.1 mmol), K₂1 (350 mg, 2.10 mmol) and LiCl (150 mg, 3.54 mmol). The reaction mixture was stirred at room temperature overnight. Yield: 270 mg (1.21 mmol, 58%). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -30.8$ ppm (s, 1B). ¹¹B{¹H} NMR (160.5 MHz, (CD₃)₂CO): $\delta = -30.8$ ppm (d, 1B, ³*J*(¹⁹F, ¹¹B) ≈ 8 Hz). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = -30.8$ ppm (d, 1B, ³*J*(¹⁹F, ¹¹B) ≈ 8 Hz). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.54$ (s, br, 1H, H6), 7.30– 7.25 (m, 1H, H4), 7.09 (dddd, 1H, *J* = 7.4 Hz (2×), 1.1 Hz, 0.4 Hz, H5), 6.96 ppm (ddd, br, 1H, *J* = 9.4 Hz, 8.2 Hz, 1.1 Hz, H3). ¹H{¹¹B} NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.54$ (dddd, 1H, *J* = 7.4 Hz, 6.8 Hz, 1.9 Hz, 0.3 Hz, H6) [other signals as stated for the ¹H NMR spectrum]. ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -105.1$ ppm (s, 1F). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 166.3$ (d, 1C, ¹*J*(¹⁹F, ¹³C) = 243 Hz, C2), 135.4 (d, 1C, ³*J*(¹⁹F, ¹³C) = 8.8 Hz, C6), 130.0 (d, 1C, ³*J*(¹⁹F, ¹³C) = 8.3 Hz, C4), 128.5 (q, 3C, ¹*J*(¹³C, ¹¹B) = 65 Hz, CN), 126.2 (qd, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56 \text{ Hz}, {}^{2}J({}^{19}F, {}^{13}C) \approx 23 \text{ Hz}, C1), 124.4$ (s, 1C, C5), 115.1 ppm (d, 1C, ${}^{2}J({}^{19}F, {}^{13}C) \approx 24 \text{ Hz}, C3)$. ${}^{13}C\{{}^{19}F\}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta = 166.3$ (dddd, 1C, $J({}^{13}C, {}^{1}H) = 11 \text{ Hz} (2\times), 4.5 \text{ Hz}, 1.7 \text{ Hz}, C2), 135.4$ (ddd, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 159 \text{ Hz}, J({}^{13}C, {}^{1}H) = 8.7 \text{ Hz}, 2.1 \text{ Hz}, C6), 130.7-129.3$ (m, 1C, C4), 128.5 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 65 \text{ Hz}, CN), 126.2$ (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56 \text{ Hz}, C1), 124.4$ (dm, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 65 \text{ Hz}, CN), 126.2$ (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56 \text{ Hz}, C1), 124.4$ (dm, 1C, ${}^{1}J({}^{13}C, {}^{11}H) = 159 \text{ Hz}, C5), 115.1 \text{ ppm}$ (dd, 1C, ${}^{1}J({}^{13}C, {}^{11}H) = 161 \text{ Hz}, {}^{2}J({}^{13}C, {}^{11}H) = 8.1 \text{ Hz}, C3).$ Elemental analysis: calculated (%) for C₉H₄BFKN₃, C 48.46, H 1.81, N 18.84; found, C 48.17, H 1.62, N 18.72. (-)-ESI-MS, m/z, [(C₆FH₄)B(CN)₃]⁻: calculated 184.05 (100.0%), 183.05 (24.8%), 185.05 (9.7%); found 184.05 (100.0%), 183.05 (25.2%), 185.05 (9.6\%). Crystals of K**B2a** suitable for an X-ray diffraction study were obtained from an acetone solution by slow evaporation of the solvent.

K[1-{(NC)₃B}-3-F-C₆H₄] (KB2b): Method B was employed for the preparation of KB2b, using 1,3-difluorobenzene (0.4 mL, 4.1 mmol), K₂1 (300 mg, 1.80 mmol) and B(CN)₃ LiCl (115 mg, 2.71 mmol). The reaction mixture was stirred at room temperature for 3 days. Yield: 280 mg (1.26 mmol, 70%). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -29.1$ ppm (s, 1B). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.36-7.28$ (m, B2b 2H), 7.19 (d, br, 1H, ${}^{2}J({}^{19}F, {}^{1}H) \approx 10$ Hz), 6.97–6.92 ppm (m, 1H) [A definite assignment even with the aid of calculated chemical shifts was not possible]. ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -116.1$ ppm (m, 1F). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 163.4$ (d, $1C, {}^{1}J({}^{19}F, {}^{13}C) = 244$ Hz, C3), 144.1 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 56$ Hz, C1), 130.2 (d, 1C, ${}^{3}J({}^{19}F, {}^{13}C) = 7.4 \text{ Hz, C5}, 129.1 \text{ (d, 1C, } {}^{4}J({}^{19}F, {}^{13}C) = 2.7 \text{ Hz, C6}, 129.1 \text{ (q, 3C, } {}^{1}J({}^{13}C, {}^{11}B) \approx 10^{10} \text{ C}$ 64 Hz, CN), 119.3 (d, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 19.3$ Hz, C2), 113.9 ppm (d, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 21.1$ Hz, C4). ¹³C{¹⁹F} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 163.4$ (s, 1C, C3), 144.1 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 56 \text{ Hz}, C1), 130.2 \text{ (d, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{13}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{1}C, {}^{1}H) = 161 \text{ Hz}, C5), 129.1 \text{ (ddd, 1C, } {}^{1}J({}^{1}C, {}^{1}H) = 161 \text{ Hz}, C5), 120.1 \text{ (ddd, 1C, } {}^{1}J({}^{1}C, {}^{1}H) = 161 \text{ Hz}$ 159 Hz, ${}^{3}J({}^{13}C, {}^{1}H) = 7.7$ Hz (2×), C6), 129.1 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 64$ Hz, CN), 119.3 (dm, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 159$ Hz, C2), 113.9 ppm (dm, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 162$ Hz, C4). Elemental analysis: calculated (%) for C₉H₄BFKN₃, C 48.46, H 1.81, N 18.84; found, C 47.90, H 1.73, N 18.51. (-)-ESI-MS, m/z, [(C₆FH₄)B(CN)₃]⁻: calculated 184.05 (100.0%), 183.05 (24.8%), 185.05 (9.7%); found 184.05 (100.0%), 183.05 (24.9%), 185.05 (9.4%). Crystals of KB2b suitable for an X-ray diffraction study were obtained from an *iso* propanol solution by slow evaporation of the solvent.

K[1-{(NC)₃B}-4-F-C₆H₄] (KB2c): Method B was employed for the preparation of KB2c,

using 1,4-difluorobenzene (0.4 mL, 3.9 mmol), K_21 (300 mg, 1.80 mmol) and LiCl (115 mg, 2.71 mmol). The reaction mixture was stirred at 75 °C for 30 hrs. Yield: 180 mg (0.807 mmol, 45%). The product is a mixture of K**B2c** and K**B2b** (ratio 7:3) and additionally contained 11% K[BH(CN)₃]. The NMR spectroscopic data for K**B2b** match with those given above. NMR data of K**B2c**: ¹¹B NMR

 $\frac{|J_{12}|}{|I_{16}|I$

K[1-{(NC)₃B}-2,3-F₂-C₆H₃] (KB3a): <u>Method B</u> was employed for the preparation of KB3a,

B(CN) ₃	B(CN) ₃
F	F F
💛 `F	\triangleleft
B3a	B3b

using 1,2,3-trifluorobenzene (0.4 mL, 3.9 mmol), K_21 (300 mg, 1.80 mmol) and LiCl (115 mg, 2.71 mmol). The reaction mixture was stirred at room temperature for 3 days. Yield: 285 mg (1.18 mmol, 66%). The product is a mixture of K**B3a** and

 $\overline{\text{K}[1-\{(\text{NC})_3\text{B}\}}$ -2,6-F₂-C₆H₃] (K**B3b**) (ratio 4:1). NMR spectroscopic data of the main product K**B3a**: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): δ = −31.0 ppm (s, br, 1B). ¹¹B{¹H} NMR (160.5 MHz, (CD₃)₂CO): δ = −31.0 ppm (dd, 1B, ³J(¹⁹F,¹¹B) = 8.4 Hz, ⁴J(¹⁹F,¹¹B) = 3.5 Hz). ¹H NMR (500.1 MHz, (CD₃)₂CO): δ = 7.34–7.27 (m, br, 1H, H6), 7.20–7.06 ppm (m, 2H, H4/5). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): δ = −132.5 (m, 1F, F2), −142.3 ppm (m, 1F, F3). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): δ = 153.5 (dd, 1C, ¹J(¹⁹F,¹³C) = 244 Hz, ²J(¹⁹F,¹³C) = 11.3 Hz, C2), 151.1 (dd, br, 1C, ¹J(¹⁹F,¹³C) = 246 Hz, ²J(¹⁹F,¹³C) = 14.9 Hz, C3), 130.2 (dd, 1C, J(¹⁹F,¹³C) = 7.6 Hz, 3.6 Hz, C6), 129.8 (qd, 1C, overlapped, C1), 128.1 (q, 3C, ¹J(¹³C,¹¹B) ≈ 66 Hz, CN), 125.0 (s, br, 1C, C5), 116.9 ppm (d, 1C, ²J(¹⁹F,¹³C) = 17.2 Hz, C4). ¹³C{¹⁹F}

NMR (125.8 MHz, (CD₃)₂CO): $\delta = 153.5$ (dd, 1C, ${}^{3/4}J({}^{13}C, {}^{1}H) = 11.9$ Hz, 7.2 Hz, C2), 151.1 (s, br, 1C, C3), 130.2 (dd, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 162 \text{ Hz}, {}^{2}J({}^{13}C, {}^{1}H) \approx 9 \text{ Hz}, C6), 129.8 (q, 1C, 12)$ overlapped, C1), 128.1 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 66$ Hz, CN), 125.0 (d, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 163$ Hz, C5), 116.9 ppm (dd, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 164$ Hz, ${}^{2}J({}^{13}C, {}^{1}H) \approx 9.5$ Hz, C4). NMR spectroscopic data of the side product KB3b: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.6$ ppm (t, 1B ${}^{3}J({}^{19}F, {}^{11}B) = 7.8$ Hz). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.31-7.25$ (m, 1H, H4), 6.86– 6.80 ppm (m, 2H, H3/5). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -101.4$ ppm (m, 2F, F2/6). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 166.1$ (dd, 2C, ¹J(¹⁹F, ¹³C) = 246 Hz, ²J(¹⁹F, ¹³C) = 13.0 Hz, C2/6), 130.5 (t, 1C, ${}^{3}J({}^{19}F, {}^{13}C) = 10.8$ Hz, C4), 128.2 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 66$ Hz, CN), 111.6 ppm (m, 2C, C3/5) [the signal of the C1 atom was not identified]. ${}^{13}C{}^{19}F{}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta = 166.1$ (d, 2C, ${}^{2}J({}^{13}C, {}^{1}H) = 12.6$ Hz, C2/6), 130.5 (d, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 164 \text{ Hz}, C4), 128.2 \text{ (g, 3C, } {}^{1}J({}^{13}C, {}^{11}B) \approx 66 \text{ Hz}, CN), 111.6 \text{ (dd, 2C, } {}^{1}J({}^{13}C, {}^{1}H) =$ 164 Hz, ${}^{2}J({}^{13}C, {}^{1}H) = 7.8$ Hz, C3/5) [the signal of the C1 atom was not identified]. Elemental analysis: calculated (%) for C₉H₃BF₂KN₃, C 44.85, H 1.25, N 17.43; found, C 44.89, H 1.22, N 17.42. (-)-ESI-MS, m/z, $[(C_6F_2H_3)B(CN)_3]^-$: calculated 202.04 (100.0%), 201.04 (24.8%), 203.04 (9.7%); found 202.04 (100.0%), 201.04 (24.5%), 203.04 (9.8%). Further purification of KB3a was achieved by crystallization from a solution in ethyl acetate by slow evaporation of the solvent. The single crystals obtained, were suitable for an X-ray diffraction study.

 $K[1-{(NC)_3B}-2,5-F_2-C_6H_3]$ (KB3c): Method B was employed for the preparation of KB3c, using 1,2,4-trifluorobenzene (0.4 mL, 3.8 mmol), K₂1 (300 mg, 1.80 mmol) B(CN)₃ and LiCl (115 mg, 2.71 mmol). The reaction mixture was stirred at room temperature for 2 hrs. Yield: 330 mg (1.37 mmol, 76%). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -31.0$ ppm (s, 1B). ¹H NMR (500.1 MHz, (CD₃)₂CO): B3c $\delta = 7.20$ (d, br, 1H, H6), 7.04–6.98 ppm (m, 2H, H3/4). ¹H{¹¹B} NMR (500.1 MHz, $(CD_3)_2CO$: $\delta = 7.22-7.18$ (m, 1H, H6), 7.04–6.98 ppm (m, 2H, H3/4). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -111.7$ (s, br, 1F, F2), -122.1 (m, 1F, F5). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 162.1$ (dd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 239$ Hz, ${}^{4}J({}^{19}F, {}^{13}C) = 1.9$ Hz, C2), 159.4 (d, br, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 240$ Hz, C5), 128.8 (qd, 1C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 56$ Hz, ${}^{2}J({}^{19}F, {}^{13}C) \approx 25$ Hz, C1), 128.0 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 66$ Hz, CN), 120.9 (dd, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 23.0$ Hz, ${}^{3}J({}^{19}F, {}^{13}C) = 9.5$ Hz, C6), 116.6 (dd, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 27.7$ Hz, ${}^{3}J({}^{19}F, {}^{13}C) = 8.3$ Hz, C3), 115.9 ppm (dd, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 24.4 \text{ Hz}, {}^{3}J({}^{19}F, {}^{13}C) = 9.1 \text{ Hz}, C4). {}^{13}C\{{}^{19}F\} \text{ NMR (125.8 MHz, (CD_3)_2CO): } \delta =$ 162.3–162.0 (m, 1C, C2), 159.4 (s, br, 1C, C5), 128.8 (g, 1C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 57$ Hz, C1), 128.0

(q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 66$ Hz, CN), 120.9 (d, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 162$ Hz, C6), 116.6 (d, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 165$ Hz, C3), 115.9 ppm (dd, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 166$ Hz, ${}^{3}J({}^{13}C, {}^{1}H) \approx 5$ Hz, C4). Elemental analysis: calculated (%) for C₉H₃BF₂KN₃, C 44.85, H 1.25, N 17.43; found, C 44.15, H 1.27, N 16.52. (–)-ESI-MS, m/z, $[(C_6F_2H_3)B(CN)_3]^-$: calculated 202.04 (100.0%), 201.04 (24.8%), 203.04 (9.7%); found 202.04 (100.0%), 201.04 (25.3%), 203.04 (9.5%). Crystals of K**B3c** suitable for an X-ray diffraction study were obtained from an aqueous solution by slow evaporation of the solvent.

K[1-{(NC)₃B}-3,5-F₂-C₆H₃] (KB3d): <u>Method B</u> was employed for the preparation of KB3d,

using 1,3,5-trifluorobenzene (0.3 mL, 2.9 mmol), K₂1 (300 mg, 1.80 mmol) B(CN)₃ and LiCl (115 mg, 2.71 mmol). The reaction mixture was stirred at room temperature overnight. Yield: 275 mg (1.14 mmol, 63%). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -29.3$ ppm (s, 1B). ¹H NMR (500.1 MHz, (CD₃)₂CO): B3d $\delta = 7.04 \text{ (m, 2H, H2/6), 6.81 ppm (tt, 1H, <math>{}^{3}J({}^{19}F, {}^{1}H) = 9.3 \text{ Hz}, {}^{4}J({}^{1}H, {}^{1}H) = 2.4 \text{ Hz}, \text{H4}.$ NMR (470.6 MHz, (CD₃)₂CO): $\delta = -112.7$ ppm (m, 2F). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 163.6$ (d, 2C, ${}^{1}J({}^{19}F, {}^{13}C) = 248$ Hz, C3/5), 146.4 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56$ Hz, C1), 128.6 (g, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 65$ Hz, CN), 115.4 (m, 2C, C2/6), 102.4 (t, 1C, ${}^{2}J({}^{19}F, {}^{13}C) =$ 25.6 Hz, C4). ¹³C{¹⁹F} NMR (125.8 MHz, (CD₃)₂CO): δ = 163.6 (s, 2C, C3/5), 146.4 (g, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56 \text{ Hz}, C1), 128.6 (q, 3C, {}^{1}J({}^{13}C, {}^{11}B) = 65 \text{ Hz}, CN), 115.4 (dq, 2C, {}^{1}J({}^{13}C, {}^{1}H) =$ 163 Hz, ${}^{2}J({}^{13}C, {}^{11}B) \approx 4$ Hz, C2/6), 102.4 (dt, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 166$ Hz, ${}^{3}J({}^{13}C, {}^{1}H) = 4.5$ Hz, C4). ¹³C{¹³B, ¹H} NMR (75.5 Hz, (CD₃)₂CO): $\delta = 163.6$ (dd, 2C, ¹J(¹⁹F, ¹³C) = 248 Hz, ${}^{3}J({}^{19}F, {}^{13}C) = 11.6 \text{ Hz}, C3/5), 146.4 (t, 1C, {}^{3}J({}^{19}F, {}^{13}C) = 6.2 \text{ Hz}, C1), 128.6 (s, 3C, CN), 115.4$ (m, 2C, C2/6), 102.4 (t, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 25.6$ Hz, C4). Elemental analysis: calculated (%) for C₉H₃BF₂KN₃, C 44.85, H 1.25, N 17.43; found, C 45.09, H 1.12, N 17.51. (-)-ESI-MS, m/z, $[(C_6F_2H_3)B(CN)_3]^-$: calculated 202.04 (100.0%), 201.04 (24.8%), 203.04 (9.7%); found 202.04 (100.0%), 201.04 (24.6%), 203.04 (9.5%). Crystals of KB3d suitable for an X-ray diffraction study were obtained from an acetone solution by slow evaporation of the solvent.

K[1-{(NC)₃B}-2,3,6-F₃-C₆H₂] (KB4a): Method B was employed for the preparation of

KB4a, using 1,2,3,4-tetrafluorobenzene (0.3 mL, 2.8 mmol), K₂1 (225 mg, 1.35 mmol) and LiCl (85 mg, 2.01 mmol). The reaction mixture was stirred at room temperature for several minutes. Yield: 270 mg (1.04 mmol, 77%). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.7$ ppm (dd, 1B, ${}^{3}J({}^{19}F, {}^{11}B) \approx 8$

Hz (2×)). ¹H NMR (500.1 MHz, (CD₃)₂CO): δ = 7.21 (dddd, 1H, ³J(¹H, ¹H) = 9.1 Hz,

 $^{3/4}J(^{19}\text{F},^{1}\text{H}) = 9.9 \text{ Hz}, 9.1 \text{ Hz}, 5.0 \text{ Hz}, \text{H4}), 6.85 \text{ ppm (m, 1H, H5)}. ^{1}\text{H}{^{11}\text{B}} \text{ NMR (500.1 MHz, 50.1 MHz)}$ (CD₃)₂CO): $\delta = 6.85$ ppm (dddd, 1H, ${}^{3}J({}^{1}H, {}^{1}H) = 9.1$ Hz, ${}^{3/4/5}J({}^{19}F, {}^{1}H) = 9.1$ Hz, 8.8 Hz, 3.6 Hz, 2.2 Hz, H5) [other signal as stated for the ¹H NMR spectrum]. ¹⁹F NMR (470.6 MHz, $(CD_3)_2CO$: $\delta = -106.8$ (s, br, 1F, F6), -127.1 (s, br, 1F, F2), -145.6 ppm (m, 1F, F3). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 160.8$ (ddd, 1C, ¹J(¹⁹F, ¹³C) = 243 Hz, ³J(¹⁹F, ¹³C) = 10.6 Hz, ${}^{4}J({}^{19}F, {}^{13}C) = 2.3$ Hz, C6), 152.6 (ddd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 247$ Hz, ${}^{2/3}J({}^{19}F, {}^{13}C) = 13.4$ Hz (2×), C2), 147.9 (dd, br, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 242$ Hz, ${}^{2}J({}^{19}F, {}^{13}C) \approx 15$ Hz, C3), 127.5 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 117.2 (ddd, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 19.6$ Hz, ${}^{3}J({}^{19}F, {}^{13}C) = 10.8$ Hz, ${}^{4}J({}^{19}F,{}^{13}C) = 1.6 \text{ Hz}, C4), 116.4 \text{ (m, 1C, C1)}, 111.5 \text{ ppm (ddd, br, 1C, }{}^{3}J({}^{19}F,{}^{13}C) = 28.2 \text{ Hz},$ 6.3 Hz, ${}^{4}J({}^{19}F, {}^{13}C) = 4.0$ Hz, C5). ${}^{13}C\{{}^{13}B, {}^{1}H\}$ NMR (75.5 Hz, (CD₃)₂CO): $\delta = 147.9$ (ddd, $1C, {}^{1}J({}^{19}F, {}^{13}C) = 242 \text{ Hz}, {}^{2}J({}^{19}F, {}^{13}C) = 15.5 \text{ Hz}, {}^{4}J({}^{19}F, {}^{13}C) = 3.7 \text{ Hz}, C3), 127.5 \text{ (dd, } 3C, C3)$ ${}^{4}J({}^{19}F,{}^{13}C) = 1.4 \text{ Hz} (2\times), \text{ CN}, 116.4 \text{ (ddd, } {}^{2}J({}^{19}F,{}^{13}C) = 28.0 \text{ Hz}, 21.6 \text{ Hz}, {}^{3}J({}^{19}F,{}^{13}C) = 1.6 \text{ Hz}, {}^{2}J({}^{19}F,{}^{13}C) = 1.6$ Hz, C1) [other signals as stated for the ¹³C{¹H} NMR spectrum]. Elemental analysis: calculated (%) for C₉H₂BF₃KN₃, C 41.73, H 0.78, N 16.22; found, C 41.80, H 0.84, N 16.08. (-)-ESI-MS, m/z, $[(C_6F_3H_2)B(CN)_3]^-$: calculated 220.03 (100.0%), 219.03 (24.8%), 221.03 (9.7%); found 220.03 (100.0%), 219.03 (24.0%), 221.03 (9.5%). Crystals of KB4a suitable for an X-ray diffraction study were obtained from an acetone/water solution by slow evaporation of acetone.

K[1-{(NC)₃B}-2,3,5-F₃-C₆H₂] (KB4b): 1. Entry: <u>Method B</u> was employed for the B(CN)₃ preparation of KB4b, using 1,2,3,5-tetrafluorobenzene (0.4 mL, 2.8 mmol),

preparation of KB4b, using 1,2,3,5-tetrafluorobenzene (0.4 mL, 2.8 mmol), K_21 (200 mg, 1.20 mmol) and LiCl (80.0 mg, 1.89 mmol). The reaction mixture was stirred at room temperature for 2 hrs. Yield: 195 mg (0.753 mmol, 63%). **2. Entry**: Method B was employed for the preparation of

KB4b, using 1,2,3,5-tetrafluorobenzene (ca. 0.4 mL, 3.7 mmol) and K₂1 (300 mg, 1.80 mmol) but without addition of LiCl. The reaction mixture was stirred at room temperature for 3 days and then at 75 °C for 30 hrs. Yield: 240 mg (0.926 mmol, 51%). The product contained 8% of other isomers. ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -31.2$ ppm (s, 1B). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.10-7.04$ (m, 1H, H4), 7.05–6.99 ppm (m, br, 1H, H6). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -117.8$ (m, 1F, F5), -136.7 (m, 1F, F3), -137.2 ppm (m, 1F, F2). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 158.3$ (dm, 1C, ¹*J*(¹⁹F,¹³C) = 244 Hz, C5), 150.6 (dm, 1C, ¹*J*(¹⁹F,¹³C) = 248 Hz, C3), 149.7 (ddd, 1C, ¹*J*(¹⁹F,¹³C) = 239 Hz, ²*J*(¹⁹F,¹³C) = 10.6 Hz, ⁴*J*(¹⁹F,¹³C) = 3.4 Hz, C2), 131.0 (qd, 1C, ¹*J*(¹³C,¹¹B) = 55 Hz, ²*J*(¹⁹F,¹³C) ≈ 22 Hz, C1), 127.5 (q, 3C, ¹*J*(¹³C,¹¹B) = 66 Hz, CN), 115.6 (ddd, 1C, ²*J*(¹⁹F,¹³C) = 22.4 Hz, ³*J*(¹⁹F,¹³C) = 214 Hz, ³*J*(¹⁹F,¹³C) = 22.4 Hz, ³*J*(¹⁹F,¹³C) = 22.4 Hz, ³*J*(¹⁹F,¹³C) = 214 H

= 7.5 Hz, ${}^{4}J({}^{19}\text{F}, {}^{13}\text{C})$ = 3.5 Hz, C6), 105.0 ppm (ddd, 1C, ${}^{2}J({}^{19}\text{F}, {}^{13}\text{C})$ = 28.0 Hz, 21.4 Hz, C4). ${}^{13}\text{C}\{{}^{13}\text{B}, {}^{1}\text{H}\}$ NMR (75.5 Hz, (CD₃)₂CO): δ = 158.3 (ddd, ${}^{1}J({}^{19}\text{F}, {}^{13}\text{C})$ = 244 Hz, ${}^{3}J({}^{19}\text{F}, {}^{13}\text{C})$ = 9.4 Hz, ${}^{4}J({}^{19}\text{F}, {}^{13}\text{C})$ = 2.5 Hz, C5), 150.6 (m, 1C, C3), 149.7 (m, 1C, C2), 131.1 (dd, 1C, ${}^{2}J({}^{19}\text{F}, {}^{13}\text{C})$ = 21.7 Hz, ${}^{3}J({}^{19}\text{F}, {}^{13}\text{C})$ = 6.2 Hz, C1), 127.5 ppm (s, 3C, CN) [Signals for C4 and C6 as stated for the ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR spectrum]. Elemental analysis: calculated (%) for C₉H₂BF₃KN₃, C 41.73, H 0.78, N 16.22; found, C 41.41, H 0.91, N 15.28. (-)-ESI-MS, m/z, [(C₆F₃H₂)B(CN)₃]⁻: calculated 220.03 (100.0%), 219.03 (24.8%), 221.03 (9.7%); found 220.03 (100.0%), 219.03 (24.9%), 221.03 (9.4%). Crystals of K**B4b** suitable for an X-ray diffraction study were obtained from an acetone/water solution by slow evaporation of acetone.

K[1-{(NC)₃B}-2,4,5-F₃-C₆H₂] (KB4c) and [Me₃NH][1-{(NC)₃B}-2,4,5-F₃-C₆H₂] ([Me₃NH]-

B4c): **1.** Entry: <u>Method B</u> was employed for the preparation of KB4c, using 1,2,4,5-tetrafluorobenzene (0.3 mL, 2.7 mmol), K_21 (200 mg, 1.20 mmol) and LiCl (80.0 mg, 1.89 mmol). The reaction mixture was stirred at room temperature for 30 min. Yield: 155 mg (0.598 mmol, 50%). **2.** Entry: [Me₃NH]**B4c**: Method B (modified) was employed for the preparation of

[Me₃NH]B4c, using 1,2,4,5-tetrafluorobenzene (0.6 mL, 5.4 mmol), K₂1 (310 mg, 1.86 mmol) and LiCl (120 mg, 2.83 mmol). The reaction mixture was stirred at room temperature for 2 hrs. The product was precipitated with slightly acidified aqueous solution of excess [Me₃NH]Cl, filtrated and dried in a vacuum. Yield: 260 mg (0.928 mmol, 50%). NMR spectroscopic data for KB4c: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -31.2$ ppm (s, 1B). ¹H NMR (500.1 MHz, (CD₃)₂CO): δ = 7.31 (m, br, 1H, H6), 7.05 ppm (ddd, 1H, ^{3/4}J(¹⁹F, ¹H) = 10.8 Hz, 8.6 Hz, 6.3 Hz, H3). ${}^{1}H{}^{11}B{}$ NMR (500.1 MHz, (CD₃)₂CO): δ = 7.31 (ddd, 1H, ${}^{3/4}J({}^{19}F,{}^{1}H) = 11.0$ Hz, 9.6 Hz, 5.8 Hz, H6) [signal for H3 as stated for the ${}^{1}H$ NMR spectrum]. ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -106.7$ (s, br, 1F, F2), -137.8 (m, 1F, F4), -146.5 ppm (m, 1F, F5). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 160.9$ (ddd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 243 \text{ Hz}, {}^{3}J({}^{19}F, {}^{13}C) = 9.4 \text{ Hz}, {}^{4}J({}^{19}F, {}^{13}C) = 2.2 \text{ Hz}, C2), 150.1 (ddd, 1C)$ ${}^{1}J({}^{19}F, {}^{13}C) = 248 \text{ Hz}, {}^{2}J({}^{19}F, {}^{13}C) = 14.5 \text{ Hz}, {}^{3}J({}^{19}F, {}^{13}C) = 13.1 \text{ Hz}, C4), 147.2 \text{ (dm, br, 1C, 1C)}$ ${}^{1}J({}^{19}F, {}^{13}C) = 242 \text{ Hz}, \text{ C5}), 127.8 \text{ (qd, 3C, } {}^{1}J({}^{13}C, {}^{11}B) = 66 \text{ Hz}, {}^{4}J({}^{19}F, {}^{13}C) \approx 11 \text{ Hz}, \text{ CN}), 123.4$ $(qd, 1C, {}^{1}J({}^{13}C, {}^{11}B) \approx 56 \text{ Hz}, {}^{2}J({}^{19}F, {}^{13}C) = 27 \text{ Hz}, C1), 122.1 (dd, 1C, {}^{2/3}J({}^{19}F, {}^{13}C) = 18.1 \text{ Hz},$ 10.9 Hz, C6), 105.6 ppm (dd, 1C, ${}^{2/3}J({}^{19}F, {}^{13}C) = 31.2$ Hz, 20.3 Hz, C3). ${}^{13}C{}^{19}F{}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta = 160.9$ (dd, 1C, ${}^{2/3}J({}^{13}C, {}^{1}H) = 13.8$ Hz, 6.3 Hz, C2), 150.1 (dd, 1C, ${}^{2/3}J({}^{13}C, {}^{1}H) = 9.3$ Hz, 6.5 Hz, C4), 147.1 (s, br, 1C, C5), 127.1 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 66$ Hz, CN), 123.4 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 56$ Hz, C1), 122.1 (d, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 164$ Hz, C6), 105.6 ppm (d, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 166$ Hz, C3). Elemental analysis: calculated (%) for C₁₂H₁₂BF₃N₄, C 51.46, H 4.32, N 20.01; found, C 51.59, H 4.04, N 20.54. (–)-ESI-MS, m/z, [(C₆F₃H₂)B(CN)₃]⁻: calculated 220.03 (100.0%), 219.03 (24.8%), 221.03 (9.7%); found 220.03 (100.0%), 219.03 (24.4%), 221.03 (9.4%). Crystals of [Me₃NH]**B4c** suitable for an X-ray diffraction study were obtained from an acetone/water solution by slow evaporation of acetone.

[Et₃NH]₂[1,4-{(NC)₃B}₂-2,5-F₂-C₆H₂] ([Et₃NH]₂B4d): K₂B(CN)₃ (K₂1, 300 mg, 1.80 mmol)

and LiCl (115 mg, 2.71 mmol) was suspended in THF (7 mL). 1,2,4,5-tetrafluorobenzene (0.100 mL, 0.896 mmol) was added with a syringe in one portion. The reaction mixture was stirred at room temperature overnight. All solid materials that had formed were separated by filtration through a plug of Celite and washed with THF (2×5 mL). The Celite plug was washed with

H₂O and upon addition of an aqueous solution with an excess of [Et₃NH]Cl to the aqueous layers (pH < 7) the main product precipitated. [Et₃NH]₂**B4d** was separated by filtration and dried in a vacuum. Yield: 185 mg (0.374 mmol, 42%, calculated for the fluoroarene). A second product crop was obtained from the combined THF layers: The solvent was removed first, the residue was dissolved in H₂O and the addition of an aqueous solution of [Et₃NH]Cl yielded 100 mg of a mixture of [Et₃NH]₂B4d and [Et₃NH]B4c (ratio according to ¹⁹F NMR spectroscopy: 55:45). The NMR spectroscopic data for [Et₃NH]**B4c** match with those given above. ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -31.1$ ppm (s, 1B). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.76$ (t, br, 2H, ${}^{1}J({}^{14}N, {}^{1}H) = 49$ Hz, NH), 7.10 (dd, 2H, ${}^{3}J({}^{19}F, {}^{1}H) = {}^{4}J({}^{19}F, {}^{1}H)$ = 7.2 Hz, H3/6), 3.41 (qd, 12H, ${}^{3}J({}^{1}H, {}^{1}H) = 7.3$ Hz, 4.1 Hz, CH₂), 1.37 ppm (t, 18H, ${}^{3}J({}^{1}H, {}^{1}H)$ = 7.3 Hz, CH₃). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): δ = -113.4 ppm (t, 2F, ³J(¹⁹F, ¹H) = 7.2 Hz). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 162.2$ (dd, 2C, ¹J(¹⁹F, ¹³C) = 241 Hz, ${}^{4}J({}^{19}F, {}^{13}C) = 3.5 \text{ Hz}, C2/5), 128.3 \text{ (q. 6C, } {}^{1}J({}^{13}C, {}^{11}B) \approx 64 \text{ Hz}, CN), 127.5 \text{ (m. br, 2C, C1/4)},$ 120.6 (m, 2C, C3/5), 48.0 (s, 6C, CH₂), 9.2 (s, 6C, CH₃). ¹³C{¹⁹F} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 162.2$ (dd, 2C, ^{2/3} $J(^{13}C, ^{1}H) = 11.1$ Hz, 4.4 Hz, C2/5), 128.3 (q, 6C, $^{1}J(^{13}C, ^{11}B)$ ≈ 64 Hz, CN), 127. 5 (m, br, 2C, C1), 120.6 (d, 2C, ${}^{1}J({}^{13}C, {}^{1}H) = 161$ Hz, C3/5), 48.0 (t, 6C, ${}^{1}J({}^{13}C, {}^{1}H) = 145 \text{ Hz}, \text{ CH}_{2}), 9.2 \text{ (qt, 6C, } {}^{1}J({}^{13}C, {}^{1}H) = 128 \text{ Hz}, {}^{2}J({}^{13}C, {}^{1}H) = 3.7 \text{ Hz}, \text{ CH}_{3}).$ Elemental analysis: calculated (%) for C₂₄H₃₄B₂F₂N₈, C 58.33, H 6.93, N 22.67; found, C 57.95, H 6.80, N 21.14. (-)-ESI-MS, m/z, $[(C_6F_2H_2)\{B(CN)_3\}_2]^{2-}$: calculated 145.02 (100.0%), 144.53 (49.7%), 145.53 (13.0%); found 145.02 (100.0%), 144.53 (48.9%), 145.53 (12.1%). Crystals of $[Et_3NH]_2$ **B4d** suitable for an X-ray diffraction study were obtained from an acetone/water solution by slow evaporation of acetone.

K[1-{(NC)₃B}-2.3,5,6-F₄-C₆H] (KB5): 1. Entry: Method B was employed for the preparation of KB5, using pentafluorobenzene (0.3 mL, 2.7 mmol), K₂1 (200 mg, 1.20 B(CN)₃ mmol) and LiCl (80.0 mg, 1.89 mmol). The arene was added at -78 °C, warmed up to room temperature, and the reaction mixture was stirred for 10 minutes. Yield: 205 mg (0.740 mmol, 62%). The product contained ca. 6% of **B5** another isomer. 2. Entry: Method B was employed for the preparation of KB5, using pentafluorobenzene (0.5 mL, 4.5 mmol) and K₂1 (350 mg, 2.08 mmol) without addition of LiCl. The arene was added at -78 °C, warmed up to room temperature, and the reaction mixture was stirred for 2 days. Yield: 225 mg (0.812 mmol, 39%). The product contained ca. 20% of other isomers and $[BH(CN)_3]^{-11}$ NMR (160.5 MHz, $(CD_3)_2CO$): $\delta = -33.7$ ppm (tt, 1B, ${}^{3}J({}^{19}F, {}^{11}B) = 7.6 \text{ Hz}, {}^{4}J({}^{19}F, {}^{11}B) = 3.1 \text{ Hz}).$ ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.33$ (tt, 1H, ${}^{3}J({}^{19}F, {}^{1}H) = 10.1 \text{ Hz}, {}^{4}J({}^{19}F, {}^{1}H) = 7.5 \text{ Hz}).$ ${}^{19}F \text{ NMR}$ (470.6 MHz, (CD₃)₂CO): $\delta =$ -132.7 (m, 2F, F2/6), -141.8 ppm (m, 2F, F3/5). ¹³C{¹H} NMR (125.8 MHz, $(CD_3)_2CO$: $\delta = 148.3$ (dddd, 2C, ${}^{1}J({}^{19}F, {}^{13}C) = 244$ Hz, ${}^{3/4}J({}^{19}F, {}^{13}C) \approx 13$ Hz, 11 Hz, ${}^{5}J({}^{19}F, {}^{13}C) \approx 4$ Hz, C2/6), 146.5 (dm, 2C, ${}^{1}J({}^{19}F, {}^{13}C) = 247$ Hz, C3/5), 127.0 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 67 \text{ Hz, CN}, 118.3 \text{ (qt, 1C, } {}^{1}J({}^{13}C, {}^{11}B) = 56 \text{ Hz, } {}^{2}J({}^{19}F, {}^{13}C) = 24 \text{ Hz, C1}, 106.1$ ppm (tt, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 23.2 \text{ Hz}, {}^{3}J({}^{19}F, {}^{13}C) = 1.4 \text{ Hz}, C4). {}^{13}C\{{}^{19}F\}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta = 148.3$ (d, 2C, ${}^{3}J({}^{13}C, {}^{1}H) = 9.0$ Hz, C2/6), 146.5 (m, 2C, C3/5), 127.0 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 118.3 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56$ Hz, C1), 106.1 ppm (d, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 169$ Hz, C4). Elemental analysis: calculated (%) for C₉HBF₄KN₃, C 39.02, H 0.36, N 15.17; found, C 40.02, H 0.42, N 14.12. (-)-ESI-MS, m/z, [(C₆F₄H)B(CN)₃]⁻: calculated 238.02 (100.0%), 237.02 (24.8%), 239.02 (9.7%); found 238.02 (100.0%), 237.02 (24.1%), 239.02 (9.3%).

K[1-{(NC)₃B}-C₆F₅] (KB6a): The preparation of KB6a was performed as described in the

Let G_{1}^{10} (**RD04**). The preparation of **RD04** was performed as described in the literature and the NMR spectroscopic data are consistent to the published ones.¹⁰ (–)-ESI-MS, m/z, [(C₆F₅)B(CN)₃]⁻: calculated 256.01 (100.0%), 255.01 (24.8%), 257.01 (9.7%), found 256.01 (100.0%), 255.01 (24.7%), 257.01 (9.5%).

 $K_2[1,4-\{(NC)_3B\}_2-C_6F_4]$ (K₂B6b): <u>Method A</u> was employed for the preparation of K₂B6b

using hexafluorobenzene (2.30 mL, 19.9 mmol), K_21 (7.20 g, 43.1 mmol) and THF (50 mL). The reaction mixture was heated to reflux for 20 hrs. The Celite plug was extracted with THF (2 × 50 mL) and CH₃CN (200 mL) due to the low solubility of K_2 **B6b** in THF. Yield: 5.95 g (14.7 mmol, 74%, calculated for C₆F₆). The following analytical data were obtained for

B66 [entertation 107 001 0), Find Following analytical tank where obtained for [Et₄N]₂[**B6b**] which was precipitated from an aqueous solution of K₂**B6b** with aqueous [Et₄N]OH, filtered off and dried in a vacuum. ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -34.7$ ppm (s, 2B). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -133.8$ ppm (s, 4F). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 148.2$ (dm, 4C, ¹*J*(¹⁹F,¹³C) ≈ 250 Hz, C2/3/5/6), 127.4 (q, 6C, ¹*J*(¹³C,¹¹B) = 67 Hz, CN), 116.7 ppm (m, 2C, C1/C4). ¹³C{¹³B,¹H} NMR (75.5 Hz, (CD₃)₂CO): $\delta = 148.2$ (dm, 4C, ¹*J*(¹⁹F,¹³C) = 247 Hz, C2/3/5/6), 127.4 (s, 6C, CN), 116.6 ppm (m, 2C, C1/C4). Elemental analysis: calculated (%) for C₂₈H₄₀B₂F₄N₈, C 57.36, H 6.88, N 19.11; found, C 57.36, H 6.97, N 18.35. (-)-ESI-MS, m/z, [(C₆F₄){B(CN)₃}₂]²⁻: calculated 163.02 (100.0%), 162.52 (49.7%), 163.52 (13.0%); found 163.02 (100.0%), 162.52 (47.3%), 163.52 (11.9%). Crystals of [Et₄N]₂[**B6b**] suitable for an X-ray diffraction study were obtained from an acetone solution by slow evaporation of the solvent.

K[4-{(NC)₃B}-C₅F₄N] (KPy1): Method A was employed for the preparation of KPy1 using pentafluoropyridine (ca. 0.8 mL, 7.3 mmol), K₂1 (400 mg, 2.39 mmol) and THF (15 mL). The pyridine was added at -40 °C and the reaction mixture was stirred at room temperature for 12 hrs. Yield: 575 mg (1.94 mmol, 81%; Β(CN)₃ contained ca. 15% of other tricyano(fluoropyridinyl)borates). ¹¹B NMR Py1 (160.5 MHz, (CD₃)₂CO): $\delta = -33.9$ ppm (tt, 1B, ${}^{3}J({}^{19}F, {}^{11}B) = 6.2$ Hz, ${}^{4}J({}^{19}F, {}^{11}B) \approx 2.5$ Hz). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -96.0$ (m, 2F, F2/6), -134.7 ppm (m, 2F, F3/5). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 145.2-142.8$ (m, 4C, C2/3/5/6), 133.5 (m, 1C, C4), 125.8 ppm (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 68$ Hz, CN). ${}^{13}C\{{}^{19}F\}$ NMR (125.8 MHz, (CD₃)₂CO): δ = 144.1 (s, 2C, C3/5), 144.0 (s, 2C, C2/6), 133.7 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 54$ Hz, C4), 125.9 ppm $(q, 3C, {}^{1}J({}^{13}C, {}^{11}B) = 68 \text{ Hz}, \text{ CN}). {}^{13}C\{{}^{13}B, {}^{1}H\} \text{ NMR} (75.5 \text{ Hz}, (CD_3)_2\text{CO}): \delta = 145.6-141.7$ (m, 4C, C2/3/5/6), 132.5 (tt, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 21.7 \text{ Hz}, {}^{3}J({}^{19}F, {}^{13}C) = 1.1 \text{ Hz}, C4$), 125.6 ppm (t, 3C, ${}^{4}J({}^{19}F, {}^{13}C) = 1.1$ Hz, CN). (-)-ESI-MS, m/z, $[(NC_{5}F_{4})B(CN)_{3}]^{-1}$: calculated 239.02 (100.0%), 238.02 (24.8%), 240.02 (8.7%); found 239.02 (100.0%), 238.02 (24.4%), 240.02 (8.6%). Crystals of K**Py1** suitable for an X-ray diffraction study were obtained by slow diffusion of dichloromethane into an acetone solution.

 $\begin{array}{c} \textbf{K_2[2,4-\{(NC)_3B\}_2-C_5F_3N]} (K_2Py2): \underline{Method A} \text{ was employed for the preparation of } K_2Py2 \\ \hline \textbf{F_F} & \textbf{B(CN)_3} \\ \textbf{Fy2} \end{array} \\ \begin{array}{c} \textbf{F_F} & \textbf{B(CN)_3} \\ \textbf{Fy2} \end{array} \\ \textbf{Fy2} \end{array} \\ \begin{array}{c} \textbf{K_2[2,4-\{(NC)_3B\}_2-C_5F_3N]} (K_2Py2): \underline{Method A} \text{ was employed for the preparation of } K_2Py2 \\ \textbf{K_2Py2} \end{array} \\ \begin{array}{c} \textbf{using pentafluoropyridine (0.160 mL, 1.46 mmol), K_21 (500 mg, 2.99 mmol) and THF (15 mL). The pyridine was added at -60 °C and the reaction mixture was stirred for 4 days. Addition of CH_2Cl_2 to the combined THF layers resulted in two fractions. The first fraction was pure K_3Py3 (85.0 mg, 0.171 mmol, 12\%; for the analytical data see the term of the state of the st$

following experiment). Yield (2. fraction, only): 335 mg (0.866 mmol, 59%; calculated for C₃F₅N; contained 15% of K₃**Py3** and 10% of another tricyano(fluoropyridinyl)borate). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -30.9$ (s, 1B, B2), -33.9 ppm (s, 1B, B4). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -94.7$ (dd, 1F, ^{3/5}J(¹⁹F, ¹⁹F) = 30.0 Hz, 32.3 Hz, F6), -108.3 (m, 1F, F3), -132.4 ppm (m, 1F, F5). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 161.9$ (d, 1C, ¹J(¹⁹F, ¹³C) ≈ 253 Hz, C3), 147.9 (dm, 1C, ¹J(¹⁹F, ¹³C) ≈ 230 Hz, C6), 146.3 (ddd, 1C, ¹J(¹⁹F, ¹³C) = 259 Hz, ^{2/3}J(¹⁹F, ¹³C) = 32.0 Hz, 8.6 Hz, C5), 142.8 (m, br, 1C, C2), 130.4–125.7 ppm (m, 7C, C4/CN). (–)-ESI-MS, m/z, [(NC₅F₃){B(CN)₃}₂]²⁻: calculated 154.52 (100.0%), 154.02 (49.7%), 155.02 (11.9%); found 154.52 (100.0%), 154.02 (47.9%), 155.02 (11.2%). Crystals of K₂**Py2**·OC(CH₃)₂ suitable for an X-ray diffraction study were obtained from an acetone solution by slow evaporation of the solvent.

fractions were obtained. The first fraction was pure K₃**Py3** and the second fraction was a mixture of K₃**Py3** and K₂**Py2** (4:6; 150 mg, 0.340 mmol, 34%). Yield (1. fraction, only): 150 mg (0.302 mmol, 31%, calculated for C₅F₅N). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -30.0$ (s, br, 2B, B2/6), -33.9 ppm (s, 1B, B4). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -107.5$ ppm (s, 2F). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 164.7$ (dd, 2C, ¹*J*(¹⁹F,¹³C) = 258 Hz, ³*J*(¹⁹F,¹³C) = 5.7 Hz, C3/5), 146.4 (m, 2C, C2/6), 128.3 (m, 9C, CN), 118.4 ppm (m, 1C, C4). (-)-ESI-MS, m/z, [(NC₅F₂){B(CN)₃}₃]³⁻: calculated 126.35 (100.0%), 126.02 (66.9%), 125.69 (16.6%), 126.69 (13.6%); found 126.35 (100.0%), 126.02 (69.6%), 125.69 (16.7%),

126.69 (13.7%). Crystals of K_3 **Py3**·3THF·1.04H₂O suitable for an X-ray diffraction study were obtained by slow diffusion of hexane in a THF solution.

K[4-{(NC)₃B}-C₁₂F₉] (KBP1): Method A was employed for the preparation of KBP1 using

decafluorobiphenyl (750 mg, 2.24 mmol), K_21 (300 mg, 1.80 mmol) and THF (15 mL). The reaction mixture was stirred at room temperature for 2 hrs. Upon addition of CH₂Cl₂ to the combined THF layers two fractions were

obtained. The first fraction contained impurities (mainly K₂BP2, see next example) and was neglected. Yield (2. fraction, only): 390 mg (0.880 mmol, 49%). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.7$ ppm (s, 1B). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -131.4$ (m, 2F, F3/5), -139.8 (m, 2F, F2'/6'), -141.6 (m, 2F, F2/6), -153.2 (tt, 1F, ${}^{3}J({}^{19}F, {}^{19}F) = 20.5$ Hz, ${}^{4}J({}^{19}F, {}^{19}F) = 3.0$ Hz, F4'), -163.3 ppm (m, 2F, F3'/5'). ${}^{13}C\{{}^{1}H\}$ NMR (125.8 MHz, $(CD_3)_2CO$: $\delta = 148.6 \text{ (ddd, } 2C, {}^{1}J({}^{19}F, {}^{13}C) = 245 \text{ Hz}, {}^{2/3}J({}^{19}F, {}^{13}C) = 12 \text{ Hz}, 4 \text{ Hz}, C3/5),$ 145.4 (dm, 2C, ${}^{1}J({}^{19}F, {}^{13}C) = 250 \text{ Hz}, C2'/6'$), 144.6 (dm, br, 2C, ${}^{1}J({}^{19}F, {}^{13}C) = 251 \text{ Hz}, C2/6$), 143.3 (tt, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 254 \text{ Hz}, {}^{2}J({}^{19}F, {}^{13}C) = 13.5 \text{ Hz}, {}^{3}J({}^{19}F, {}^{13}C) = 5.2 \text{ Hz}, C4^{\circ}$), 138.9 $(dm, 2C, {}^{1}J({}^{19}F, {}^{13}C) = 250 \text{ Hz}, C3'/C5'), 126.7 (q, 3C, {}^{1}J({}^{13}C, {}^{11}B) = 68 \text{ Hz}, CN), 121.1 (qt, 12)$ $1C, {}^{1}J({}^{13}C, {}^{11}B) \approx 55 \text{ Hz}, {}^{2}J({}^{19}F, {}^{13}C) \approx 25 \text{ Hz}, C4), 105.8 \text{ (t. 1C, } {}^{2}J({}^{19}F, {}^{13}C) = 18 \text{ Hz}, C1^{\circ}),$ 103.6 ppm (t, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 19$ Hz, C1). ${}^{13}C\{{}^{19}F\}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta =$ 148.6 (s, 2C, C3/5), 145.4 (s, 2C, C2[']/6[']), 144.6 (s, br, 2C, C2/6), 143.3 (s, 1C, C4[']), 138.9 (s, 2C, C3⁽/C5⁽), 126.7 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 68$ Hz, CN), 121.1 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 55$ Hz, C4), 105.8 (s, 1C, C1⁴), 103.6 ppm (s, 1C, C1). Elemental analysis: calculated (%) for C₁₅BF₉KN₃, C 40.66, N 9.48; found, C 40.81, N 9.81. (-)-ESI-MS, m/z, [(C₁₂F₉)B(CN)₃]⁻: calculated 404.00 (100.0%), 403.01 (24.8%), 405.01 (16.2%); found 404.00 (100.0%), 403.01 (25.0%), 405.01 (16.3%).

 $K_2[4,4'-{(NC)_3B}_2-C_{12}F_8]$ (K₂BP2): <u>Method A</u> was employed for the preparation of K₂BP2

using decafluorobiphenyl (450 mg, 1.35 mmol), K_21 (500 mg, 2.99 mmol) and THF (10 mL). The reaction mixture was stirred at 50 °C for 1 hr. Yield: 675 mg (1.22 mmol, 90%, calculated for $C_{10}F_{10}$). ¹¹B NMR

(160.5 MHz, (CD₃)₂CO): $\delta = -33.7$ ppm (s, 2B). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -131.7$ (s, br, 4F, F3/5), -141.7 ppm (m, 4F, F2/6). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 148.5$ (dm, 4C, ¹*J*(¹⁹F,¹³C) ≈ 245 Hz, C3/5), 144.6 (dd, 4C, ¹*J*(¹⁹F,¹³C) ≈ 250 Hz, ²*J*(¹⁹F,¹³C)

≈ 18 Hz, C2/6), 126.7 (q, 6C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 120.3 (m, 2C, C4), 107.1 ppm (m, 2C, C1). ${}^{13}C\{{}^{19}F\}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta = 148.5$ (s, 4C, C3/5), 144.5 (s, 4C, C2/6), 126.7 (q, 6C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 66$ Hz, CN), 120.3 (q, br, 2C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 53$ Hz, C4), 107.1 ppm (s, 2C, C1). ${}^{13}C\{{}^{13}B, {}^{1}H\}$ NMR (75.5 Hz, (CD₃)₂CO): $\delta = 148.5$ (dm, 4C, ${}^{1}J({}^{19}F, {}^{13}C) \approx 246$ Hz, C3/5), 144.6 (dd, 4C, ${}^{1}J({}^{19}F, {}^{13}C) \approx 250$ Hz, ${}^{2}J({}^{19}F, {}^{13}C) \approx 18$ Hz, C2/6), 126.7 (t, 6C, ${}^{4}J({}^{19}F, {}^{13}C) = 1.3$ Hz, CN), 120.3 (t, 2C, ${}^{2}J({}^{19}F, {}^{13}C) \approx 23.8$ Hz, C4), 107.1 ppm (m, 2C, C1). Elemental analysis: calculated (%) for C1₈B₂F₈K₂N₆, C 39.16, N 15.22; found, C 39.05, N 14.62. (−)-ESI-MS, m/z, [(C1₂F₈){B(CN)₃}₂]^{2−}: calculated 237.01 (100.0%), 236.51 (44.9%), 237.51 (17.2%). Crystals of K₂**BP2**·THF suitable for an X-ray diffraction study were obtained by slow diffusion of hexane into a THF solution.

K[2-{(NC)₃B}-C₁₀F₇] (KN1): Method A was employed for the preparation of KN1 using

octafluoronaphthalene (650 mg, 2.39 mmol) and K₂1 (200 mg, 1.20 mmol). The reaction mixture was stirred at room temperature for 3 days. The crude product was washed with CH_2Cl_2 (100 mL) and then dissolved in THF (10 mL) again. Addition of CH_2Cl_2 resulted in solid KN1. Yield: 250 mg (0.656

mmol, 55%). ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.6$ ppm (dd, 1B, ²J(¹⁹F, ¹¹B) ≈ 8 Hz (2×)). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -107.3$ (d, 1F, ${}^{4}J({}^{19}F, {}^{19}F) = 74$ Hz, F1), -127.3 (s, 1F, F3), -146.3 (dddm, 1F, ${}^{4}J({}^{19}F, {}^{19}F) = 74$ Hz, ${}^{3}J({}^{19}F, {}^{19}F) \approx {}^{5}J({}^{19}F, {}^{19}F) \approx 17$ Hz, F8), $-149.4 \text{ (dddd, 1F, } {}^{4}J({}^{19}\text{F}, {}^{19}\text{F}) = 56 \text{ Hz}, {}^{3}J({}^{19}\text{F}, {}^{19}\text{F}) \approx {}^{5}J({}^{19}\text{F}, {}^{19}\text{F}) \approx 16 \text{ Hz}, J({}^{19}\text{F}, {}^{19}\text{F}) = 5 \text{ Hz}, \text{ F5}),$ $-153.3 \text{ (dddm, 1F, } {}^{4}J({}^{19}\text{F}, {}^{19}\text{F}) = 56 \text{ Hz}, {}^{3}J({}^{19}\text{F}, {}^{19}\text{F}) \approx {}^{5}J({}^{19}\text{F}, {}^{19}\text{F}) \approx 18 \text{ Hz}, \text{ F4}), -157.3 \text{ (ddm, 1F)}$ 1F, ${}^{3}J({}^{19}F, {}^{19}F) \approx {}^{3}J({}^{19}F, {}^{19}F) \approx 18$ Hz, F6), -159.6 ppm (ddm, 1F, ${}^{3}J({}^{19}F, {}^{19}F) \approx {}^{3}J({}^{19}F, {}^{19}F) \approx 18$ Hz, F7). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 154.4$ (d, 1C, ¹*J*(¹⁹F, ¹³C) = 255 Hz, C3), 150.5 (ddd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 248 \text{ Hz}, J({}^{19}F, {}^{13}C) \approx 12 \text{ Hz} (2\times)$), 142.2 (dm, 1C, ${}^{1}J({}^{19}F, {}^{13}C) \approx$ 255 Hz), 141.7 (dm, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 255$ Hz), 140.9 (dm, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 252$ Hz), 140.2 $(ddd, br, 1C, {}^{1}J({}^{19}F, {}^{13}C) = 252 \text{ Hz}, J({}^{19}F, {}^{13}C) \approx 15 \text{ Hz} (2\times)), 139.1 (ddd, br, 1C, {}^{1}J({}^{19}F, {}^{13}C) =$ 250 Hz, $J({}^{19}F, {}^{13}C) \approx 15$ Hz (2×)), 127.0 (g, 3C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 67$ Hz, CN), 116.8 (gd, 1C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 56 \text{ Hz}, {}^{2}J({}^{19}F, {}^{13}C) \approx 28 \text{ Hz}, C2), 112.2 \text{ (dd, 1C, } J({}^{19}F, {}^{13}C) \approx 12 \text{ Hz} (2\times), C4a),$ 108.9 ppm (dd, 1C, $J({}^{19}F, {}^{13}C) \approx 19$ Hz, 12 Hz, C8a) [A definite assignment even with the aid of calculated chemical shifts was not possible]. ${}^{13}C{}^{19}F{}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta =$ 154.4 (s, 1C), 150.5 (s, 1C), 142.2 (s, 1C), 141.7 (s, 1C), 140.2 (s, 1C), 140.9 (s, br, 1C), 139.1 (s, 1C), 127.0 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 67$ Hz, CN), 116.8 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) \approx 56$ Hz, C2), 112.2 (s, 1C, C4a), 108.9 ppm (s, 1C, C8a) [A definite assignment even with the aid of calculated chemical shifts was not possible]. Elemental analysis: calculated (%) for $C_{13}BF_7KN_3$, C 40.98, N 11.03; found, C 40.81, N 11.01. (–)-ESI-MS, m/z, $[(C_{10}F_7)B(CN)_3]^-$: calculated 342.01 (100.0%), 341.01 (24.8%), 343.01 (14.1%); found 342.01 (100.0%), 341.01 (23.2%), 343.01 (13.3%).

 $K_2[2,6-\{(NC)_3B\}_2-C_{10}F_6]$ (K₂N2): Modified <u>Method A</u> was employed for the preparation of

 K_2N2 using octafluoronaphthalene (163 mg, 0.599 mmol), K_21 (200 mg, 1.20 mmol) and THF (5 mL).

The reaction mixture was stirred at 60 °C for 16 hrs. All solids that had formed were separated by filtration through a plug of Celite and washed with cold THF (3×1.5 mL). Then, the plug was washed with H₂O (10 mL), and after reducing the volume and cooling to 0 °C small colourless needles had formed. These were decanted and dried in a vacuum. Yield: 70.0 mg (0.143 mmol, 24%; calculated for $C_{10}F_8$). The combined THF layers contained additional product which could not be separated from other isomers formed. The total ratio of the borates formed was 0.4:1.0:0.7 (KN1:K₂N2:K₂N3; N3 = $[2,7-\{(NC)_{3}B\}_{2}-C_{10}F_{6}]^{2-}$). NMR spectroscopic data for K₂N2: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.6$ ppm (dd, 1B, $^{2}J(^{19}\text{F},^{11}\text{B}) \approx 8 \text{ Hz} (2\times)).$ ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -108.8 \text{ (m, 2F, F1/5)}, -130.1 \text{ m}$ (s, 2F, F3/7), -152.1 ppm (m, 2F, F4/8). ${}^{13}C{}^{19}F{}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta = 154.2$ (s, 2C, C1/5), 149.7 (s, 2C, C3/7), 140.9 (s, 2C, C4/8), 127.3 (q, 6C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 116.7 (q, 2C, ${}^{1}J({}^{13}C, {}^{11}B) = 55$ Hz, C2/6), 112.9 ppm (s, 2C, C4a/8a). Elemental analysis (the salt used contained one equivalent of H₂O): calculated (%) for C₁₆H₂B₂F₆K₂N₆O, C 37.83, H 0.40, N 16.54; found, C 37.65, H 0.25, N 15.38. (-)-ESI-MS, m/z, $[(C_{10}F_6)\{B(CN)_3\}_2]^{2-}$: calculated 206.01 (100.0%), 205.52 (49.7%), 206.52 (17.3%); found 206.01 (100.0%), 205.52 (48.9%), 206.51 (16.0%). Crystals of K₂N2·2EtOAc suitable for an X-ray diffraction study were obtained from an ethyl acetate solution by slow evaporation of the solvent. NMR spectroscopic data for K₂N3: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = {}^{11}B$ NMR (160.5 MHz, $(CD_3)_2CO$): [the signal is covered by the signal of anion N2]. ¹⁹F NMR $(470.6 \text{ MHz}, (\text{CD}_3)_2\text{CO}): \delta = -104.6 \text{ (m, 2F, F1/8)}, -127.6 \text{ (m, 2F, F3/6)}, -154.5 \text{ ppm (m, 2F, P3/6)})$ F4/5). [In the 13 C NMR spectra the signals of anion N3 were not observed.]

 $\begin{array}{l} \textbf{K[1-F_3C-4-\{(NC)_3B\}-C_6F_4]} \ (KB7): \ \underline{Method A} \ \text{was employed for the preparation of KB7} \\ \textbf{was employed for the preparation of KB7} \\ \textbf$

MHz, (CD₃)₂CO): $\delta = 148.8$ (dm, 2C, 'J(³F, ³C) = 246 Hz, C3/5), 144.5 (dm, 2C, 'J(³F, ³C)) = 257 Hz, C2/6), 126.4 (q, 3C, ¹J(¹³C, ¹¹B) = 68 Hz, CN), 123.6 (qm, 1C, ¹J(¹³C, ¹¹B) = 55 Hz, C4), 122.1 (qm, 1C, ¹J(¹⁹F, ¹³C) = 273 Hz, CF₃), 108.8 ppm (qt, 1C, ²J(¹⁹F, ¹³C) = 34 Hz, ²J(¹⁹F, ¹³C) = 13 Hz, C1). ¹³C{¹³B, ¹H} NMR (75.5 Hz, (CD₃)₂CO): $\delta = 148.8$ (dm, 2C, ¹J(¹⁹F, ¹³C) = 246 Hz, C3/5), 144.5 (dm, 2C ¹J(¹⁹F, ¹³C) = 257 Hz, C2/6), 126.3 (t, 3C, ⁴J(¹⁹F, ¹³C) = 1.4 Hz, CN), 123.5 (t, 1C, ²J(¹⁹F, ¹³C) ≈ 24 Hz, C4), 122.1 (qtt, 1C, ¹J(¹⁹F, ¹³C) = 273 Hz, ³J(¹⁹F, ¹³C) ≈ 3.5 Hz, ⁴J(¹⁹F, ¹³C) ≈ 1.5 Hz, CF₃), 108.8 ppm (qt, 1C, ²J(¹⁹F, ¹³C) = 34 Hz, ²J(¹⁹F, ¹³C) ≈ 3.5 Hz, ⁴J(¹⁹F, ¹³C) ≈ 1.5 Hz, CF₃), 108.8 ppm (qt, 1C, ²J(¹⁹F, ¹³C) = 34 Hz, ²J(¹⁹F, ¹³C) = 13 Hz, C1). Elemental analysis: calculated (%) for C₁₀BF₇KN₃, C 34.81, N 12.18; found, C 34.41, N 12.41. (-)-ESI-MS, m/z, [(CF₃C₆F₄){B(CN)₃}]⁻: calculated 306.01 (100.0%), 305.01 (24.8%), 307.01 (10.8%); found 306.01 (100.0%), 305.01 (23.4%), 307.01 (10.5%). Crystals of K**B**⁷·THF suitable for an X-ray diffraction study were obtained from a THF solution by slow evaporation of the solvent.

K[1-H₃C-4-{(NC)₃B}-C₆F₄] (KB8a): Method A was employed for the preparation of KB8a

using 2,3,4,5,6-pentafluorotoluene (ca. 0.18 mL, 1.4 mmol) and K_21 (200 mg, 1.20 mmol). The reaction mixture was stirred at 90 °C for 3 days. Yield: not determined. The product contained ca. 10% of K[1-H₃C-4-{(NC)₃B}-C₆F₄] (K**B8b**). NMR spectroscopic

data for K**B8a**: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.8$ ppm (tt, 1B, ³ $J(^{19}F,^{11}B) = 7.5$ Hz, ⁴ $J(^{19}F,^{11}B) = 3.2$ Hz). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -134.1$ (m, 2F, F3/5), -146.7 ppm (dd, 2F, ^{2/3} $J(^{19}F,^{19}F) = 22$ Hz, 14 Hz, F2/6). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 2.23$ ppm (t, 3H, ⁴ $J(^{19}F,^{1}H) = 2.1$ Hz). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 148.1$ (dddd, 2C, ¹ $J(^{19}F,^{13}C) = 243$ Hz, ^{2/3} $J(^{19}F,^{13}C) \approx 14$ Hz, 12 Hz, ⁴ $J(^{19}F,^{13}C) \approx 4$ Hz, C3/5), 145.6 (dm, br, 2C, ¹ $J(^{19}F,^{13}C) = 243$ Hz, C2/6), 127.3 (q, 3C, ¹ $J(^{13}C,^{11}B) = 67$ Hz, CN), 116.0 (t, 1C, ² $J(^{19}F,^{13}C) = 19.4$ Hz, C1), 115.3–113.6 (m, 1C, C4), 7.3 ppm (tt, 1C, ³ $J(^{19}F,^{13}C) = 3.5$ Hz,

 $J({}^{19}F, {}^{13}C) = 2.2 \text{ Hz}, \text{ CH}_3)$. ${}^{13}C\{{}^{19}F\}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta = 148.1$ (s, 2C, C3/5), 145.6 (s, br, 2C, C2/6), 127.3 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 116.0 (q, 1C, ${}^{2}J({}^{13}C, {}^{1}H) = 6.3$ Hz, C1), 114.4 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56$ Hz, C4), 7.3 ppm (q, 1C, ${}^{1}J({}^{13}C, {}^{1}H) = 131$ Hz, CH₃). $^{13}C\{^{13}B,^{1}H\}$ NMR (75.5 Hz, (CD₃)₂CO): $\delta = 148.1$ (dddd, 2C, $^{1}J(^{19}F,^{13}C) = 243$ Hz, ${}^{2/3}J({}^{19}F,{}^{13}C) = 13.6$ Hz, 11.6 Hz, ${}^{4}J({}^{19}F,{}^{13}C) = 3.8$ Hz, C3/5), 145.6 (dddd, 2C, ${}^{1}J({}^{19}F,{}^{13}C) = 3.8$ 243 Hz, ${}^{2/3/4}J({}^{19}F, {}^{13}C) = 16.9$ Hz, 6.5 Hz, 3.5 Hz, C2/6), 127.3 (t, 3C, ${}^{4}J({}^{19}F, {}^{13}C) = 1.3$ Hz, CN), 116.0 (tt, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 19.4 \text{ Hz}, {}^{3}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1C, {}^{2}J({}^{19}F, {}^{13}C) = 1.2 \text{ Hz}, C1), 114.4 (tt, 1$ = 23.9 Hz, ${}^{3}J({}^{19}F, {}^{13}C) = 1.7$ Hz, C4), 7.3 ppm (tt, 1C, ${}^{3}J({}^{19}F, {}^{13}C) = 3.5$ Hz, ${}^{4}J({}^{19}F, {}^{13}C) = 2.2$ Hz, CH₃). NMR spectroscopic data for the side product KB8b: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.8$ ppm (s, 1B). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -109.2$ (s, 1F, F2), -130.4 (m, 1F, F4), -140.5 (d, 1F, ${}^{2/3}J({}^{19}F, {}^{19}F) = 20.6$ Hz, F6), -169.6 ppm (ddd, 1F, $^{2/3}J(^{19}\text{F},^{19}\text{F}) = 21.0 \text{ Hz} (2\times), 11.9 \text{ Hz}, \text{F5}).$ ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 2.14 \text{ ppm}$ (dd, 3H, ${}^{4}J({}^{19}F, {}^{1}H) = 2.2$ Hz, 1.3 Hz). ${}^{13}C\{{}^{19}F\}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta = 158.0$ (m, 1C, C2), 151.1 (s, 1C, C4), 149.6 (q, 1C, ${}^{3}J({}^{13}C, {}^{1}H) = 4.3$ Hz, C6), 137.5 (s, 1C, C5), 127.5 $(q, 3C, {}^{1}J({}^{13}C, {}^{11}B) = 67 \text{ Hz}, \text{ CN}), 110.7 \text{ (m, 1C, C1)}, 7.0 \text{ ppm } (q, 1C, {}^{1}J({}^{13}C, {}^{1}H) = 131 \text{ Hz},$ CH₃) [the signal of C3 was not observed]. [In the ${}^{13}C{}^{13}B{}^{1}H{}$ and ${}^{13}C{}^{1}H{}$ NMR spectra the signals of anion B8b were not observed.] Elemental analysis: calculated (%) for C₁₀H₃BF₄KN₃, C 41.27, H 1.04, N 14.44; found, C 40.88, H 1.11, N 14.10. (–)-ESI-MS, m/z, $[(CH_{3}C_{6}F_{4})\{B(CN)_{3}\}]^{-}$: calculated 252.04 (100.0%), 251.04 (24.8%), 253.04 (10.8%); found 252.04 (100.0%), 251.04 (23.8%), 253.04 (10.3%).

K[1-F₃C-4-{(NC)₃B}-2,3,5-F₃-C₆H] (KB9): Method A was employed for the preparation of

KB9 using 2,3,4,5-tetrafluorobenzotrifluoride (ca. 0.5 mL, 3.4 mmol) and K₂1 (300 mg, 1.80 mmol). The reaction mixture was stirred at room temperature for 4 days. Yield: 460 mg (1.41 mmol, 78%). The product contained ca. 7% of other isomers. ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.8$ ppm (s, 1B). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.24$ ppm (m, 1H).

¹H{¹¹B} NMR (500.1 MHz, (CD₃)₂CO): $\delta = 7.24$ ppm (dddq, 1H, $J({}^{19}F, {}^{1}H) = 8.7$ Hz, 4.9 Hz, 2.3 Hz, 0.6 Hz). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -61.9$ (dm, 3F, ${}^{4}J({}^{19}F, {}^{1}H) = 12.8$ Hz, CF₃), -103.7 (s, 1F, F5), -124.1 (s, 1F, F3), -147.5 ppm (m, 1F, F2). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 160.1$ (ddd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 246$ Hz, ${}^{3/4}J({}^{19}F, {}^{13}C) \approx 11.5$ Hz, 3.5 Hz, C5), 153.3 (ddd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 249$ Hz, ${}^{2}J({}^{19}F, {}^{13}C) \approx 12$ Hz, C3), 145.4 (dm, br, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 253 \text{ Hz}$, C2), 126.8 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 68 \text{ Hz}$, CN), 122.7 (qddd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 272 \text{ Hz}$, ${}^{3/4}J({}^{19}F, {}^{13}C) = 4.3 \text{ Hz}$, 2.7 Hz, 0.9 Hz, CF₃), 122.5 (m, 1C, C4), 119.3 (qddd, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 34.5 \text{ Hz}$, ${}^{2/3}J({}^{19}F, {}^{13}C) = 11.1 \text{ Hz}$, 10.5 Hz, 1.9 Hz, C1), 109.3 ppm (dm, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 31.7 \text{ Hz}$, C6). ${}^{13}C\{{}^{13}B, {}^{14}\}$ NMR (75.5 Hz, (CD₃)₂CO): $\delta = 160.2$ (ddd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 246 \text{ Hz}$, ${}^{3/4}J({}^{19}F, {}^{13}C) \approx 11.3 \text{ Hz}$, 3.3 Hz, C5), 153.3 (ddd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 249 \text{ Hz}$, ${}^{2}J({}^{19}F, {}^{13}C) \approx 13.3 \text{ Hz}$, 12.2 Hz, C3), 145.4 (ddm, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 253 \text{ Hz}$, ${}^{2}J({}^{19}F, {}^{13}C) \approx 18 \text{ Hz}$, C2), 126.8 (s, 3C, CN), 122.7 (qm, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 272 \text{ Hz}$, CF₃), 122.4 (ddm, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 27.7 \text{ Hz}$, 22.0 Hz, C4), 119.3 (qddd, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 34.5 \text{ Hz}$, ${}^{2/3}J({}^{19}F, {}^{13}C) \approx 10.8 \text{ Hz}$ (2×), 1.9 Hz, C1), 109.3 ppm (ddq, 1C, ${}^{2}J({}^{19}F, {}^{13}C) = 31.7 \text{ Hz}$, ${}^{3}J({}^{19}F, {}^{13}C) \approx 4.5 \text{ Hz}$ (2×), C6). Elemental analysis: calculated (%) for C₁₀HBF₆KN₃, C 36.73, H 0.31, N 12.85; found, C 36.71, H 0.36, N 13.06. (-)-ESI-MS, m/z, [(CF₃C₆F₃H)B(CN)₃]^-: calculated 288.02 (100.0%), 287.02 (24.8\%), 289.02 (10.8\%); found 288.02 (100.0\%), 287.02 (24.7\%), 289.02 (10.4\%).

K[1-CH₃O-4-{(NC)₃B}-C₆F₄] (KB10a) and K[1-CH₃O-3-{(NC)₃B}-C₆F₄] (KB10b):

<u>Method A</u> was employed for the preparation of K**B10a** and K**B10b** using 2,3,4,5,6-pentafluoroaniline (ca. 0.6 mL, 4.2 mmol) and K₂1 (300 mg, 1.80 mmol). The reaction mixture was stirred at 60 °C overnight. Yield: 450 mg (1.47 mmol, 82%). The product was a mixture

of KB10a and KB10b (ratio 1:1). NMR spectroscopic data for KB10a: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.8$ ppm (s, 1B). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -133.8$ (m, 2F, F3/5), -160.2 ppm (dd, 2F, ^{2/3}*J*(¹⁹F, ¹⁹F) = 21.0 Hz, 9.9 Hz, F2/6). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 4.05$ ppm (m, 3H). ¹³C {¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 148.7$ (dddd, 2C, ¹*J*(¹⁹F, ¹³C) = 242 Hz, ^{3/4}*J*(¹⁹F, ¹³C) = 14 Hz, 11 Hz, 4 Hz, C3/5), 141.4 (dm, br, 2C, ¹*J*(¹⁹F, ¹³C) = 246 Hz, C2/6), 138.3 (tt, 1C, ²*J*(¹⁹F, ¹³C) = 12.2 Hz, ³*J*(¹⁹F, ¹³C) = 8.1 Hz, C1), 127.1 (q, 3C, ¹*J*(¹³C, ¹¹B) = 67 Hz, CN), 111.1 (m, 1C, C4), 62.7 ppm (t, 1C, ⁴*J*(¹⁹F, ¹³C) = 3 Hz, OCH₃). ¹³C {¹⁹F} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 148.7$ (s, 2C, C3/5), 141.4 (s, br, 2C, C2/6), 138.3 (s, 1C, C1), 127.1 (q, 3C, ¹*J*(¹³C, ¹¹B) = 67 Hz, CN), 111.1 (m, 1C, C4), 62.7 ppm (t, 1C, ⁴*J*(¹⁹F, ¹³C) = 3 Hz, OCH₃). ¹³C {¹⁹F} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 148.7$ (s, 2C, C3/5), 141.4 (s, br, 2C, C2/6), 138.3 (s, 1C, C1), 127.1 (q, 3C, ¹*J*(¹³C, ¹¹B) = 67 Hz, CN), 111.1 (q, 1C, ¹*J*(¹³C, ¹¹B) = 57 Hz, C4), 62.6 ppm (q, 1C, ¹*J*(¹³C, ¹¹H) = 146 Hz, OCH₃). NMR spectroscopic data for KB10b: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): $\delta = -33.8$ ppm (s, 1B). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): $\delta = -124.6$ (s, 1F, F2), -133.6 (m, 1F, F4), -153.1 (dm, 1F, ³*J*(¹⁹F, ¹⁹F) ≈ 20 Hz, F6), -167.0 ppm (ddd, 1F, ^{3/5}*J*(¹⁹F, ¹⁹F) ≈ 22 Hz, 20 Hz, 10 Hz, F5). ¹H NMR (500.1 MHz, (CD₃)₂CO): $\delta = 3.93$ ppm (m, 3H). ¹³C {¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 153.3$ (ddm,

1C, ${}^{1}J({}^{19}F, {}^{13}C) = 244$ Hz, ${}^{3/4}J({}^{19}F, {}^{13}C) = 13.5$ Hz, C2), 148.2 (dm, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 242$ Hz, C4), 145.3 (ddd, 1C, ${}^{1}J({}^{19}F, {}^{13}C) = 247$ Hz, ${}^{2/3}J({}^{19}F, {}^{13}C) = 11.7$ Hz, 7.9 Hz, 5.9 Hz, C6), 137.8 (dm, br, ${}^{1}J({}^{19}F, {}^{13}C) \approx 247$ Hz, 1C, C5), 134.5 (m, 1C, C1), 127.2 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) =$ 67 Hz, CN), 109.9 (m, 1C, C3), 62.3 ppm (q, 1C, ${}^{4}J({}^{19}F, {}^{13}C) = 3.6$ Hz, OCH₃). ${}^{13}C\{{}^{19}F\}$ NMR (125.8 MHz, (CD₃)₂CO): $\delta = 153.3$ (s, 1C, C2), 148.2 (s, br, 1C, C4), 145.3 (s, 1C, C6), 137.8 (s, 1C, C5), 134.5 (s, 1C, C1), 127.2 (q, 3C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 109.9 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56$ Hz, C3), 62.3 ppm (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 109.9 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56$ Hz, C3), 62.3 ppm (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 109.9 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56$ Hz, C3), 62.3 ppm (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 109.9 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56$ Hz, C3), 62.3 ppm (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 67$ Hz, CN), 109.9 (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 56$ Hz, C3), 62.3 ppm (q, 1C, ${}^{1}J({}^{13}C, {}^{11}B) = 147$ Hz, OCH₃). Elemental analysis: calculated (%) for C₁₀H₃BF₄KN₃O, C 39.12, H 0.98, N 13.69; found, C 38.59, H 0.89, N 15.15. (-)-ESI-MS, m/z, [(CH₃OC₆F₄)B(CN)₃]⁻: calculated 268.03 (100.0%), 267.03 (24.8\%), 269.03 (10.8\%); found 268.03 (100.0\%), 267.03 (25.5\%), 269.03 (10.9\%). Crystals of K**B10a** suitable for an X-ray diffraction study were obtained from an *iso*propanol solution by slow evaporation of the solvent.

K[1-NC-4-{(NC)₃B}-C₆F₄] (KB11a): <u>Method A</u> was employed for the preparation of KB11a

using 2,3,4,5,6-pentafluorobenzonitrile (ca. 0.45 mL, 3.6 mmol) and K₂**1** (300 mg, 1.80 mmol). The arene was added at -100 °C and slowly warmed up to room temperature. The dark raw product was a mixture of K**B11a**, K[1-NC-2-{(NC)₃B}-C₆F₄] (K**B11b**) and

K[B(CN)₄] (ratio 2.5:1.5:1.0). Yield: ca. 350 mg. Upon slow addition of CH₂Cl₂ to the THF layers several fractions were obtained which resulted in an enrichment of the main and the side product, respectively. NMR spectroscopic data for K**B11a**: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): δ = -33.8 ppm (tt, 1B, ³*J*(¹⁹F, ¹¹B) = 7.4 Hz, ⁴*J*(¹⁹F, ¹¹B) = 2.7 Hz). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): δ = -129.8 (m, 2F, F3/5), -136.8 (m, 2F, F2/6). ¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): δ = 148.2 (ddd, 2C, ¹*J*(¹⁹F, ¹³C) = 246 Hz, ^{2/3/4}*J*(¹⁹F, ¹³C) ≈ 11 Hz (2×), 4 Hz, C3/5), 147.6 (dm, 2C, ¹*J*(¹⁹F, ¹³C) = 259 Hz, 2/6), 126.0 (q, 3C, ¹*J*(¹³C, ¹¹B) = 68 Hz, B–CN), 108.6 (t, 1C, ³*J*(¹⁹F, ¹³C) = 3.9 Hz, Ph–CN), 93.8 ppm (tt, 1C, ²*J*(¹⁹F, ¹³C) = 17.4 Hz, ³*J*(¹⁹F, ¹³C) = 3.2 Hz, C1) [the signal of C4 is covered by the signal of the B(CN)₃ group]. ¹³C{¹⁹F} NMR (125.8 MHz, (CD₃)₂CO): δ = 148.2 (s, 2C, C3/5), 147.6 (m, 2C, C2/6), 126.0 (q, 3C, ¹*J*(¹³C, ¹¹B) = 68 Hz, B–CN), 108.6 (t, 1C, ³*J*(¹⁹F, ¹³C) = 3.9 Hz, Ph–CN), 93.8 ppm (tt, 1C, ²*J*(¹⁹F, ¹³C) = 17.4 Hz, ³*J*(¹⁹F, ¹³C) = 3.2 Hz, C1) [the signal of C4 is covered by the signal of the B(CN)₃ group]. ¹³C{¹⁹F} NMR (125.8 MHz, (CD₃)₂CO): δ = 148.2 (s, 2C, C3/5), 147.6 (m, 2C, C2/6), 126.0 (q, 3C, ¹*J*(¹³C, ¹¹B) = 68 Hz, B–CN), 108.7 (s, 1C, Ph–CN), 93.8 ppm (s, 1C, C1) [the signal of C4 is covered by the signal of the B(CN)₃ group]. NMR spectroscopic data for the side product K**B11b**: ¹¹B NMR (160.5 MHz, (CD₃)₂CO): δ = -32.4 ppm (dm, 1B, ³*J*(¹⁹F, ¹¹B) ≈ 7.2 Hz). ¹⁹F NMR (470.6 MHz, (CD₃)₂CO): δ = -127.9 (m, 1F, F3), -133.8 (m, 1F, F6), -149.0 (m, 1F, F4), -156.8 ppm (ddd, 1F, ³*J*(¹⁹F, ¹⁹F) = 19.8 Hz (2×), ⁴*J*(¹⁹F, ¹⁹F) = 5.6 Hz, F5).

¹³C{¹H} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 151.2$ (dm, 1C, ¹*J*(¹⁹F, ¹³C) = 258 Hz, C6), 149.9 (ddm, 1C, ¹*J*(¹⁹F, ¹³C) = 246 Hz, ²*J*(¹⁹F, ¹³C) = 10.0 Hz, C3), 144.4 (dm, 1C, ¹*J*(¹⁹F, ¹³C) ≈ 262 Hz, C4), 140.5 (ddd, 1C, ¹*J*(¹⁹F, ¹³C) = 253 Hz, ²*J*(¹⁹F, ¹³C) = 15.9 Hz, 13.1 Hz, ³*J*(¹⁹F, ¹³C) = 4.4 Hz, C5), 126.4 (q, 3C, ¹*J*(¹³C, ¹¹B) = 68 Hz, B–CN),111.6 (s, br, 1C, Ph–CN), 101.9 ppm (dd, 1C, ²*J*(¹⁹F, ¹³C) ≈ 11 Hz (2×), C1) [the signal of C2 is covered by the signal of the B(CN)₃ group]. ¹³C{¹⁹F} NMR (125.8 MHz, (CD₃)₂CO): $\delta = 151.2$ (s, br, 1C, C6), 149.9 (s, 1C, C3), 144.4 (s, br, 1C, C4), 140.5 (s, 1C, C5), 126.4 (q, 3C, ¹*J*(¹³C, ¹¹B) = 68 Hz, B–CN), 111.6 (s, br, 1C, C6), 149.9 (s, 1C, C3), 144.4 (s, br, 1C, C4), 140.5 (s, 1C, C5), 126.4 (q, 3C, ¹*J*(¹³C, ¹¹B) = 68 Hz, B–CN), 111.6 (s, br, 1C, Ph-CN), 101.9 ppm (s, 1C, C1) [the signal of C2 is covered by the signal of the B(CN)₃ group]. (-)-ESI-MS, m/z, [(NCC₆F₄)B(CN)₃]⁻: calculated 263.02 (100.0%), 262.02 (24.8%), 264.02 (10.8%); found 263.02 (100.0%), 262.02 (24.7%), 264.02 (10.6%). Crystals of K**B11a** suitable for an X-ray diffraction study were obtained by slow diffusion of hexane in an ethyl acetate solution.

5. Table of Experimental and Calculated Chemical Shifts

anion		B1	B2a	B2b	B2c	B3a	B3b	B3c	B3d	B4a	B4b	B4c	B5	B4d	B6a ^c	B6b
$\delta(^{11}B)$	В	-28.9	-30.8	-29.1	-29.1	-31.0	-33.6	-31.0	-29.3	-33.7	-31.2	-31.2	-33.7	-31.1	-33.9	-34.7
. ,		-33.1	-34.9	-33.6	-33.4	-35.0	-37.6	-35.1	-33.5	-37.6	-35.1	-35.3	-37.6	-34.7	-37.8	-37.3
δ (¹⁹ F/ ¹ H)	X2	7.5	-105.1	d	7.5	-132.5	-101.4	-111.7	7.0	-127.1	-137.2	-106.7	-132.7	-113.4	-132.1	-133.8
		8.1	-119.7	7.8	8.0	-146.8	-113.7	-127.9	7.5	-141.5	-153.2	-122.5	-146.6	-136.3	-146.0	-157.7
	X3	7.3	7.0	-116.1	7.0	-142.3	6.8	7.0	-112.7	-145.6	-136.7	7.1	-141.8	7.1	-165.4	-133.8
		7.2	6.9	-141.9	6.9	-167.5	6.6	6.7	-139.4	-171.3	-162.8	6.6	-168.5	7.3	-192.9	-152.7
	X4	7.2	7.3	6.9	-118.6	7.1	7.3	7.0	6.8	7.2	7.1	-137.8	7.3	-	-158.5	-
		7.1	7.1	6.7	-147.6	6.8	7.0	6.7	6.4	6.7	6.5	-167.5	6.6	-	-188.7	-
	X5	7.3	7.1	d	7.0	7.1	6.8	-122.1	-112.7	6.9	-117.8	-146.5	-141.8	-113.4	-165.4	-133.8
		7.2	7.0	7.2	6.9	6.9	6.6	-148.9	139.4	6.5	-145.1	-173.7	-168.5	-136.3	-192.9	-157.7
	X6	7.5	7.5	d	7.5	7.3	-101.4	7.2	7.0	-106.8	7.0	7.3	-132.7	7.1	-132.1	-133.8
		8.1	8.1	7.7	8.0	7.8	-113.7	7.8	7.5	-118.2	7.6	7.8	-146.6	7.3	-146.0	-152.7
$\delta(^{13}C)$	CN	129.6	128.5	129.1	129.5	128.1	128.2	128.0	128.6	127.5	127.5	127.8	127.0	128.3	126.7	127.4
		134.0	132.4	133.4	133.8	130.4	131.9	131.9	132.9	131.3	131.4	131.7	130.8	134.6	130.7	133.2
	C1	140.6	126.2	144.1	136.5	n.d.	n.d.	128.8	146.4	116.4	131.0	123.4	118.3	127.5	111.6	116.7
		155.2	140.4	158.9	150.1	144	128.3	143.3	161.1	131.0	145.8	137.0	133.2	134.1	125.5	123.6
	C2	133.3	166.3	119.3	135.0	153.5	166.1	162.2	115.4	152.6	149.7	160.9	148.3	162.2	148.4	148.2
		139.6	176.6	124.5	140.7	163.2	176.2	171.9	120.1	161.4	158.8	170.3	157.2	171.5	157.2	156.9
	C3	128.3	115.1	163.4	115.0	151.1	111.6	116.6	163.6	147.9	150.6	105.6	146.5	120.6	137.9	148.2
		130.0	117.1	172.2	115.9	159.8	112.9	117.2	171.7	156.3	158.6	106.0	154.1	124.5	145.1	156.9
	C4	127.2	130.0	113.9	162.9	116.9	130.5	115.9	102.4	117.2	105.0	150.1	106.1	127.5	141.1	116.7
		127.0	129.0	112.9	170.9	116.1	128.8	114.6	101.3	115.3	103.5	157.0	104.2	134.1	147.5	123.6
	C5	128.3	124.4	130.2	115.0	125.0	111.6	159.4	163.6	111.5	158.3	147.2	146.5	162.2	137.9	148.2
		130.0	125.2	130.4	115.9	124.6	112.9	167.8	171.7	111.2	166.0	154.6	154.1	171.5	145.1	156.9
	C6	133.3	135.4	129.1	135.0	130.2	166.1	120.9	115.4	160.8	115.6	122.1	148.3	120.6	148.4	148.2
		139.6	141.9	135.8	140.7	135.8	176.2	126.9	120.1	171.5	120.7	128.3	157.2	124.5	157.2	156.9

Table S1. Selected experimental and calculated^{*a*} chemical shifts^{*b*} of the tricyanoborates.

^{*a*} B3LYP/6-311++G(2d,p) using geometries calculated at the B3LYP/6-311++G(2,p) level of theory; calculated values in italics; mean values where applicable. ^{*b*} Chemical shifts in ppm. ^{*c*} Literature values.^{10 *d*} A definite assignment even with the aid of calculated chemical shifts was not possible.

Table S1 continued.

anion		B11a	B 7	B8a	B10a	B11b	B11c ^e	B8b	B10b	B 9	BP2	BP1		Py1	Py2	Py3
δ ⁽¹¹ B)	В	-33.8	-33.8	-33.8	-33.8	-32.4		-33.8	-33.8	-33.8	-33.7	-33.7	B4	-33.9	-33.9	-33.9
		-37.6	-37.6	-37.7	-37.7	-36.5	-37.9	-37.8	-37.8	-37.7	-37.4	-37.6		-37.7	-37.4	-37.1
													B2/6	-	-30.9	-30.0
														-	-34.2	-33.3
$\delta(^{19}\mathrm{F})^c$	X2	-136.8	-144.3	-146.7	-160.2	-		-109.2	-124.6	-147.5	-141.7	-141.6		-96.0	-	-
		-158.6	-166.7	-173.7	-186.4	-	-109.4	-118.3	-134.7	-169.1	-165.4	-167.1		-118.0	-	-
	X3	-129.8	-130.4	-134.1	-133.8	-127.9	-	-	-	-124.1	-131.7	-131.4		-134.7	-108.3	-107.5
		-143.2	-144.5	-148.2	-149.5	-143.6	-	-	-	-133.5	-150.8	-145.3		-149.3	-123.6	-125.2
	X4	-	-	-	-	-149.0		-130.4	-133.6	-	-	-		-	-	-
		-	-	-	-	-174.9	-119.4	-144.8	-148.5	-	-	-		-	-	-
	X5	-129.8	-130.4	-134.1	-133.8	-156.8		-169.6	-167.0	-103.7	-131.7	-131.4		-134.7	-132.4	-107.5
		-143.2	-144.5	-148.2	-146.0	-187.7	-192.6	-195.9	-193.3	-121.0	-150.8	-145.3		-149.3	-152.6	-125.2
	X6	-136.8	-144.3	-146.7	-160.2	-133.8		-140.5	-153.1	7.24	-141.7	-141.6		-96.0	-94.7	-
		-158.6	-166.7	-173.7	-186.4	-156.4	-155.7	-172.1	-182.6	6.9	-165.4	-167.1		-118.0	-121.2	-
δ ⁽¹³ C)	CN	126.0	126.4	127.3	127.1	126.4		127.5	127.2	126.8	126.7	126.7	B4-CN	125.8	d	128.3
		129.6	130.0	131.1	131.0	130.0	130.0	131.4	131.2	130.5	131.7	130.3		129.8	132.6	135.2
													B2/6-CN	-	d	128.3
														-	133.1	135.7
	C1	93.8	108.8	116.0	138.3	101.9		110.7	134.5	119.3	107.1	103.6		-	-	-
		93.4	110.7	115.2	141.3	108.8	91.1	111.9	138.3	121.4	112.5	106.0		-	-	-
	C2	147.6	144.5	145.6	141.4	n.d.		158.0	153.3	145.4	144.6	144.6		144.0	142.8	146.4
		156.2	152.0	153.0	150.1	144.1	170.1	168.5	164.5	153.5	152.7	151.8		150.9	153.6	154.2
	C3	148.2	148.8	148.1	148.7	149.9		n.d.	109.3	153.3	148.5	148.6		144.0	161.9	164.7
		157.0	157.4	157.2	157.5	157.0	127.1	123.9	124.1	163.6	157.2	157.5		152.6	170.7	173.6
	C4	n.d.	123.6	114.4	111.1	144.4		151.1	148.2	122.5	120.3	121.1		133.5	a	118.4
	~-	141.6	138.3	129.3	126.2	151.3	167.3	159.9	157.0	137.1	129.9	136.7		147.3	134.8	123.2
	C5	148.2	148.8	148.1	148.7	140.5		137.5	137.8	160.1	148.5	148.6		144.0	146.3	164.7
	~ (157.0	157.4	157.2	157.5	146.2	144.9	145.3	145.5	168.0	157.2	157.5		152.6	154.8	173.6
	C6	147.6	144.5	145.6	141.4	151.2		149.6	145.3	109.3	144.6	144.6		144.0	147.9	146.4
	~	156.2	152.0	153.0	150.1	159.3	159.9	155.7	151.8	110.5	152.7	151.8		150.9	153.9	154.2
	C_{Gr}	108.6	122.1	7.3	62.6	111.6		7.0	62.3	122.7	-	ſ		-	-	-
		114.2	135.2	7.8	62.1	115.4	114.2	7.4	61.7	135.8	-	J		-	-	-

^e **B11c** = [1-H₃C-3-{(NC)₃B}-C₆F₄]^{-. f} Data of the second Ph-ring: C1': 105.8 (*114.4*), C2'/6': 145.4 (*154.1*), C3'/C5': 138.9 (*146.0*), C4': 143.3 (*149.5*); F2'/6': -139.8 (-*155.4*), F3'/5': -163.3 (-*188.7*), F4': -153.2 (-*180.6*).

Table S1 continued.

anion		N1	N2	N3
$\delta(^{11}B)$	В	-33.6	-33.6	-33.6
. ,		-37.5	-37.2	-37.2
δ ⁽¹⁹ F)	F1	-107.3	-108.8	-104.6
~ /		-120.9	-127.6	-118.4
	F3	-127.3	-130.1	-127.6
		-131.7	-147.0	-143.1
	F4	-153.3	-152.1	-154.5
		-177.3	-175.9	-182.8
	F5	-149.4	-108.8	-154.5
		-171.5	-127.6	-182.8
	F6	-157.3	-	-127.6
		-186.5	-	-143.1
	F7	-159.6	-130.1	-
		-189.1	-147.0	-
	F8	-146.3	-152.1	-104.6
		-163.0	-175.9	-118.4
$\delta(^{13}C)$	CN	127.0	127.3	n.d.
		130.4	132.6	132.6
	C1	d	154.2	n.d.
		162.3	161.9	163.6
	C2	116.8	116.7	n.d.
		132.4	125.1	122.9
	C3	d	149.7	n.d.
		162.5	159.4	160.6
	C4	d	140.9	n.d.
		148.4	149.5	148.4
	C4a	112.2	112.9	n.d.
		115.4	117.1	119.6
	C5	d	154.2	n.d.
		149.4	161.9	148.4
	C6	d	116.7	n.d.
		146.5	125.1	160.6
	C7	d	149.7	n.d.
		145.1	159.4	122.9
	C8	d	140.9	n.d.
		151.3	149.5	163.6
	C8a	108.9	112.9	n.d.
		112.9	117.1	115.0

6. Crystal Structure Determination

All crystal data were collected on a Bruker X8-Apex II diffractometer with a CCD area detector and multi-layer mirror or graphite monochromated $Mo_{K\alpha}$ radiation. The structures were solved by intrinsic phasing methods (SHELXT).¹¹⁻¹² Refinement is based on full-matrix least-squares calculations on F^2 (SHELXL).¹²⁻¹³ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to the phenyl rings of the anions were refined without any restraints. For all remaining CH moieties idealized bond lengths and angles were used and their isotropic displacement parameters were fixed to the equivalent isotropic displacement parameters of the respective parent carbon atom. The crystal of K₂N2·2EtOAc was a pseudo-merohedral twin with domains rotated by 179.9 ° around the real axis [-0.001 0.000 1.000]. The BASF parameter was refined to 50%. Calculations were carried out using the ShelXle graphical interface.¹⁴ Molecular structure diagrams were drawn with the program Diamond 4.3.2.¹⁵

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre. Experimental details, crystal data, and CCDC numbers are collected in Table S2. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

compound	KB2a	KB2b	K B3 a	K B3c	K B3d	[Et ₃ NH] ₂ B4d	KB4b	K B4a	[Me ₃ NH] B4c	[Et ₄ N] ₂ B6b
empirical formula	$C_{18}H_8B_2F_2K_2N_6$	C ₉ H ₄ BFKN ₃	C ₉ H ₃ BF ₂ KN ₃	C ₉ H ₃ BF ₂ KN ₃	C ₉ H ₃ BF ₂ KN ₃	$C_{24}H_{34}B_2F_2N_8$	C ₉ H ₂ BF ₃ KN ₃	C ₉ H ₂ BF ₃ KN ₃	$C_{12}H_{13}BF_3N_4$	$C_{28}H_{40}B_2F_4N_8$
$M_{\rm W} [{ m g mol}^{-1}]$	446.12	223.06	241.05	241.05	241.05	494.21	259.05	259.05	281.07	586.30
colour	colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless
<i>T</i> [K]	100	100	100	100	100	100	100	100	100	100
crystal system	triclinic	monoclinic	triclinic	monoclinic	monoclinic	triclinic	monoclinic	monoclinic	orthorhombic	triclinic
space group	P-1	$P2_{1}/c$	P-1	$P2_1/n$	$P2_{1}/c$	P-1	$P2_{1}/c$	$P2_1/n$	Ima2	P-1
a [Å]	9.0844(6)	11.3175(10)	7.2218(4)	7.3664(11)	11.1415(11)	7.2310(18)	7.1368(4)	7.4212(4)	7.7462(5)	9.2925(5)
<i>b</i> [Å]	9.8593(6)	12.5441(11)	7.3375(4)	21.174(3)	12.3048(12)	10.113(3)	21.0081(11)	21.5366(12)	16.7938(10)	13.9870(7)
c [Å]	12.0751(8)	7.3312(6)	11.5902(7)	7.3900(11)	7.4382(7)	10.502(3	6.8083(3)	7.4276(4)	10.8073(7)	19.7322(10)
α [°]	91.429(2)		100.165(2)			98.148(9)				103.804(2)
β[°]	109.254(2)	100.954(4)	95.640(2)	117.188(4)	99.762(3)	105.678(9)	90.830(2)	118.496(2)		92.966(2)
γ [°]	90.945(2)		116.645(2)			106.755(8)				107.242(2)
V[Å ³]	1020.35(11)	1021.83(15)	529.22(5)	1025.3(3)	1004.97(17)	687.6(3)	1020.67(9)	1043.31(10)	1405.90(15)	2357.8(2)
Z	2	4	2	4	4	1	4	4	4	3
$ ho_{ m calcd} [m Mg \ m^{-3}]$	1.452	1.450	1.513	1.562	1.593	1.194	1.686	1.649	1.328	1.239
$\mu [\mathrm{mm}^{-1}]$	0.499	0.498	0.500	0.516	0.527	0.083	0.539	0.527	0.110	0.092
<i>F</i> (000) [e]	448	448	240	480	480	262	512	512	580	930
θ range [°]	2.376-26.372	1.833-26.791	1.822-26.798	1.924-26.802	1.855-26.811	2.166-26.973	1.939-26.815	1.891-26.798	2.241-26.756	1.072-26.886
reflections collected	13952	13906	7270	8062	9084	9798	13961	14316	4838	31095
independent reflections $[I>$	3639	1792	2100	1765	1779	1980	1886	2035	1477	6261
$2\sigma(I)$]										
R(int)	0.0311	0.0495	0.0195	0.0373	0.0481	0.0646	0.0367	0.0324	0.0250	0.0509
data / restraints / parameters	4180 / 0 / 303	2185 / 0 / 152	2258 / 0 / 145	2198 / 0 / 157	2139 / 0 / 157	2926 / 0 / 231	2183 / 0 / 162	2236 / 0 / 162	1597 / 1 / 140	10150 / 131 / 771
$R1 \left[I > 2\sigma(I)\right]$	0.0272	0.0369	0.0389	0.0336	0.0317	0.0458	0.0284	0.0272	0.0287	0.0624
wR2 (all data)	0.0677	0.0876	0.1059	0.0784	0.0835	0.1260	0.0647	0.0657	0.0686	0.1745
GOF on F^2	1.037	1.063	1.078	1.053	1.055	0.984	1.051	1.087	1.030	1.030
largest diff. peak / hole [e Å ⁻³]	0.327 / -0.252	0.329 / -0.324	1.575 / -0.429	0.315 / -0.238	0.374 / -0.355	0.325 / -0.328	0.399 / -0.202	0.382 / -0.219	0.179 / -0.136	0.746 / -0.312
CCDC number	1548900	1548901	1548902	1548903	1548904	1548893	1548906	1548905	1548895	1548894

Table S2. Crystal data and structure refinement details of the tricyanoborates.

Table S2 continued.

compound	$K_2BP2 \cdot THF$	KPy1	$K_2 Py2 \cdot OC(CH_3)_2$	K_3 Py3 ·3THF·1.04H ₂ O	K B7 ·THF	KB10a	KB11a	$K_2N2 \cdot 2EtOAc$
empirical formula	$C_{26}H_{16}B_2F_8K_2N_6O_2$	$C_{16}B_2F_8K_2N_8$	$C_{14}H_6B_2F_3K_2N_7O$	$C_{52}H_{52.17}B_6F_4K_6N_{20}O_{8.01}$	$C_{56}H_{32}B_4F_{28}K_4N_{12}O_4\\$	C10H3BF4KN3O	$C_{20}B_2F_8K_2N_8$	$C_{12}H_8BF_3KN_3O_2$
$M_{\rm W} [{ m g mol}^{-1}]$	696.27	556.06	445.08	1460.91	1668.57	307.06	604.10	333.12
colour	colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless
<i>T</i> [K]	100	100	100	100	100	100	100	100
crystal system	monoclinic	orthorhombic	tetragonal	monoclinic	monoclinic	orthorhombic	triclinic	monoclinic
space group	C2	Pbca	$I4_1/a$	C2/c	$P2_{1}/c$	Pnma	P-1	$P2_{1}/c$
a [Å]	28.487(4)	10.0487(6)	25.5118(15)	41.3012(11)	12.5972(7)	10.9629(9)	9.8453(7)	12.9371(9)
<i>b</i> [Å]	12.3676(16)	18.9832(12)	25.5118(15)	8.4531(2)	32.4417(17)	8.0873(7)	10.0627(7)	7.5514(5)
<i>c</i> [Å]	8.8225(11)	22.2949(13)	12.1914(8)	46.0735(11)	16.9137(9)	14.1771(10)	13.4136(10)	14.3323(10)
α [°]							87.223(3)	
β[°]	94.050(5)			113.7870(10)	92.820(3)		87.467(3)	93.205(3)
γ [°]							66.895(2)	
$V[Å^3]$	3100.6(7)	4252.9(4)	7934.8(11)	14718.9(6)	6903.8(6)	1256.95(17)	1220.40(15)	1397.98(17)
Z	4	8	16	8	4	4	2	4
$ ho_{ m calcd} [m Mg \ m^{-3}]$	1.492	1.737	1.490	1.319	1.605	1.623	1.644	1.583
$\mu [\mathrm{mm}^{-1}]$	0.389	0.539	0.525	0.425	0.388	0.468	0.477	0.423
F(000) [e]	1400	2176	3552	5986	3328	608	592	672
θ range [°]	1.433-26.785	1.827-26.727	1.596-26.030	1.120-26.373	1.255-26.372	2.348-26.791	2.202-26.372	2.847-26.372
reflections collected	21628	28164	31833	44601	89364	10502	16011	17851
independent reflections $[I>$	5996	3993	3088	11477	7469	1158	3659	2516
$2\sigma(I)$]								
R(int)	0.0318	0.0258	0.0442	0.0285	0.1395	0.0522	0.0465	0.0751
data / restraints / parameters	6608 / 1 / 415	4508 / 0 / 325	3902 / 12 / 322	15069 / 33 / 944	14119 / 218 / 1047	1439 / 0 / 104	5004 / 0 / 361	2857 / 0 / 202
$R1 \left[I > 2\sigma(I) \right]$	0.0301	0.0575	0.0734	0.0457	0.0552	0.0362	0.0400	0.0500
wR2 (all data)	0.0611	0.1509	0.1519	0.1377	0.1311	0.0984	0.0802	0.1260
GOF on F^2	1.038	1.134	1.272	1.052	1.009	1.072	1.009	1.087
largest diff. peak / hole [e Å ⁻³]	0.272 / -0.172	1.293 / -0.546	1.210 / -0.857	1.075 / -0.505	0.544 / -0.435	0.495 / -0.270	0.355 / -0.278	0.920 / -0.478
CCDC number	1548896	1548910	1548898	1548899	1548907	1548908	1548909	1548897

7. Experimental and Calculated Bond Lengths

Table S3. Experimental and calculated^a bond lengths^b of the tricyanoborate anions.

anion	B2a	B2b	B3a	B3c	B3d	B4a	B4b	B4c	B4d	B6a ¹⁰	B6b ^c
d(B-CN)	1.605(3)	1.601(3)	1.598(3)	1.598(3)	1.600(3)	1.600(2)	1.602(2)	1.601(3)	1.601(3)	1.607(2)	1.588(5)
	1.597(2)	1.604(3)	1.606(3)	1.615(3)	1.601(2)	1.604(2)	1.605(2)	1.601(3)	1.600(2)	1.605(2)	1.578(4)
	1.605(2)	1.607(3)	1.605(3)	1.600(3)	1.608(3)	1.606(2)	1.599(2)	1.598(4)	1.603(3)	1.599(2)	1.602(4)
	1.599	1.599	1.598	1.598	1.598	1.599	1.597	1.598	1.604	1.597	1.603
d(C-N)	1.145(2)	1.144(3)	1.142(3)	1.147(2)	1.145(2)	1.141(2)	1.143(2)	1.143(3)	1.145(2)	1.141(2)	1.128(4)
· · · ·	1.146(2)	1.147(2)	1.145(3)	1.144(3)	1.144(2)	1.141(2)	1.142(2)	1.143(3)	1.146(2)	1.142(2)	1.143(4)
	1.147(2)	1.145(2)	1.145(3)	1.145(2)	1.148(2)	1.143(2)	1.145(2)	1.141(4)	1.144(2)	1.147(2)	1.145(4)
	1.157	1.157	1.156	1.156	1.157	1.156	1.156	1.156	1.157	1.156	1.157
d(B-C1)	1.612(2)	1.614(3)	1.606(3)	1.611(3)	1.616(2)	1.613(2)	1.618(2)	1.618(4)	1.612(3)	1.626(2)	1.623(3)
. ,	1.638	1.637	1.640	1.639	1.638	1.648	1.642	1.639	1.634	1.652	1.644
d(C2-F2)	1.378(2)	-	1.352(3)	1.365(2)	-	1.346(2)	1.360(2)	1.364(3)	1.370(2)	1.345(2)	1.356(3)
· · · ·	1.361	-	1.351	1.360	-	1.346	1.350	1.356	1.370	1.344	1.354
d(C3-F3)	-	1.373(2)	1.335(3)	-	1.361(2)	1.360(2)	1.352(2)	-	-	1.348(2)	1.350(3)
	-	1.369	1.358	-	1.365	1.358	1.354	-	-	1.346	1.356
d(C4–F4)	-	-	-	-	-	-	-	1.351(4)	-	1.343(2)	$1.616(3)^{d}$
	-	-	-	-	-	-	-	1.355	-	1.344	1.644
d(C5-F5)	-	-	-	1.372(2)	1.372(2)	-	1.364(2)	1.353(4)	-	1.344(2)	1.352(3)
	-	-	-	1.368	1.365	-	1.364	1.357	-	1.345	1.354
d(C6-F6)	-	-	-	-	-	1.360(2)	-	-	-	1.351(2)	1.349(3)
	-	-	-	-	-	1.356	-	-	-	1.344	1.356
d(C1-C2)	1.381(2)	1.392(3)	1.383(3)	1.391(3)	1.399(2)	1.385(2)	1.385(2)	1.387(4)	1.374(3)	1.385(2)	1.373(4)
	1.394	1.401	1.393	1.395	1.403	1.394	1.394	1.394	1.392	1.394	1.394
d(C2-C3)	1.377(2)	1.385(3)	1.383(3)	1.378(3)	1.374(2)	1.381(2)	1.377(2)	1.379(5)	1.377(3)	1.383(2)	1.376(3)
	1.388	1.386	1.390	1.387	1.384	1.394	1.389	1.389	1.387	1.393	1.391
d(C3-C4)	1.389(3)	1.361(3)	1.371(4)	1.384(3)	1.377(3)	1.370(2)	1.376(2)	1.376(4)	1.396(2)	1.374(3)	1.380(4)
	1.394	1.383	1.384	1.394	1.386	1.380	1.385	1.384	1.402	1.385	1.394
d(C4–C5)	1.384(3)	1.375(3)	1.379(4)	1.374(4)	1.379(3)	1.388(2)	1.375(2)	1.380(5)	1.374(3)	1.370(3)	1.382(4)
	1.393	1.397	1.394	1.383	1.386	1.393	1.385	1.386	1.392	1.387	1.394
d(C5-C6)	1.388(2)	1.379(3)	1.387(3)	1.377(3)	1.380(3)	1.372(2)	1.377(2)	1.372(5)	1.377(3)	1386(2)	1.374(3)
. ,	1.396	1.392	1.394	1.386	1.384	1.385	1.384	1.386	1.387	1.389	1.391
d(C6-C1)	1.398(2)	1.397(3)	1.403(4)	1.397(3)	1.399(2)	1.393(2)	1.402(2)	1.396(4)	1.396(2)	1.387(3)	1.385(4)
. ,	1.403	1.405	1.403	1.402	1.403	1.399	1.403	1.402	1.402	1.397	1.394

 a
 B3LYP/6-311++G(d,p); calculated values in italics; mean values where applicable. ^b Bond lengths in Å. ^c Data of the second {B(CN)₃} moiety: d(B-CN) = 1.589(4), 1.603(4), 1.597(4) Å [*calc: 1.603 Å*]; d(C-N) = 1.134(4), 1.136(4), 1.145(3) Å [*calc: 1.157 Å*]; ^d d(C4-B).

Table S3 continued.

d(B-CN) 1.597(4) 1.602(5) 1.604(3) 1.595(4) 1.609(4) 1.590(5) 1.589(3) 1.604(5) - 1.590(7) 1.590(3) 1.601(4) 1.586(5) 1.604(3) 1.599(5) - 1.601 1.506 1.600 1.600 1.596 1.598 1.600 - 1.601 1.507(3) 1.591(4) 1.507(3) 1.591(4) 1.507(3) 1.591(4) 1.507(3) 1.591(4) 1.507(3) 1.591(4) 1.507(3) 1.591(4) 1.501(1) 1.501(1) 1.501(1) <th>anion</th> <th>B11a</th> <th>B7</th> <th>B10a</th> <th>BP2 f</th> <th> </th> <th></th> <th>Py1</th> <th>Py2</th> <th>Py3</th>	anion	B11a	B 7	B10a	BP2 f			Py1	Py2	Py3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d(B-CN)	1.597(4)	1.602(5)	1.604(3)	1.595(4)	d(B-CN)	at C2	-	1.597(7)	1.590(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.609(4)	1.590(5)	1.589(3)	1.604(5)			-	1.590(7)	1.596(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.601(4)	1.586(5)	1.604(3)	1.599(5)			-	1.601(6)	1.600(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.600	1.596	1.598	1.600			-	1.601	1.607
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d(C-N)	1.140(4)	1.137(5)	1.139(3)	1.138(4)		at C4	1.591(4)	1.580(37)	1.591(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.142(3)	1.141(5)	1.139(3)	1.138(4)			1.597(4)	1.594(31)	1.604(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.146(3)	1.138(5)	1.139(3)	1.142(4)			1.594(4)	1.593(32)	1.596(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.155	1.156	1.156	1.156			1.596	1.602	1.606
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							at C6	-	-	1.589(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-	-	1.597(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-	-	1.597(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-	-	1.606
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						d(C-N)	at C2	-	1.144(7)	1.148(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-	1.135(7)	1.144(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-	1.139(6)	1.137(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-	1.157	1.158
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							at C4	1.140(4)	1.139(31)	1.142(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1.144(4)	1.137(27)	1.137(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1.144(4)	1.133(24)	1.142(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1.156	1.157	1.157
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							at C6	-	-	1.140(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								-	-	1.146(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-	-	1.144(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-	-	1.158
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d(C2-F2)	1.343(3)	1.342(5)	1.349(3)	1.343(3)	d(C2-X2) ^e		1.340(4)	1.627(6)	1.620(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.342	1.343	1.349	1.349			1.345	1.639	1.639
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d(C3–F3)	1.353(3)	1.344(4)	1.346(3)	1.350(3)	d(C3-F3)		1.335(4)	1.366(5)	1.356(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.342	1.344	1.346	1.348			1.343	1.353	1.363
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>d</i> (C4–B)	1.626(3)	1.618(6)	1.621(4)	1.627(4)	d(C4–B)		1.631(4)	1.728(26)	1.620(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.654	1.653	1.650	1.649			1.651	1.646	1.642
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d(C5–F5)	1.349(3)	1.348(4)	1.346(3)	1.351(3)	d(C5–F5)		1.345(4)	1.328(5)	1.374(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.341	1.345	1.347	1.349			1.343	1.353	1.362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d(C6–F6)	1.341(3)	1.344(4)	1.349(3)	1.346(3)	$d(C6-X6)^{e}$		1.337(4)	1.352(5)	1.617(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.342	1.343	1.352	1.348			1.346	1.361	1.640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d(C1-C2)	1.386(4)	1.374(6)	1.368(3)	1.389(4)	d(N-C2)		1.310(4)	1.352(5)	1.3445(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.395	1.391	1.392	1.392			1.312	1.349	1.347
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d(C2-C3)	1.374(3)	1.368(6)	1.391(3)	1.378(4)	d(C2–C3)		1.377(5)	1.374(5)	1.390(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.389	1.395	1.393	1.392			1.387	1.400	1.397
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d(C3–C4)	1.387(4)	1.370(5)	1.386(3)	1.384	d(C3–C4)		1.385(4)	1.385(6)	1.382(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.397	1.394	1.393	1.393			1.397	1.401	1.396
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d(C4-C5)	1.391(4)	1.382(5)	1.386(3)	1.391(4)	d(C4–C5)		1.387(4)	1.368(6)	1.386(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K05 00	1.399	1.398	1.397	1.396	K05 00		1.394	1.391	1.393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a(C5–C6)	1.571(3)	1.372(6)	1.391(3)	1.380(4)	a(C5-C6)		1.576(4)	1.578(5)	1.380(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>KC(</i> 1)	1.585	1.383	1.58/	1.588	KCC ND		1.392	1.58/	1.400
(C1-Gr.) 1.425(3) 1.504(6) 1.373(4) 1.481(4)	a(Co-C1)	1.384(4)	1.377(0)	1.308(3)	1.380(4)	a(CO-N)		1.314(4)	1.290(5)	1.34/(3)
u(C1-G1.) = 1.423(3) = 1.304(0) = 1.573(4) = 1.461(4)	$d(C1, C_{\tau})$	1.398	1.39/	1.393	1.394			1.309	1.300	1.343
1 4 2 3 1 5 0 6 1 3 6 7 1 4 8 5	<i>u</i> (C1-OL)	1.423(3)	1.504(0)	1.373(4)	1.401(4)					

^e X = F or B; ^f data for the second Ph ring: d(B–CN) = 1.601(4), 1.592(4), 1.612(4) Å [*calc:* 1.600 Å]; d(C–N) = 1.143(3), 1.142(4), 1.136(4) Å [*calc:* 1.156 Å]; d(C2'–F2') = 1.343(3) Å [*calc:* 1.348 Å]; d(C3'–F3') = 1.350(3) Å [*calc:* 1.349 Å]; d(C4'–B) = 1.625(4) Å [*calc:* 1.649 Å]; d(C5'–F5') = 1.349(3) Å [*calc:* 1.348 Å]; d(C6'–F6') = 1.341(3) Å [*calc:* 1.349 Å]; d(C1'–C2') = 1.389(4) Å [*calc:* 1.394 Å]; d(C2'–C3') = 1.383(4) Å [*calc:* 1.396 Å]; d(C4'–C5') = 1.380(4) Å [*calc:* 1.393 Å]; d(C5'–C6') = 1.385(4) Å [*calc:* 1.392 Å]; d(C6'–C1') = 1.386(4) Å [*calc:* 1.392 Å].

Figure S2: Experimental and calculated bond lengths [Å] of anion N2.

8. References

- 1 R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, *Pure Appl. Chem.*, 2001, **73**, 1795–1818.
- 2 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics*, 2010, **29**, 2176–2179.
- 3 W. Kohn, L. J. Sham, *Phys. Rev. A*, 1965, **140**, 1133–1138.
- 4 K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251–8260.
- J. D. Kennedy, in *Multinuclear NMR* (Ed.: J. Mason), Plenum Press, New York, 1987,
 p. 221.
- 6 S. Berger, S. Braun, H.-O. Kalinowski, *NMR-Spektroskopie von Nichtmetallen ¹⁹F-NMR-Spektroskopie, Vol. 4*, Georg Thieme Verlag, Stuttgart, 1994.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Xi, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, M. B. F. Ogliaro, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, Revision D.01*, Gaussian, Inc., Wallingford CT, USA, 2009.
- 8 W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemicals*, 5 ed., Butterworth-Heinemann (Elsevier), 2003.
- J. Landmann, F. Keppner, D. B. Hofmann, J. A. P. Sprenger, M. Häring, S. H. Zottnick, K. Müller-Buschbaum, N. V. Ignat'ev, M. Finze, *Angew. Chem.*, 2017, 129, 2839–2843; *Angew. Chem. Int. Ed.* 2017, 56, 2795–2799.
- J. Landmann, J. A. P. Sprenger, R. Bertermann, N. Ignat'ev, V. Bernhardt-Pitchougina, E. Bernhardt, H. Willner, M. Finze, *Chem. Commun.*, 2015, 51, 4989– 4992.

- 11 G. M. Sheldrick, *SHELXT, Program for Crystal Structure Solution*, Universität Göttingen, 2014.
- 12 G. M. Sheldrick, *Acta Crystallogr.*, 2008, A64, 112–122.
- 13 G. M. Sheldrick, *SHELXL-97, Program for Crystal Structure Refinement*, Universität Göttingen, 1997.
- 14 C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281– 1284.
- 15 K. Brandenburg, *Diamond 4.3.2*, Crystal Impact GbR, Bonn, Germany, 1997-2017.