Supplementary Figures
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Supplementary Figure 1: Aire deficiency has minimal effects on CD8* T cell cytolytic
function in melanoma bearing mice. A and B) RAG™ recipients of CD8* T cells from WT and
Aire®™" mice were followed for B16 melanoma tumor growth and survival after B16 inoculation;
n=10 per group, Mann Whitney U-test. *p<0.05, n.s.=non-significant. C) Absolute numbers of

CD8+ tumor-infiltrating cells. t-test. ns=not significant. D) Average cumulative frequencies of Ki67*



among CD8* T cells. Tumor-infiltrating lymphocytes (TIL) were harvested on Day 19 following
B16 melanoma inoculation in RAG™ recipients of CD8* T cells from WT and Aire"* donor mice.
t-test. ns=not significant. E) Representative flow cytometry histogram comparison and average
absolute B16 cell numbers of cell trace violet-labeled B16 cells after co-incubation with non-CD4*

T cells from WT and Aire®""* mice. t-test. ns=not significant.
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Supplementary Figure 2: Modest effect of Aire deficiency and anti-CTLA-4 antibody on
CD8+ T cell responses. Tumor-infiltrating lymphocytes (TIL) were harvested on Day 19 following
B16 melanoma inoculation in WT and Aire®""* mice treated with aCTLA-4 or iso antibody.
Representative flow cytometry plots and average cumulative frequencies of Ki67*, KLRG1*" and
Granzyme B* among CD8" T cells. n=9-12 in each group. One-way ANOVA with Tukey’'s multiple

comparisons test. ns=not significant, *p<0.05.
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Supplementary Figure 3: Anti-CTLA-4 antibody treatment in Aire deficient mice does not

decrease Treg population. Splenocytes and tumor-infiltrating lymphocytes (TIL) were harvested

on Day 19 following B16 melanoma inoculation in WT and Aire®V* mice treated with anti-CTLA-

4 antibody (aCTLA-4) or isotype control antibody (Iso). A) Representative flow cytometry plots of

FOXP3 and CD25 expression and (B) average cumulative frequencies of FOXP3* Tregs within

CD4* splenocyte population. C) Representative flow cytometry plots of FOXP3 and CD25

expression and (D) average cumulative frequencies of FOXP3* Tregs within CD4* TIL population.

E and F) Average cumulative ratio of CD4* Teffs : FOXP3* Tregs (E) and CD8* T cells : FOXP3*

Tregs (F). One-way ANOVA with Tukey’s multiple comparisons test. *p<0.05, **p<0.01, n.s= not

significant.
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Supplementary Figure 4. anti-CTLA-4 antibody does not impair negative selection of TRP-
1 specific CD4+ T cells. A) Representative flow cytometric plots of CD4+ and CD8+ thymocytes
from Aire®V* or WT TRP-1 TCR Tg mice. WT TRP-1 TCR Tg were treated with either isotype
control antibody (iso) or anti-CTLA-4 antibody (aCTLA-4). B) Cumulative frequency (mean +/- SD)
of CD4 single positive (SP) cells. One-way ANOVA with Tukey’s multiple comparisons test.

*p<.05. n.s.=not significant.
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Supplementary Figure 5: anti-RANKL antibody impairs negative selection of TRP-1 specific
CD4+ single positive T cells. Representative flow cytometric plots of CD4+ and CD8+
thymocytes from TRP-1 TCR Tg mice treated with isotype control antibody (iso) or anti-RANKL

antibody (aRANKL). Mean +/- SD shown. t-test. **p<.01.
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Supplementary Figure 6: Model of mechanism underlying additive anti-melanoma effects
of combination central and peripheral tolerance blockade. A) In the thymus, Aire in mTECs
promotes self/melanoma antigen expression, which results in negative selection of
self/melanoma-reactive CD4* T cells. As a result, the efficacy of checkpoint inhibition is limited by
the scarcity of melanoma-reactive T cells in the periphery. B) Aire deficiency or transient depletion
of Aire-expressing mTECs with anti-RANKL (aRANKL) antibody rescues self/melanoma antigen-
reactive effector CD4* T cells from negative selection. This expansion of the melanoma-reactive

T cell pool available for activation by checkpoint inhibitors enhances anti-melanoma immunity.



