Electronic Supporting Information for

Nickel nanocatalyst within h-BN shell for enhanced hydrogen

oxidation reactions

Lijun Gaoº^{,b‡}, Ying Wang^{c‡}, Haobo Liº, Qihao Li^c, Na Taº, Lin Zhuang^{c*}, Qiang Fuº^{*}, Xinhe Baoº

^aState Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, the Chinese Academy

of Sciences, Dalian 116023, P.R. China

^bDepartment of Chemical Physics, University of Science and Technology of China, Hefei 230026, P.R.

China

^cCollege of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources,

Institute for Advanced Studies, Wuhan university, Wuhan 430072, China

* Emails: lzhuang@whu.edu.cn; qfu@dicp.ac.cn;

‡ Both authors contribute equally

Experimental Section

Material synthesis

Ni nanoparticles (NPs) supported on commercial carbon (Ketjen Black EC-600JD) were prepared by an impregnation method using Ni(NO₃)₂⋅6H₂O as the precursor. Before impregnation, the carbon support was calcined in air at 350 $^{\circ}$ C for 4 h. The fresh samples were dried in an oven at 120 °C overnight, and then reduced in NH₃ at 500 °C for 2 h or 700 °C for 1 h. The obtained samples were named as Ni/C -500NH₃ and Ni/C -700NH₃, respectively. Alternatively, certain amount of carbon supports and a mixed aqueous solution of $Ni(NO₃)₂$ and boric acid (H₃BO₃) were enclosed into a 100 ml stainless steel autoclave followed by heating at 120 \degree C for 10 h. After cooling to room temperature, the generated solid was dried at 40 °C overnight and then annealed at 700 °C for 1 h in NH₃. For support-free catalysts, the carbon support was not added for preparing the Ni ω (h-BN) core-shell catalysts. The molecular ratio of Ni to H_3BO_3 has been varied between 3:1 and 1:1, and the samples were denoted as $Ni_3@(h-BN)_1/C-700NH_3$, $Ni_1@(h-BN)_1/C-700NH_3$, $Ni_3@(h-BN)_1$ -700NH₃ and Ni₁@(h-BN)₁-700NH₃. The loadings of Ni in the Ni/C-500NH₃, Ni₃@(h-BN)₁/C-700NH₃, and $Ni₁@(h-BN)₁/C-700NH₃$ catalysts were 27.0%, 32.5%, and 24.2%, respectively, which were measured by inductively coupled plasmas optical emission spectrometer (ICP-OES, 7300DV, PerkinElmer). The three catalysts were treated by microwave digestion before the ICP-OES measurements.

Physicochemical characterization

X-ray diffraction (XRD) patterns were collected on an Empyrean diffractometer using a Cu ka (λ = 1.5406 Å) radiation source and scanning rate of 12^o∙min⁻¹. Transmission electron microscopy (TEM) images were recorded on Hitachi HT 7700 microscope operated at an acceleration voltage of 100 kV, and high-resolution electron microscopy (HRTEM) images were acquired on both JEM-2100 and FEI Technai F30 microscope operated at an accelerating voltage of 200 kV and 300 kV, respectively. Raman measurements were undertaken on a LabRam HR 800 instrument with a 532 nm excitation laser. X-ray photoelectron spectroscopy (XPS) measurements were performed in a Thermo Scientific ESCALAB 250Xi spectrometer using an Al Ka X-ray source and 20 eV pass energy. The C 1s peak located at 284.5 eV was used for calibration of binding energy positions. Infrared spectroscopic measurement was recorded on Nicolet isso FT-IR spectrometer with a spectral resolution of 4 cm⁻¹ accumulating 32 scans. H₂ pulse chemisorption was done using a Micromeritics Chemisorption Analyzer (Auto Chem II 2920). The samples were pretreated in 10% (v/v) H_2 -Ar (50 mL⋅min⁻¹) at 210 °C for 2 h and then changed to He (50 mL⋅min⁻¹) to purge the chemisorbed hydrogen on samples at 450 °C (for Ni/C-500NH₃ catalysts) or 600 °C (for Ni@h-BN/C catalysts) for 80 min. After cooling down to 40 °C, the samples were exposed to H₂ pulses consisting of 10% (v/v) H₂ balanced with Ar (50 mL⋅min⁻¹). H₂ concentration was measured using a thermal conducting detector (TCD). Temperature-programmed oxidation (TPO) was carried out in a home-made microreactor equipped with a mass spectrometer (OMNI STAR). The catalysts were firstly reduced in H_2 (50 mL∙min-1) at 500 ^oC for 2 h and then cooled down to room temperature in He. The reduced catalysts were heated in 20% (v/v) O₂-He (30 mL⋅min⁻¹) from room temperature to 800 °C with a ramping rate of 5 °C·min⁻¹. The products were analyzed by an on-line mass spectrometer.

Electrochemical measurements

Electrochemical experiments were conducted on a CHI-600E potentiostat with a rotating disk electrode (RDE) system (Pine Research Instruments). A sheet of carbon paper (Toray) was used as the counter electrode. The reference electrode was a reversible hydrogen electrode (RHE) in the same solution. 5 mg sample was dispersed ultrasonically in 1 ml diluted Nafion alcohol solution (0.05 wt. %) to form an ink, and the suspension was pipetted onto a RDE with a glassy carbon (GC) substrate (\varnothing = 5 mm), which was buff-polished with an alumina suspension (\varnothing = 0.05 µm) prior to use. The catalyst coated electrode was dried under an infrared lamp, and the Ni loading is 0.25 mg_{Ni}∙cm⁻². The hydrogen oxidation reaction (HOR) evaluation was carried out in H₂-saturated 0.1 M NaOH solution with the rotation rate of 2500 revolutions per minute (r.p.m). The potential was scanned from -0.05 V to 0.15 V (vs. RHE) at 5 mV⋅s⁻¹. Cyclic voltammetry (CV) was carried out in N₂-saturared 0.1 M NaOH solution by scanning the potential from -0.05 V to 0.50 V (vs. RHE) at 20 mV⋅ s⁻¹. The accelerated durability tests (ADTs) were conducted in 0.1 M NaOH solution by scanning the potential from -0.05 to 0.5 V (vs. RHE) at 100 mV⋅ s⁻¹ for 10000 cycles.

Computational details

Density functional theory (DFT) calculations were performed using Vienna ab initio simulation packages (VASP)^{[1](#page-13-0)} with the projector-augmented wave (PAW) scheme^{[2](#page-13-1)}. The Perdew-Burke-

Ernzerhof (PBE)^{[3](#page-13-2)} functional at the level of Generalized Gradient Approximation (GGA) for electronic exchange-correlation interactions has been used. The plane wave cutoff was set to 400 eV. The Brillouin zone was sampled by a $2 \times 2 \times 1$ Monkhorst-Pack ^{[4](#page-13-3)} k-point grid for structural optimizations. The convergence of energy and forces were set to 1 × 10⁻⁵ eV and 0.05 eV⋅Å⁻¹. The weak van der Waals (vdW) interactions were corrected in the form of C⁶/R⁶ pair potentials (PEB-D)^{[5](#page-13-4)}, where C⁶ for Ni, N, B, H, and O were set to 10.80, 1.23, 3.13, 0.14, and 0.70, and R^{vdW} were set to 1.562, 1.397, 1.485, 1.001, and 1.342, respectively. ΔE_H is defined by: $\Delta E_H = E_{\text{surface}} - E_{\text{surface}}$ $μ_H$, and ΔE_O is defined by: ΔE_O = E_{surface+O} - E_{surface} - $μ_O$, where E_{surface+H} or E_{surface+O} is the total energy for the surface with adsorbed H or O atoms, E_{surface} is the total energy for the h-BN/Ni surface, and μ_H or μ_O is the chemical potential of H or O with reference to H₂ or O₂: μ_H = 1/2μ(H₂), μ_O = 1/2μ(O₂). ΔE_{OH} is defined by: ΔE_{OH} = E_{surface+OH} - E_{surface} - μ_{OH}, where E_{surface+OH} is the total energy for the surface with adsorbed OH groups, $E_{surface}$ is the total energy for the h-BN/Ni surface, and μ_{OH} is the chemical potential of OH groups with reference to H₂O and H₂: $\mu_{OH} = \mu(H_2O) - 1/2\mu(H_2)$.

Fig. S1 TEM images and corresponding Ni particles size distributions of Ni/C-500NH₃ (a, d), Ni₃@(h- $BN)_1/C$ -700NH₃ (b, e), and $Ni_1@(h-BN)_1/C$ -700NH₃ (c, f) samples. The Ni/C-500NH₃ and Ni@h-BN/C samples show uniform size distribution of nanoparticles with an average diameter between 10 and 15 nm. Comparing with Ni/C-500NH3, Ni nanoparticles in the Ni@h-BN/C catalysts did not sinter although the samples were treated at the higher temperature (700 °C).

Fig. S2 HRTEM image of the $Ni_3@(h-BN)_1/C-700NH_3$ (a-b) and $Ni_1@(h-BN)_1/C-700NH_3$ (c-d) catalysts. In the Ni@(h-BN)/C samples, the NPs have been covered by graphitic overlayers.

Fig. S3 HRTEM image of the calcinated $Ni_1@(h-BN)_1/C$ -700NH₃ catalyst. A $Ni_1@(h-BN)_1/C$ -700NH₃ sample was calcinated at 550 °C in air to remove the carbon support. The calcinated Ni₁@(h- $BN)_1$ /C-700NH₃ catalyst contains similar core-shell nanostructures but the Ni cores were covered by thick and intact h-BN overlayers.

Fig. S4 HRTEM images of support-free Ni₃@(h-BN)₁-700NH₃ (a, b) and Ni₁@(h-BN)₁-700NH₃ (c, d) catalysts. The support-free Ni@h-BN catalysts were synthesized by the same procedure but without adding the carbon supports.

Fig. S5 Infrared spectra recorded from the $Ni_3@(h-BN)_{1}-700NH_3$ and $Ni_1@(h-BN)_{1}-700NH_3$ catalysts.

Fig. S6 XRD patterns and IR spectra of Ni(NO₃)₂/H₃BO₃, 450NH₃-Ni(NO₃)₂ and Ni₁@(h-BN)₁-700NH₃. The XRD patterns show the formation of Ni(NO₃)₂∙2H₂O (PDF 01-071-1840) after the impregnation. Ni(NO₃)₂⋅2H₂O decomposed to NiO at 450 °C and then reduced to metallic Ni at 700 °C. In IR spectra, adsorption bands at 1450, 1200, 787, 647, and 531 cm⁻¹ can be attributed to B-O, B-O-H, B-O-B, BO₃, and O-B-O groups respectively in the as-prepared sample. The 3220 and 3392 cm⁻¹ bands were attributed to O-H and crystal water.^{[6](#page-13-5)} The bands at 829, 1388, 1626 and 1762 cm⁻¹ were attributed to NO₃² group from Ni(NO₃)₂.^{[7](#page-13-6)} After treating by NH₃ at 450 °C for 1h, the bands from $NO₃²$ group disappeared. Meanwhile, boric acid decomposed into boric oxide. The 1233, 1350 and 1398 $cm⁻¹$ was attributed to B-O groups. The 1050 $cm⁻¹$ may be attributed to boron oxynitride species, and 680 cm⁻¹ was attributed to BO₃ group. The 3507 and 3332 cm⁻¹ were due to NH₂ species, while the 3197cm⁻¹ may be due to OH species ^{[6](#page-13-5)}. When the sample was treated by NH₃ at 700 °C for 1 h, the IR spectra show two characteristic peaks of h-BN at 1398 cm⁻¹ for in-plane B-N and 771 cm⁻¹ for out-of-plane B-N-B. The 1060 cm⁻¹ band may be attributed to boron oxynitride species ^{[6](#page-13-5)}. The XRD and IR spectra results indicated that NH₃ can reduce Ni(NO₃)₂ and H₃BO₃ to metallic Ni and h-BN at 700 °C after 1 h. The formation of Ni and h-BN happened at the same time.

Fig. S7 Cyclic Voltammetry of the (a) Ni/C-500NH₃, (b) Ni₃@(h-BN)₁/C-700NH₃, and (c) Ni₁@(h-BN)₁/C-700NH₃ samples in N₂-saturated 0.1 M NaOH solution, at 20 mV⋅s⁻¹ before (black) and after (red) ADTs.

Fig. S8 Atomic structure diagrams of the optimized adsorption structures in figure 4a: H atom adsorption at the interface of h-BN/Ni(111) with the coverage of 1/4 ML (a), 1/2 ML (b), and 1 ML (c).

Fig. S9 Atomic structure diagrams of the optimized adsorption structures in figure 4b: OH adsorption at the interface of h-BN/Ni(111) with the coverage of 1/4 ML (a), 1/2 ML (b), and 1 ML (c).

Fig. S10 Atomic structure diagrams of the optimized adsorption structures in figure 4c: O atom adsorption at the interface of h-BN/Ni(111) with the coverage of 1/4 ML (a), 1/2 ML (b), and 1 ML (c).

Reference

- 1. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 2. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 4. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- 5. S. Grimme, *J. Comput. Chem.*, 2006, **27**, 1787-1799.
- 6. X. Gouin, P. Grange, L. Bois, P. L'Haridon and Y. Laurent, *J. Alloys Compd.*, 1995, **224**, 22-28.
- 7. F. Vratny, *Appl. Spectrosc.*, 1959, **13**, 59-70.