Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/3/9/e1700841/DC1

Supplementary Materials for

Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI₃ perovskite phase for high-efficiency solar cells

Taiyang Zhang, M. Ibrahim Dar, Ge Li, Feng Xu, Nanjie Guo, Michael Grätzel, Yixin Zhao

Published 29 September 2017, *Sci. Adv.* **3**, e1700841 (2017) DOI: 10.1126/sciadv.1700841

This PDF file includes:

- fig. S1. Comparative analysis of crystal structures of PbI₂·*x*HI and HPbI₃.
- fig. S2. Morphology of EDAPbI₄ films.
- fig. S3. Schematic structure of (110) layered 2D films.
- fig. S4. The organic compositions of CsPbI₃·*x*EDAPbI₄ films.
- fig. S5. Characterization of CsPbI₃ + 0.05PbI₂ with or without EDAI₂.
- fig. S6. Effect of EDAPbI₄ on the optical properties.
- fig. S7. Effect of EDAPbI₄ on the transient photovoltage behavior.
- fig. S8. Hysteresis behavior of CsPbI₃·0.025EDAPbI₄-based device.
- fig. S9. Effect of EDAPbI₄ on the phase stability of CsPbI₃·*x*EDAPbI₄ perovskite films.
- fig. S10. Phase stability of CsPbI₃·0.025EDAPbI₄ perovskite film under room temperature.
- fig. S11. Phase stability of CsPbI₃·0.025EA₂PbI₄-based films.
- fig. S12. Device performance of CsPbI₃·0.025EA₂PbI₄-based solar cell.
- fig. S13. Phase stability of CsPbI₃·0.025BA₂PbI₄-based films.
- fig. S14. Effect of CsPbI₃·0.025BDAPbI₄ and CsPbI₃·0.025EDBEPbI₄ 2D perovskite component on the evolution of morphology.
- fig. S15. Phase stability of CsPbI₃·0.025BDAPbI₄ and CsPbI₃·0.025EDBEPbI₄ films.

fig. S1. Comparative analysis of crystal structures of PbI₂•xHI and HPbI₃. XRD patterns of PbI₂•xHI and HPbI₃ powders.

fig. S2. Morphology of EDAPbI4 films. AFM images of EDAPbI4 films.

fig. S3. Schematic structure of (110) layered 2D films. Schematic structure of EDAPbI₄.

fig. S4. The organic compositions of CsPbI3•xEDAPbI4 films. XPS analysis of CsPbI3·xEDAPbI4 samples (x=0~0.05).

fig. S5. Characterization of CsPbI₃ + **0.05PbI**₂ **with or without EDAI**₂. XRD pattern of CsPbI₃+0.05EDAPbI₄ and CsPbI₃+0.05PbI₂ samples. The star is index to FTO pattern, the rectangle is index to PbI₂ peak.

fig. S6. Effect of EDAPbI₄ on the optical properties. (a) photoluminescence (b) time-resolved photoluminescence decay curves of $CsPbI_3 \cdot xEDAPbI_4$ (x=0-0.05) perovskites.

fig. S7. Effect of EDAPbI4 on the transient photovoltage behavior. Transient photovoltage decay curves of perovskite solar cells based on CsPbI₃·xEDAPbI₄ samples (x: 0–0.05).

fig. S8. Hysteresis behavior of CsPbI₃•0.025EDAPbI₄-based device. A typical forward and reverse scan J-V curve of the perovskite solar cells based on CsPbI₃•0.025EDAPbI₄ samples.

fig. S9. Effect of EDAPbI₄ **on the phase stability of CsPbI**₃**•xEDAPbI**₄ **perovskite films.** XRD patterns of CsPbI₃·xEDAPbI₄ film heated at 100 °C for 7days (1 day for x=0 samples).

fig. S10. Phase stability of CsPbI3•0.025EDAPbI4 perovskite film under room temperature. XRD patterns of CsPbI3·0.025EDAPbI4 film after aged at room temperature in a drybox for two months.

fig. S11. Phase stability of CsPbI3•0.025EA2PbI4-based films. XRD pattern and UV-vis spectra of CsPbI₃·0.05EA₂PbI₄ films freshly prepared and aged for 1 day at room temperature.

fig. S12. Device performance of CsPbI3•0.025EA2PbI4-based solar cell. Champion J-V curves of CsPbI3·0.025EA2PbI4 perovskite based solar cells.

fig. S13. Phase stability of CsPbI3•0.025BA2PbI4-based films. XRD patterns of CsPbI3·0.025BA2PbI4 films freshly prepared and aged for 12 hrs at 100°C.

fig. S14. Effect of CsPbI₃•0.025BDAPbI₄ and CsPbI₃•0.025EDBEPbI₄ 2D perovskite component on the evolution of morphology. AFM images of CsPbI₃•0.025BDAPbI₄ (**a**) and CsPbI₃•0.025EDBEPbI₄ (**b**).

fig. S15. Phase stability of CsPbI₃•0.025BDAPbI₄ and CsPbI₃•0.025EDBEPbI₄ films. XRD patterns of CsPbI₃·0.025BDAPbI₄ (**a**) and CsPbI₃·0.025EDBEPbI₄ (**b**) films freshly prepared and aged for 3days at 100°C.