Supplemental data

Figure S1. Surface Plasmon Resonance (SPR) data of single chain T-cell receptor (scTCR) s380 and s364 binding to DQ2.5:DQ2.5-glia- α 1a and DQ2.5:DQ2.5-glia- α 2, respectively. (A) Representative sensogram of scTCR s380 binding to immobilized DQ2.5:DQ2.5-glia- α 1a using a classical multi-cycle kinetic SPR setup. The affinity was determined by fitting the data to a 1:1 Langmuir binding model. (B) Equilibrium dissociation constant (K_D) was determined by plotting the response at equilibrium from (A) against the concentration of analyte (scTCR s380). (C and D) The equilibrium responses of the single-cycle kinetics data in Figure 1C and D plotted against the concentration of (C) scTCR s380, and (D) scTCR s364 to derive the equilibrium dissociation constant (K_D). Dotted line indicates the K_D based on fitting the response to saturation. The K_D values are summarised in Table S1.

Figure S2. Validation of T-cell receptor (TCR), CD4 and HLA-DQ2.5-peptide expression levels and stimulatory capacity of the BW 380 and 364 T cells. (A) BW 380 and 364 T cells stained with either anti-TCR-Alexa 647 or anti-CD4-PE mAbs were analyzed by flow cytometry to validate the TCR and CD4 expression levels. Untransduced BW T cells devoid of endogenous TCR and human CD4 were used as control. (B) The BW 380 and 364 T cells were stimulated with a PMA/ionomycin followed by measurement of IL-2 secretion to assess their stimulatory capacity. The dotted line indicates the detection limit, and error bars indicate ± SD of triplicates and are only shown if they exceed the size of the symbol. (C) HLA-DQ2.5-peptide expression levels on the A20 cells transfected with HLA-DQ2.5 with covalently linked peptide was assessed in flow cytometry after staining with the biotinylated mAb 2.12.E11 specific for HLA-DQ2 β-chain, followed by streptavidin Alexa-647. Untransduced A20 cells devoid of HLA were used as control. (**A-C**) Two (A and C) or three (B) independent experiments were conducted. (**B**) Figures were prepared using GraphPad Prism 7. Non-linear regression analysis (three parameters) was used to derive IL-2 concentrations from the standard curves.

Figure S3. T-cell receptor (TCR) expression level and stimulatory capacity of the BW 364 T cells and the BW 364 T cell variants. The *TRAV* and *TRBV* BW T cell exchange mutants were evaluated by (**A**) staining with anti-TCR-Alexa-647 mAb, or isotype control, followed by analysis by flow cytometry to validate TCR expression levels, and (**B**) stimulation with a PMA/ionomycin cocktail followed by measurement of IL-2 secretion to assess equal stimulatory capacity. The dotted line indicates the detection limit, and error bars indicate ± SD of triplicates and are only shown if they exceed the size of the symbol. (**A-B**) Two (A) or four (**B**) independent experiments were conducted. (**B**) Figures were prepared using GraphPad Prism 7. Non-linear regression analysis (three parameters) was used to derive IL-2 concentrations from the standard curves.

Figure S4. T-cell receptor (TCR) and CD4 expression levels and stimulatory capacity of the BW 364 T cell variants. All *TRAV* and *TRBV* mutant variants used to assess the contribution of germline variants were evaluated by (**A**) staining with anti-TCR-Alexa-647, anti-CD4-PerCP-Cy5.5, or isotype controls, followed by flow cytometry, and (**B**) stimulation with a PMA/ionomycin cocktail followed by measurement of IL-2 secretion. The dotted line indicates the detection limit, and error bars indicate ± SD of triplicates and are only shown if they exceed the size of the symbol. (**C**) HLA-DQ2.5⁺ EBV-B cells were loaded with native 33merQ peptide and IL-2 secretion level determined by ELISA. Error bars indicate ± SD of triplicates. (**A-C**) Two (A) or four (B and C) independent experiments were conducted. (**B and C**) Figures were prepared using GraphPad Prism 7. Non-linear regression analysis (three parameters) was used to derive IL-2 concentrations from the standard curves.

Table S1. SPR data of scTCRs s380 and s364

TCR clone	Method	K _D (kd/ka)	K _D (eq.)	Average K _D
380	SCK ^A	7.9	14.3	11.1
380	SCK ^A	21.6	24.5	23.1
380	MCK ^B	15.1	17.5	16.3
380				17 ^C
364	SCK ^A	47.6	42.3	45.0
364	SCK ^A	31.3	33.9	32.6
364	SCK ^A	35.4	NA	NA
364				38 ^c

^A SCK; single-cycle kinetics ^B Classical MCK; multi-cycle kinetics ^C Average K₀ value based on values derived from both the affinity constant (kd/ka) and the equilibrium dissociation constant.

Table S2. Sequence alignment of TRAV26-1 and other TRAVs paired with the canonical CDR3 β in CD patients.

. A	504	0004	502	0002	502
v-gene	FR1	CDR1	FRZ	CDR2	FR3
IMGT no.	1→26	27→38	39→55	56→65	66→104
TRAV26-1	DAKTTQ.PPSMDCAE GRAANLPCNHS	TISGNE <mark>Y</mark>	V Y WYRQIH SQGPQYII <mark>H</mark>	GLKNN	ETNEMASLIITEDR KSSTLILPHATL RDTAVYYC
TRAV5	GEDVEQS.LFLSVRE GDSSVIN C TYT	DSSSTY	LYWYKQEP GAGLQLLTY	IFSNMDM	KQDQ RLTVLLNKKD KHLSLRIADTQT GDSAIYF C AES
TRAV39	ELKVEQNPLFLSMQE GKNYTIY C NYS	TTSD <mark>R</mark>	LYWYRQDP GKSLESLFV	LLSNGAV	KQEG RLMASLDTKA RLSTLHITAAVH DLSATYF C AVD
TRAV8-6	AQSVTQLDSQVPVFE EAPVELR C NYS	SSVSV <mark>Y</mark>	L <mark>F</mark> WYVQYP NQGLQLLL <mark>K</mark>	YLSGSTLV	ESIN GFEAEFNKSQ TSFHLRKPSVHI SDTAEYFC
TRAV38-1	AQTVTQSQPEMSVQE AETVTLSCTYD	TSENNY <mark>Y</mark>	LFWYKQPP SRQMILVIR	QEAYKQQN	ATEN RFSVNFQKAA KSFSLKISDSQL GDTAMYFC
TRAV29 ^B	DQQVKQNSPSLSVQE GRISILNCDYT	NSMFDY	FLWYKKYP AEGPTFLI <mark>S</mark>	ISSIKDK	NEDG RFTVFLNKSA KHLSLHIVPSQP GDSAVYFC
TRAV13-2	GESVGLHLPTLSVQE GDNSIINCAYS	NSASD <mark>Y</mark>	FIWYKQES GKGPQFIID	IRSNMDK	RQGQ RVTVLLNKTV KHLSLQIAATQP GDSAVYFC
TRAV12-3	QKEVEQDPGPLSVPE GAIVSLNCTYS	NSAFQ <mark>Y</mark>	FMWYRQYS RKGPELLMY	TYSSGN	KEDG RFTAQVDKSS KYISLFIRDSQP SDSATYLC
 ^A TRAV gene segment usage and numbering was defined by the IMGT Database. ^B TRAV29/DV5 					

Amino acids in position 38, 40 and 55 are indicated in bold and red characters.

Table S3.	Gene segme	nt usage and	CDR3 seq	uences of t	he clones

Clone	TRAV	CDR3	TRAJ	TRBV	CDR3	TRBJ
380	TRAV9-2	ALSDHYSSGSARQLT	TRAJ22	TRBV7-2	ASSTAVLAGGPQY	TRBJ2-7
364	TRAV26-1	IVTNNNDMR	TRAJ43	TRBV7-2	ASSIRSTDTQY	TRBJ2-3
AV5BV7 ^A	TRAV5	AESPGPGKLI	TRAJ37	TRBV7-2	ASSLRSADTQY	TRBJ2-3
AV39BV7 ^A	TRAV39	AVDPP	TRAJ43	TRBV7-3	ASSFRSTDTQY	TRBJ2-3
AV8TV7 ^A	TRAV8-6	AVTRNSGGYQKVT	TRAJ13	TRBV7-2	ASSIRSTDTQY	TRBJ2-3
AV38TV7 ^A	TRAV38-1	APDPSTSGTYKYI	TRAJ40	TRBV7-2	ASSLRFTDTQY	TRBJ2-3
AV29TV7 ^A	TRAV29 ^B	AEGITGANSKLT	TRAJ56	TRBV7-2	ASSIRATDTQY	TRBJ2-3
AV13TV7 ^A	TRAV13-2	AESGYSTLT	TRAJ11	TRBV7-2	ASSVRSTDTQY	TRBJ2-3
AV12TV7 ^A	TRAV12-3	AMKEYGNKLV	TRAJ47	TRBV7-2	ASSLRSTDTQY	TRBJ2-3
 TRAV gene segment usage and numbering was defined by the IMGT Database. ^A Clonotypes identified by high-throughput sequencing ^B TRAV29/DV5 						