Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Macrocycle-assisted synthesis of non-stoichiometric silver(I) halide electrocatalysts for efficient chlorine evolution reaction

Qiong-You Zhang, Xin He, and Liang Zhao*

The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China

zhaolchem@mail.tsinghua.edu.cn

X-ray Crystallographic Analysis

Crystal data for $[Ag_4Cl(CF_3SO_3)_3(Py[7])(CH_3OH)]$ (1, CCDC-1527294): $C_{46}H_{46}Ag_4ClF_9N_{14}O_{10}S_3$, M = 1689.08, monoclinic, space group $P2_1/n$ (No. 14), a = 24.864(5) Å, b = 10.112(2) Å, c = 24.940(5) Å, $\beta = 114.19(3)^\circ$, V = 5720(2) Å³, Z = 4, T = 173 K, $D_c = 1.961$ g cm⁻³. The structure, refined on F^2 , converged for 9994 unique reflections ($R_{int} = 0.0643$) and 8482 observed reflections with $I > 2\sigma(I)$ to give $R_1 = 0.0962$ and $wR_2 = 0.1894$ and a goodness-of-fit = 1.225. Sliver atom Ag2 is disordered at two separated positions with a refined occupancy ratio of 0.89:0.11.

Crystal data for $[Ag_5Br(CF_3SO_3)_2(H_2O)_4(\mathbf{Py[7]})](CF_3SO_3)_2\cdot H_2O$ (2, CCDC-1527295): $C_{46}H_{52}Ag_5BrF_{12}N_{14}O_{17}S_4$, M = 2048.52, triclinic, space group *P*-1 (No. 2), a = 10.277(2) Å, b = 17.015(3) Å, c = 19.143(4) Å, $\alpha = 91.21(3)^\circ$, $\beta = 102.96(3)^\circ$, $\gamma = 90.15(3)^\circ$, V = 3261.4(11) Å³, Z = 2, T = 173 K, $D_c = 2.086$ g cm⁻³. The structure, refined on F^2 , converged for 14837 unique reflections ($R_{int} = 0.0442$) and 13437 observed reflections with $I > 2\sigma(I)$ to give $R_1 = 0.0442$ and $wR_2 = 0.1083$ and a goodness-of-fit = 1.068. Sliver atom Ag2 is disordered at two positions with a refined occupancy ratio of 0.70:0.30. The triflate anion S4 has two orientational disorder positions with a refined occupancy ratio of 0.72:0.28.

Crystal data for $[Ag_4I(H_2O)_2(\mathbf{Py[7]})](CF_3SO_3)_3$ (**3**, CCDC-1527296): $C_{45}H_{42}Ag_4F_9IN_{14}O_{10}S_3$, M = 1764.49, orthorhombic, space group *P*nma (No. 62), a = 26.256(5) Å, b = 21.160(4) Å, c = 10.086(2) Å, V = 5603.6(19) Å³, Z = 4, T = 173 K, $D_c = 2.092$ g cm⁻³. The structure, refined on F^2 , converged for 5068 unique reflections ($R_{int} = 0.0646$) and 4328 observed reflections with $I > 2\sigma(I)$ to give $R_1 = 0.0835$ and $wR_2 = 0.1439$ and a goodness-of-fit = 1.209. Sliver atom Ag3 is disordered at three separated positions with a refined occupancy ratio of 0.36:0.32:0.32. The triflate anion S2 has two orientational disorder positions with a refined occupancy ratio of 0.52:0.48. A disordered atom C24 was refined isotropically.

Supporting Figures

Fig. S2 High resolution ESI-MS spectra of complex 2.

Fig. S4 ¹H-NMR spectrum (400MHz, methanol- d_4 : CDCl₃, v : v = 1 : 1) of complex 1.

Fig. S5 ¹H-NMR spectrum (400MHz, methanol- d_4 : CDCl₃, v : v = 1 : 1) of complex **2**.

Fig. S6 ¹H-NMR spectrum (400MHz, methanol- d_4 : CDCl₃, v : v = 1 : 1) of complex **3**.

Fig. S7 TEM images for the stepwise growth of nanometer-sized particles upon adding HBF_4 into the solution of (a) complex 1, (b) complex 2, (c) complex 3. From left to right: after 1, 2 and 3 minutes.

Fig. S8 FT-IR spectra of 1-NP, PVP, macrocyclic ligand Py[7] and complex 1.

Fig. S9 UV-vis spectra of 1- to 3-NP in methanol at 298 K.

Fig. S10 EDX spectrum of **1-NP**. The Ag/Cl ratio was determined as 4.6 based on the atomic ratio of Ag-82.3% and Cl-17.7%.

Element	Weight %	Atomic %	Uncert. %	Correction	k-Factor
Cl(K)	6.60	17.71	4.65	0.95	1.063
Ag(K)	93.39	82.28	42.56	0.98	6.491

Fig. S11 CVs at a GC electrode (0.071 cm²) in an aqueous solution of NaCl (1 M) and HNO₃ (pH ~1, 0.1 M) without (black) and with (red) **2-NP** ($c_{Ag+} = 5.04 \mu$ M) and (green) **3-NP** ($c_{Ag+} = 6.72 \mu$ M). Scan rate: 100 mV/s.

Fig. S12 (a) Plot of catalytic current density vs. NaCl concentration in 0.1 M HNO₃ solution without (black) and with (red) **1-NP** ($c_{Ag+} = 0.53 \mu$ M). (b) Plot of catalytic current density vs. silver(I) concentration of **1-3-NP** (1 M NaCl, 0.1 M HNO₃).

Fig. S13 UV-vis spectra of 1-NP in (black) H_2O and (red) in an aqueous solution of NaCl (1 M) and HNO₃ (0.1 M) at 298 K.

Fig. S14 CVs of a glassy carbon electrode (0.071 cm²) in a NaH₂PO₄/Na₂HPO₄ buffer solution (0.1 M, pH~7) of NaCl (0.55 M) without (black) and with (red) **1-NP** ($c_{Ag+} = 0.53 \mu$ M). Scan rate: 100 mV/s.

Fig. S15 CVs of a glassy carbon electrode (0.071 cm²) in an aqueous solution of NaCl (1 M) and HNO₃ (pH ~1, 0.1 M) with **1-NP** ($c_{Ag+} = 5.30 \mu$ M) (black) before and (red) after electrolysis.

Fig. S16 TEM images and size-distribution histograms of (a) 1-NP (2.5 ± 1.5 nm) in 0.05 M NaCl aqueous solution, (b) 2-NP (1.5 ± 0.9 nm) in 1 M NaCl aqueous solution, and (c) 3-NP (1.4 ± 0.7 nm) in 1 M NaCl aqueous solution.

Fig. S17 (a) TEM image and size-distribution histogram of **1-NP** in larger sizes (6.0 ± 3.0 nm). (b) CVs at a GC electrode in an aqueous solution of NaCl (1 M) and HNO₃ (pH ~1, 0.1 M) without (black) and with **1-NP** in 2.5±1.5 nm (red) and 6.0 ± 3.0 nm (blue). Scan rate: 100 mV/s.

Fig. S18 EDX spectrum of **1-NP** in 1M NaCl solution . The Ag/Cl ratio was determined as 1.1 based on the atomic ratio of Ag-51.9% and Cl-48.1%.

Element	Weight %	Atomic %	Uncert. %	Correction	k-Factor
Cl(K)	23.34	48.08	13.90	0.95	1.063
Ag(L)	76.65	51.91	38.48	0.95	2.617

Fig. S19 XRD patterns of **1-NP** in 1M NaCl solution and the reference AgCl (JCPDS file: 31-1238) and Ag (JCPDS file: 87-0597).

Fig. S20 EDX spectrum of **1-NP** in 1M NaCl solution after 1h controlled potential electrolysis. The Ag/Cl ratio was determined as 3.7 based on the atomic ratio of Ag-78.8% and Cl-21.2%.

Element	Weight %	Atomic %	Uncert. %	Correction	k-Factor
Cl(K)	8.12	21.20	7.27	0.95	1.063
Ag(L)	91.87	78.79	20.42	0.95	2.617

Fig. S21 Ag MN, Ag 3d and Cl 2p signals for the PVP-stabilized stoichiometric AgCl nanoparticles **AgCl-NP** (C. An, S. Peng and Y. Sun, *Adv. Mater.*, 2010, **22**, 2570-2574). The Ag MN signals were determined by AES while the binding energies for Ag 3d and Cl 2p were measured by XPS. The +1 oxidation state of silver was determined based on the Ag $3d^{5/2}$ and Ag $3d^{3/2}$ binding energy peaks at 373.4 and 367.3 eV, respectively.