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Supplemental Text

Description of pharmacokinetic model equations

For complete derivation and description, refer to Kwong et al., PNAS (2015)". Descriptions,
equations, and variables are derived from this reference and are included here with discussion
of portions relevant for this work.

The model is comprised of five ODEs tracking the levels of nanosensor (substrate tethered onto
nanoparticle) and reporters (fragments used for detection) in three compartments (Blood,
Tumor, Bladder). The model is deterministic and has several simplifying assumption, such as a
well-mixed assumption’.

After injection, in blood, nanosensors can be depleted by blood proteases (either off-target or
secreted proteases from the tumor), diffuse into the tumor, and taken up by the host
phagocytic/clearance system. This is described by the following equation:
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where the first two terms are derived from nanoparticle scaffold half-life and permeability into
the tumor and the last two from Michaelis-Menten analysis. In the original derivation,
kNP =1.4e-4 min™, kMMPO = 0.5 min”, and k22°9=6.6e-2 min™'. These parameters were
multiplied by scalar factors of 1.2, 4.0, and 0.03, respectively, to account for the improvements
observed in optimization experiments described in Fig. 2. Here, we assume that the change in
cleavage rates at the highest substrate concentration tested in vitro (6 uM) apply for simplicity,
as well generalize the decrease in thrombin cleavage to background blood cleavage.

In the tumor bed, nanosensor concentration increases as they diffuse into the tumor and get

depleted as they are cleaved by proteases.
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Proteolytic cleavage of nanosensor releases urinary reporters in the tumor that can diffuse back

out of the tumor. The change of reporter concentration in the tumor is given by:
kMMP9*Etumor
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In the blood, reporters can be generated either by proteolytic cleavage in the tumor or by
reporters entering from the tumor bed and depleted by clearance, urinary filtration, or non-
specific absorption in the kidney.
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Reporters from the blood accumulate in the bladder:
dCRBladder = k]}jilter * (CRBlood) (5)



All starting variables were either fit to experimental data in a mouse model of colorectal cancer
or from biochemical assays of proteolysis of our selected substrate’. Tumor enzyme
concentration was set 700 nM for a 10-mm tumor and 7 nM for a 5-mm tumor. This estimation
was arrived at by measuring MMP9 secretion rates of four human colorectal cancer cell lines’.
The concentration of MMP9 in blood is modeled as one-tenth of tumor concentration based on
previous estimation of protein secretion into blood from tumors?.

For control urine signal, the tumor compartment and all associated variables are omitted.
Detection signal is defined as tumor — control urine signal.

The core skeleton code has been deposited on GitHub (https://github.com/jaidud3/Cancer-
activity-based-nanosensor-mathematical-framework). The code was run in MATLAB R2013b.
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Figure S1. TCGA mRNA and human tissue microarray analysis of MMP9 expression. (a)
MRNA expression of MMP9 is elevated in breast cancer samples compared to normal adjacent
tissue based on analysis from The Cancer Genome Atlas. (b) MMP9 mRNA is elevated across
all stages of breast cancer compared to normal adjacent tissue based on analysis. (¢) Scoring
of MMP9 staining in tumor and normal tissue from ovarian, breast, lung, and prostate. Cores
were scored by a pathologist in a blind manner. (d) Scan of tumor microarray stained with
MMP9 antibody. Tumor microarray was purchased from US BioMax, Inc. (Catalog No.
MC5003b) and full map can be found on their website. (e) Several MMPs showed significantly
upregulated expression across breast cancer stages compared to normal adjacent tissue (Two-
tail Student’s t test for a; 1Tway ANOVA with Dunnet’s posttest for b & e; *P<0.05, **P<0.01,
***P<0.001; n = 22 for normal, 39 for Stage |, 42 for Stage la, 9 for Stage Ib, 26 for Stage I, 164
for Stage lla, 103 for Stage llb, 10 for Stage Ill, 65 for Stage llla, 13 for Stage llIb, 19 for Stage
llic, 13 for Stage IV, 9 for Stage X).

For data in Fig. 1a, the following cancers were analyzed: Head and Neck (Ginos et al.,
Cancer Res 2004; 13 normal, 41 tumor), Lung (Bhattacharjee et al., PNAS 2001; 17 normal,
132 tumor), Breast (TCGA; 61 normal, 529 tumor), Glioblastoma (TCGA; 5 normal, 82 tumor),
Colon (TCGA; 41 normal, 286 tumor), Ovarian (TCGA; 8 normal, 586 tumor), Prostate (Yu et al.,
J Clin Oncol 2004; 23 normal, 89 tumor), Liver (Roessler et al., Cancer Res 2010; 220 normal,
225 tumor), Melanoma (Riker et al., BMC Med Genomics; 5 normal, 82 tumor) and Pancreatic
(Badea et al., Hepatogastroenterology 2008; 39 normal, 39 tumor).
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Figure S2. Thrombin cleavage of thrombin substrate varies on surface presentation. A
thrombin substrate was presented on the nanoparticle surface with varying linker lengths (n = 2-
3, +SEM). Unlike the MMP substrate, an intermediate length was optimal for thrombin catalysis
(see Fig. 2). Data was fit to the Michaelis-Menten equation.
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Figure S3. Characterization of targeted vs untargeted nanoparticles. (a) Spectra of LyP-1
and non-tumor penetrating (NTP) ABN. Iron oxide absorbs at wavelengths shorter than 400 nm,
LyP-1 is tagged with 5FAM dye, the nanoparticle core is labeled with VT-680 and the peptide
substrate is labeled with Cy7. (b) Peptide substrate valencies were matched between the two
nanoparticles. (¢) Physicochemical characterization of particles by dynamic light scattering
shows a hydrodynamic diameter of 60.11 nm and a surface potential of -3.82 mV.
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Figure S4. Half-life measurements of ABN and free reporter. (a) Blood half-lives of LyP-1
and non-penetrating particles are matched (data fit to one-phase exponential decay). (b) Kinetic
measurement of the free reporter in the blood and urine after intravenous injection.
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Figure S5. Growth characteristics of MDA-MB-435 flank xenograft. (a) Caliper
measurements of tumor sizes across both groups were consistent, reaching 100 mm? total
burden by week 3. (b) Histogram of tumor sizes for urine data binning. (¢) Photographs of flank
tumors in nude mice. Targeted synthetic biomarkers were able to classify tumors at week 2.
Volumes reported are calculated after measurements performed using a digital caliper. Urine
signal for mice administered (d) non-penetrating ABNs and (e) LyP-1 ABNs over time course of
the study (P-value represented on each graph as calculated by repeated measures ANOVA).
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Figure S6. HE4 secretion rates across several ovarian cancer lines. (a) Standard curve for
the HE4 ELISA. (b) Secreted HE4 across several lines was measured by collecting
supernatants. Data is normalized to get secretion rate per million cells per day. (¢) Cytoplasmic
HE4 was measured by collecting and lysing cells. OVCAR-8 cells have relatively high secretion
and cytoplasmic HE4 compared to cells profiled. (d) Cleavage of MMP9 substrate by
conditioned media collected from OVCAR-8 cells with and without the MMP inhibitor,
Marimistat. Marimistat can inhibit a significant portion of the cleavage. (e) Correlation of tumor
volumes as measured by imaging of retrieved nodules after necropsy versus bioluminescence
imaging. Although there is positive correlation (Spearman r = 0.48, P = 0.04), luminescence can
be inaccurate for individual mice due to depth of tumors in the abdomen. (f) Bioluminescence
imaging shows that on average, tumor burden increases over time.
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Figure S7. Urinary biomarker performance in the ovarian cancer model. (a) Plot of LyP-1
ABN accumulation, as measured by fluorescence intensity, and tumor diameter from the 10
mice shown in Fig. 4f. Linear regression shows that total nanoparticle accumulation was
correlated with size of individual tumor nodules (Pearson’s r = 0.767). (b) Total tumor burden
was measured at the time when detection became statistically significant for blood biomarker (n
=10, 3 weeks; HE4) or for the urinary biomarker (n=10, 2 weeks). The limit of detection for LyP-
1 ABN was at a tumor volume of 36 mm? while the limit of detection for blood biomarker HE4
was at a tumor volume of 88 mm?®. (c) Distribution of nodule diameters recovered from each
mouse at time of positive detection (n = 10 each group). (d) Tumor and non-tumor mice were
imaged live (top), then sacrificed and the abdominal cavities opened to image tumors without
skin attenuation (middle). Visible tumors were resected and mice were imaged again (bottom).
(e) Luminescence from tumor bearing mice before and after tumor resection was measured,
and it was calculated that 17.4% and 17.8% of tumor signal was remaining, respectively. (f)
Resected tissue is luminescent, suggesting that mostly tumor cells were removed. (g) A cell
standard OVCAR-8 cells was also imaged, with a limit of detection below 3,000 cells.
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Figure S10. Clearance of ABN in vivo. BALB/c mice were injected with iRGD ABN
intravenously and fluorescence was measured in (a) blood and (b) urine every 24 hours for 7
days. (c) Organs were collected 3 hours, 24 hours, and 7 days after ABN administration and
fluorescence was measured compared to a PBS injected control. Reporter signal in the blood,
urine, and organs was undetectable at 7 days (n = 3, +SEM for all time points). (d) Nude mice
bearing orthotopic ovarian tumors and injected with ABN have similar urine clearance kinetics
with no detectable signal after 1 day (n = 5, £SEM).
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Figure S11. Toxicity of ABN. Immunocompetent BALB/c mice were injected with iRGD ABN,
and organs (heart, lung, liver, spleen, and kidney) were collected at 3 hours, 24 hours, and 7
days after administration. Organs were fixed, embedded in paraffin, and stained with
hematoxylin & eosin. Analysis by a veterinary pathologist confirmed that tissue from ABN
injected animals appeared similar to PBS injected control. Study was done with n = 3 mice and
images from a representative animal are shown. Scale bar represents 100 um.
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Figure S12. Correlation between MRI computed tumor volume and bioluminescence. MRI

and bioluminescence measurements were made by two separate, blinded operators (r:
Pearson’s correlation).
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Figure S13. Imaging of nanosensor localization. (a) Biodistribution of LyP-1 or iRGD
targeted nanoparticles. (b) Fluorescent scan of livers with tumor metastases administered
iRGD or LyP-1 targeted synthetic biomarkers or uninjected controls. Red = tissue background,
green = nanoparticles. Scale bar indicates 2 cm. Uninjected controls show no nanoparticle
fluorescence. Tumors are not autofluorescent (white arrow). (¢) Photograph of excised livers.

Tumors are delineated by lack of autofluorescence. iRGD targeted synthetic biomarkers are
able to penetrate the tumors more significantly than LyP-1 particles.
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Figure S14. Performance of targeted nanosensors in liver metastasis model. (a) iRGD
targeted sensors can differentiate liver metastasis bearing mice from age-matched mice that
received a sham surgery (n = 5 per condition; £SEM; Student’s t-test, two-tailed, *P<0.05). (b)
Plot of individual mouse relative urinary signal against tumor luminescence. Tumor
luminescence between iRGD and LyP-1 groups were similar.

19



Supplemental References

1. Kwong, G. A. et al. Mathematical framework for activity-based cancer biomarkers. Proc. Natl.
Acad. Sci. (2015).

2. Hori, S. S. & Gambhir, S. S. Mathematical Model Identifies Blood Biomarker—Based Early
Cancer Detection Strategies and Limitations. Sci. Transl. Med. 3, 109ra116—109ra116
(2011).

20



