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Introduction

Computational neuroscience is the study of brain function in terms of the

information processing properties of the structures that make up the ner-

vous system. It is an interdisciplinary science that links the diverse fields of

neuroscience, cognitive science, and psychology with electrical engineering,

computer science, mathematics and physics.

Computational neuroscience is distinct from psychological connectionism

and from learning theories of disciplines such as machine learning, neural net-

works, and computational learning theory in that it emphasizes descriptions

of functional and biological real systems and their physiology and dynamics.

These models capture the essential features of the biological system at multi-

ple spatial-temporal scales, from membrane currents, proteins, and chemical

coupling to network oscillations, columnar and topographic architecture, and

learning and memory and computational models are used to frame hypothe-

ses that can be directly tested by biological and/or psychological experiments.

The term “computational neuroscience” was first introduced in 1985 by

Eric Schwartz, who organized a conference in Carmel, California, at the re-

quest of the Systems Development Foundation to provide a summary of the

current status of a field which until that point was referred to by a variety

of names, such as neural modeling, brain theory and neural networks. The

proceedings of this definitional meeting were published in 1990 as the book

“Computational Neuroscience”.

The first open international meeting focused on computational neuro-
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science was organized by James M. Bower and John Miller in San Francisco,

California in 1989 and has continued each year since as the annual CNS

meeting [3]. The first graduate educational program in computational neu-

roscience was organized as the Computational and Neural Systems Ph.D.

program at the California Institute of Technology in 1985.

Research in computational neuroscience can be roughly categorized into

several lines of inquiry, from memory and synaptic plasticity to network

behavior, from learning behavior to sensory processing. But what is partic-

ularly important is the fact that most computational neuroscientists collab-

orate closely with experimentalists and neurologist in analyzing novel data

and synthesizing new models of biological phenomena.

The present line of research is embedded in a particular branch of compu-

tational neurosciences called “neuroinformatics”, a research field concerning

the organization of neuroscience data by the application of computational

models and analytical tools. These areas of research are important for the

integration and analysis of increasingly large-volume, high-dimensional, and

fine-grain experimental data. Neuroinformaticians provide computational

tools, mathematical models, and create interoperable databases for clini-

cians and research scientists: neuroscience, infact, is a heterogeneous field,

consisting of many and various sub-disciplines (eg, cognitive psychology, be-

havioral neuroscience, behavioral genetics and so on), and in order for our

understanding of the brain to continue to deepen, it is necessary that these

sub-disciplines are able to share data and findings in a meaningful way: Neu-

roinformaticians facilitate this, combining informatics research and brain re-

search and providing benefits for both fields of science. On one hand, infor-

matics facilitates brain data processing and data handling, by providing new

electronic and software technologies for arranging databases, modeling and

communication in brain research. On the other hand, enhanced discoveries

in the field of neuroscience will invoke the development of new methods in

information technologies.
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In this context, the improved efficiency of processors and, by consequence,

of the calculus velocity has driven computational neuroscience, and “neuroin-

formatics” in particular, to deal with new possibilities and new tools, such as

Granger Causality, Transfer Entropy indicators that, even born in different

context (econometrics, wether analysis and so on), has become important

landmarks of this research branch and of fundamental utility in extracting

neural dynamics from biological data, as every other kind of temporal data

analysis.

Moreover, the Brain Networking has become, in the last three years, a

fundamental tool to investigate dynamics between biological system, but the

present work is, as a matter of fact, probably the first attempt to apply such

kind of measures at human brain dynamics in such a massive way, being, so

far, only applied to cortical activity of macaques or other species of primates.

If the results of the present analysis will be confirmed in the larger context

of Neurology, the tools developed so far will recive a further incentive to be

considered not only fundamental physical and mathematical tools, but even

important investigation instruments to help medicians and neurologists to

investigate and discover real features of brain dynamics.



Chapter 1

Introdution to Information

Theory

1.1 Basics of Information Theory

To introduce the most fundamental concepts of information theory (IT), it

is first necessary to define the concepts of simple and conditional probability.

Let, therefore, p(x, y) the probability for two events, x and y, to occur

simultaneously. If the two events are independent (or “unrelated”, such as

the simultaneous launch of two dice), then:

p(x, y) = p(x) · p(y) (1.1)

or better, the probability is equal to the product of the probabilities related to

individual events. This, however, is the simplest case and it is not of interest

to us. In fact, if we had to calculate the probability of extracting in sequence

specific cards from a deck, without the first coat has been reintroduced into

it, (1.1) would not be usable. In this case we prefer to define the “conditional

probability”, or the probability that an event y occur if the event x already

occurred:

p(y|x) =
p(x, y)

p(x)
(1.2)

7
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From (1.2) we can obtain:

p(x, y) = p(y|x) · p(x) (1.3)

which defines the “composed probability”, that is the generalization of (1.1)

to the case of non-independent events.

A simple property we can enunciate and that will be useful later is the

following:

p(x) · p(y|x) = p(y) · p(x|y) (1.4)

If we introduce the inequality signs (≤ and ≥), we can also define the

concept of “correlation” between two events. We will say, in fact, that

p(x|y) ≥ p(x) ( or p(x|y) ≤ p(x) ) (1.5)

if the two events are correlated positively (negatively), or if the occurrence

of y makes it more (less) likely the occurrence of x. The converse is also

true, ie if p(x|y) ≤ p(x), then the occurrence of the x event is favored by the

occurrence of y.

It is important to note, for completeness, that the fact that two events

are correlated or not does not imply that one of them causes the other.

1.2 Application to medicine: nomenclature

The probabilistic concepts expressed so far can be reconsidered and revised

in medical field for future convenience. In this case, the composed probabi-

lities seen previously assume different names.

If we denote by M the patient suffering from a given disease, with M̄ the

healty patient and T± the success or failure of the test for the diagnosis of

disease which M is a carrier, then
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• P (M) is called incidence rate of the disease;

• P (T−|M̄) is the specificity of a test;

• P (T+|M) is the sensitivity of a test;

• P (M |T+) and P (M̄ |T−) are the predictive values of the test.

Leveraging (1.5) we can say that

P (M |T+) = P (M) · P (T+|M)

P (T+)
(1.6)

It remains to understand what P (T+) is. It is, obviously, the probability

that the test gives a positive result, or better represents the accuracy of a test.

Based on the general properties of the probability theory, we will have:

P (T+) = P (M) · P (T+|M) + P (M̄) · P (T+|M̄) (1.7)

and

P (T+|M̄) + P (T−|M̄) = 1 (1.8)

The probabilities P (T+|M̄) and P (T−|M) represent the occurrence proba-

bility, respectively, of the so-called false positives (FP) and the false negative

(FN).

Putting together equations (1.6), (1.7) and (1.8), we can obtain the ex-

pressions for the predictive values :

P (M |T+) =
[P (M) · P (T+|M)]

[P (M) · P (T+|M) + P (M̄)(1− P (T−|M̄)]
(1.9)

P (M̄ |T−) =
[P (M̄) · P (T−|M̄)]

[P (M̄) · P (T−|M̄) + P (M)(1− P (T+|M)]
(1.10)
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that are, as it is evident from the definition, not numerically complementary.

If, for example, a certain pathology has an incidence rate on the population,

P (M), equal to 0.003 % and the carried test presents sensitivity and speci-

ficity, respectively, of 0.999 and 0.998 %, the predictive value of the test will

be

P (M |T+) = 0, 6→ 60% P (M̄ |T−) = 0, 999→ 99, 9%

Ultimately, the positive outcome of the test corresponds to a reliability

of 60 %, while for the negative outcome it has a reliability of 99.9 %.

That being so, we can move on to define the bases of the information

physical concept.

1.3 Information and Entropy

Let a generic event x, which the probability p(x) that may occur is associated

with. We define as information, I(x), corresponding to x, the amount

I(x) = −log[p(x)] (1.11)

The reasons why we have chosen this particular structure for (1.11) are

obvious: the combination of the sign minus and logarithm is to indicate that

the less likely is the occurrence of the event x, the more the information it

will bring with; the contrary happens for very probable events, which bring

with them little information. Furthermore, the fact that a probability can

not exceed, numerically, the unit value translates into the fact that the in-

formation cannot be negative in any case, in agreement with the second law

of thermodynamics; in addition, it is defined in such a way that a sure event,

p(x) = 1, is correlated to any information. I(x), finally, is a monotonic func-

tion strictly decreasing and continuous (no “probability jumps”).
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Closely related to the concept of information, there is a particular form of

entropy, called information entropy, which measures the average information

content of a given source. Its definition is not unique and depends on the

scope and usage of the particular conceptual area. Some definitions, in fact,

concieve the information entropy as a measure of the amount of uncertainty

present in a random signal, other as a measure of the information contained

therein, or again as the minimum descriptive complexity of a random varia-

ble, ie the lower limit of data compression without any loss of information:

Kullback entropy and conditional mutual entropy (of which we will not deal

with in this work) are an obvious example.

Even for what concerns its operational definition, there is a wide choice

of possibilities. However in this line of research we will refer to the concept

of information entropy according to Shannon [1].

Be given, therefore, an ordered set X = {x1, x2, ..., xn} of events. Accor-

ding to Shannon definition, the information entropy for this set will be:

H =
∑
x∈X

p(x) · I(x) = −
∑
x∈X

p(x) · log[p(x)] (1.12)

where p(x) is the usual probability contained in x and the sum is extended

to all elements of the X sequence.

The fact that the proability related to a particular event may also be zero

(which would diverge the logarithm) is not a critical point of theory, as the

divergence can be easily avoided recalling the basic limit

lim
x→0

x · log(x) = 0 (1.13)

Furthermore, the entropy function shows a maximum in correspondence

the probability value p = 1/2 (Figure 1.1).

As evident, we have not indicated which basis the logarithm uses, which

is also important for the numerical entity of entropy. The different choices,
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Figure 1.1: general trend of Entropy function H(p)

however, are not critical since, as known, it is always possible to change the

basis of a logarithm into another: the numerical factor that, in this case,

distinguishes the entropy values in different bases is simply the scale factor

that binds the entropy units in the different logarithm bases. The most

commonly used bases are:

1. base 2 → unity: bit

2. base e → unity: nat

3. base 10 → unity: Hartley

If we want to generalize and, instead of a single set of data, two set of

events are available, X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, the Shan-

non information entropy will be differently calculated depending on whether

the two sets X and Y are “related” (or, more precisely, not independent) or

not. In the first case we have

HD = −
∑
x∈X

∑
y∈Y

p(x, y) · log[p(x, y)] (1.14)

in the second, however, we will have that (1.14) turns as follows:
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HI = −
∑
x,y

p(x, y) · log[p(x) · p(y)] (1.15)

According to (1.14) and (1.15), we can define an certain number of combi-

nations that define, in different ways and case by case, the concept of “mutual

information” mi, a measure of the amount of information shared by two sys-

tems.

A working definition, useful for assessing mi, is the one that identifies it

as the difference between the entropies HI and HD of the two systems, or as

the difference between the case in which the two systems are independent,

and that of the case in which they are not:

MI = HI −HD =
∑
x,y

p(x, y)log

[
p(x, y)

p(x)p(y)

]
(1.16)

The mutual information, however, is not entirely suitable for our pur-

poses, because it does not provide anything of predictive: it does not antici-

pate the future dynamics of the systems X and Y , nor provides a probability

that the (xn+1)-th event can occur on the basis of the sequences X and Y .

The reason for this lies in the very structure of (1.16), that is invariant for

the exchange X ↔ Y . In addition, the (1.16) gives no information about the

directionality of the information flow, if it moves from X to Y or vice versa.

Moreover, the MI is only a “static” measure of the amount of information

shared by two time series, completely ignoring the direction of the informa-

tion the same.

This complications can be prevented or by using suitable time shifts of

the series X with respect to Y , (the so-called Mshift) which allows us to study

the variation of MI (and, therefore, the flow of information) in function of

the displacement of a time series with respect to the other or, vice versa,

according to the Schreiber idea [2], by defining a new type of entropy that

somehow “captures” the dynamics of the system based on the changing rate
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of (1.15).

1.4 Transfer Entropy

Let supposed the existence of two events series in strict chronological order:

X = {x1, ..., xn} and Y = {y1, ..., yn}, and suppose we want to find any cor-

relation between the two sequences and the “future” element xn+1 of the first

series. The amount of additional information that would serve to represent

(or, equivalently, to predict) such a value, is

h1 = −
∑
xn+1

p(xn+1, xn, yn) · log[p(xn+1|xn, yn)] (1.17)

If the observation value is independent from yn, then:

h2 = −
∑
xn+1

p(xn+1, xn, yn) · log[p(xn+1|xn)] (1.18)

While the (1.17) is the entropy of the two systems, the (1.18) represents

the rate of additional entropy assuming that xn+1 is independent of yn.

We define the transfer entropy (hereafter simply TE) as the difference

between the two previous amount: H2 −H1. In other words, the TE is con-

figured as the difference between two different entropy rates: the first related

to the amount of information necessary to deduce the element xn+1 on the

basis of all its known preceeding elements, the second related to the infor-

mation necessary to deduce xn+1 according to both the sequences X and Y

preceeding it.

Equivalently, the TE can also be understood as a measure of how the

uncertainty in the prediction of xn+1 on the basis of the only elements of X

is reduced by the introduction of Y in the calculation.

Based on the above definition, the TE has a functional form of the type :
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S =h2 − h1 = −
∑

p(xn+1, xn, yn)log[p(xn+1|xn)]

+
∑

p(xn+1, xn, yn)log[p(xn+1|xn, yn)] =

=
∑

p(xn+1, xn, yn)log

[
p(xn+1, xn, yn)

p(xn+1, xn)

] (1.19)

According to (1.19), the TE has the minimum value (zero) when the final

state is independent of the second time series:

p(xn+1|xn) = p(xn+1|xn, yn) (1.20)

and may assume at most the unit value. It can not, under any circumstances,

be negative, as the relation p(xn+1|xn) ≥ p(xn+1|xn, yn) is always true.

The logarithm used in (1.19) is natural or decimal based. If, however,

one may wish to take the base 2, the TE would assume a particular value:

its units would become the bit and the TE the same could be interpreted as

the amount of bits that must be extracted from the set X and Y to encode

the information carried from xn+1.

The previous formulation, however, is not complete because, as it is ob-

vious, there is no symmetry for the exchange x ↔ y (or, as we will say

from henceforth, for exchange of the two channels, X and Y ). We will have,

therefore, to reconsider the TE so as to include both of the following cases:

TY→X ≡ T (Y,X) =
∑[

p(xn+1, xn, yn)log

(
p(xn+1|xn, yn)

p(xn+1|xn)

)]
(1.21)

TX→Y ≡ T (X, Y ) =
∑[

p(yn+1, xn, yn)log

(
p(yn+1|xn, yn)

p(yn+1|yn)

)]
(1.22)

Finally, by substituting in (1.21) and (1.22) the relations already seen in

(1.2)
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p(xn+1|xn, yn) = p(xn+1,xn,yn)
p(xn,yn)

p(xn+1|xn) = p(xn+1,xn)
p(xn)

we get the equivalent forms:

T (Y,X) =
∑[

p(xn+1, xn, yn)log

(
p(xn+1, xn, yn)p(xn)

p(xn+1, xn)p(xn, yn)

)]
(1.23)

T (X, Y ) =
∑[

p(yn+1, xn, yn)log

(
p(yn+1, xn, yn)p(yn)

p(yn+1, yn)p(xn, yn)

)]
(1.24)

In practice, the value of T is a measure of how many digits of the series X

can be calculated back to from elements of Y and vice versa. In this way, the

TE is better suited than mi and Mshift to determine quantity and direction

of the information flow, as it is, always according Shreiber, “a real directional

and dynamical measurement of information transfer” [3].

The relations from (1.21) to (1.24) can be greatly refined by entering in-

formations about the “temporal window” within which the TE is calculated

(ie the time interval within which it is assumed that the series of elements xi

are affecting the elements of the Y channel and vice versa, the so-called lag,

δ), and the model order, or the actual number of elements of the set X and

Y which are supposed to “influence” the element xn+1.

This informations can be inserted in the previous relations in the following

way:

Tk,l(Y,X) =
∑

xn+1,x
(k)
n ,y

(l)
n

[
p(xn+1, x

(k)
n , y(l)

n )log

(
p(xn+1|x(k)

n , y
(l)
n )

p(xn+1|x(k)
n )

)]
(1.25)

Tk,l(X, Y ) =
∑

yn+1,x
(k)
n ,y

(l)
n

[
p(yn+1, x

(k)
n , y(l)

n )log

(
p(yn+1|x(k)

n , y
(l)
n )

p(yn+1|x(k)
n )

)]
(1.26)
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in which x
(k)
n and y

(l)
n represent, respectively, the k values preceeding, at

regular intervals, xn and the l value preceeding the yn elements. The lag

enters in previous relations when we choose the time distance between (xn, yn)

and xn+1, different from unit.

If we consider the fact that, generally, k and l are set equal to each other:

k = l

and that the m values of X and Y are equidistant from each other by the

same amount τ (the “delay”), the total width of the time window on which

each element of the sum is evaluated is ∆ +mτ . In this context, m is called

the model order.

If in (1.25) and (1.26) we do not take the sum on time windows, the TE

series of values is, in any case, the time behavior of TE between channels X

and Y .

As it can be seen from the simple observation of (1.25) and (1.26), the

focus of the entire calculus is an estimate of the probability functions (pf )

p(xn+1|xn, yn) and p(yn+1|xn, yn).

1.5 Strategies for pf estimation

Several methods can be used for the estimation of the pf, each with its

limitations and its complexity.

Here we will present a few, in order of increasing theoretical and compu-

tational complexity.

1.5.1 Method of variable-width binning

Let a fixed number m of events for each channel X and Y (m is as always the

order of the model) preceeding, equidistant among them of a quantity τ , the
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xt element. The two series of events (simultaneous and temporally ordered)

Xp = {xtmτ , ..., xt−τ} and Yp = {ytmτ , ..., yt−τ} constitute the “past” of the

xt event. Let δ (lag) the temporal distance between xt and the most recent

series elements representing its past, xt−τ and yt−τ .

The first step for the estimation of the pf plans to allocate the series of

events Xp ⊗ Yp ⊗ xt , (in this case, ⊗ represents the vectorial concatenation,

or the cartesian product, of the three time series X, Y and xt) in a (2m+ 1)-

dimensional space (called “events space”), whose dimensions are precisely

the 2m-uples of events preceding xt and xt the same (fig. 1.2 - A and B

panels).

For each combination of 2m+1 vector elements there corresponds a point

in the events space, which starting value is zero and is incremented by 1 every-

time the given combination is repeated. As we move forward with the time

window (δ + mτ samples large) in which it is believed that the channel Y

will affect the channel X, the events space starts populating more or less uni-

formly, depending on whether the channel Y affects or not X (figure 1.2 - B).

In case m equals 1, the events space is three-dimensional, otherwise, in

case m ≥ 2, the events space is an hypervolume of 2m+1 dimensions. More-

over, in case we want to consider only two channels, X and Y , the analysis

is called bivariate, and if the “past” of xt is extended to more than two

channels (say X, Y and Z ) the analysis (the one we will really apply to

our electroencefalographic data) is called multivariate, and will be discussed

more in detail at the end of this section.

At this point, the conditional probabilities appearing in (1.25) and (1.26)

can be estimated in two different ways: by directly summing the probabili-

ties found (whose module is equal to the value the given point assumes with

respect to the total number of non-null points of the whole space), or by

passing from this to the probability space, which is constructed basing on

the first and sharing the same number of dimensions, but with a finite exten-
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Figure 1.2: General scheme for pf estimation [4].
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sion and unit volume, the probability being limited to values between 0 and

1 (figure 1.2 - C). Each point of this space represents the fraction of events

presenting the probability p( ~Xp, ~Yp, xt) to occur. It is preferred, in addition,

to reorder the events in this space so that the probability is increasing as

one moves from left to right (method of the ordinal sampling). The reason

for this choice lies the fact that TE is well defined only if the pf presents no

singular points, or better if there are not points which distributionis is Dirac

Delta type, which, in fact, is highly likely to happen in the volume occupied

by the points of the sample space.

An equivalent way to do this [4, 5] consists in normailzing the initial data

to fit the interval [0, 1], so that the space of events is automatically finished

and unit volume. In this case the composed probabilities (1.25) and (1.26)

can be derived by setting an interval (bin) common to all dimensions, ∆, and

considering in turn the basic volumes (X i
p ±∆ · Y k

p ±∆) and unit height (i

and k are indices that run along the space dimensions).

In this case, the composed probablities p(xt| ~Xp, ~Yp) can be obtained by

adding together, at different heights, nonzero elements on the cutting plane

identified by the pair ( ~Xp, ~Yp), normalizing and reducing to zero the interval

∆. As well, different pfs are obtained as a function of Xp and Yp (figure

1.2 - E). Similarly, the probability p(xt, Xp) is obtained marginalizing the

dimension spanned by Yp (ie, summing over all the Yp values), no longer

working on volumes but on surfaces centered around Xp and large 2∆ (figure

1.2 - D).

1.5.2 Kernel Density Estimation

The Kernel Density Estimation method (KDE ) is used to estimate the pf

by adding together individual distributions centered on each element of the

series.

Considering, in fact, the events space of the previous case, we can imagi-

ne that in each volume ∆ wide, centered on the generic point {x̃t, x̃t−τ , ỹt−τ}
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Figure 1.3: the distribution in blue is calculated, by means of KDE method,

summing the distributions relative to each data (in red).

of the (three-dimensional) sample space, there are P points, whose distribu-

tion is described by generic function K(xt, xt−τ , yt−τ ) (called kernel of the

model). K depends not only on space coordinates, but also by a number

of parameters, some of which have well-defined values, while others must be

chosen ad hoc, in such a way as to make the shape of the distribution as close

as possible to the real data. In addition, due to issues related to probabilities

normalization, it has to show some peculiar features, such as the rapid de-

crease estranging from the distribution center1 and must meet the following

three conditions:

1with relation to this peculiarity, the concept of distance is crucial to the estimation of

the pf, so that the previously seen method of sorting points according to their increasing

probability can not be adopted.
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Figure 1.4: in the top left, kernels with poor h values, while at the bottom,

kernels with too large h values.

(a)

∫
K(u)du = 1 (b)

∫
uK(u)du = 0 (c)

∫
u2K(u)du < +∞

(1.27)

The probability density is estimated [4] by normalizing the following ex-

pression:

p(x̃t, x̃t−τ , ỹt−τ ) ≈
1

P

P∑
j=1

1

hxthxt−τhyt−τ
·K
(
x̃t − xt,j
hxt

)
·

·K
(
x̃t−τ − xt−τ,j

hxt−τ

)
·K
(
ỹt−τ − yt−τ,j

hyt−τ

) (1.28)

where j is the index identifying all points within the elementary volume and

h(.) is the characteristic width of the distribution along the axis indicated by

the subscript. This width has an universally accepted value [6] equal to
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h(.) = 1, 06σ̂P−1/5 (1.29)

where σ̂ is the standard deviation of the sample along the direction defined by

the subscript of h. This expression for h can be effectively replaced by another

[6] which considers, rather than the standard deviation, the interquartile

range (IQR), or the width of the range containing the middle half of the

observed values, assuming that the sample has normal distribution:

h(.) = 0, 9ασ̂P−1/5 , α = min

(
σ̂,
IQR

1, 34

)
(1.30)

The choice of the h value is of primary importance, because too small

values can lead to pfs characterized by peaks or singular points, while too

high values can lead to poorly differentiated distributions (figure 1.4).

Concerning K(· · · ), indeed, there are several functional forms that can

be used [7]; the most common are shown in the following table:

kernel K(u)

Epanechnikov
3
4
(1− 1

5
u2)/
√

5 if |u| <
√

5

0 otherwise

Biweight
15
16

(1− u2)2 if |u| < 1

0 otherwise

triangolare
1− |u| if |u| < 1

0 otherwise

rettangolare
1
2

if |u| < 1

0 otherwise

gaussiano 1√
2π
e−

u2

2

... ...

The most widely used distribution for the kernel is the Gaussian distri-

bution with all its variants (unimodal, bimodal, etc..), which for h(.) tending

to zero reduces to a Dirac delta distribution.
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Figure 1.5: left, 100 points distributed according to a generic Gaussian; center

and right the same distribution reconstructed with two unimodal Gaussian

kernel: the first with h = 1.06σ̂P−1/5, the second with h = 0, 9ασ̂P−1/5.

It is important to stress one aspect of (1.28): as the pf was built as a

product of different kernels, one for each axis of the events space independent

among them, this does not mean that the variables that are referred to are

equivalently independent each other; in the latter case the general form of

(1.28) would be of the type:

p(x) =
D∏
d=1

1

Ph(d)

N∑
n=1

Kd

(
xd − x(n)

h(d)

)
(1.31)

where D is the number of dimensions of the events space and N is the num-

ber of points in the elementary volume.

The remaining probability featuring in (1.28) can be calculated starting

from p(x̃t, x̃t−τ , ỹt−τ ) marginalizing, each time, the distribution.

1.5.3 Darbellay-Vajda partitive algorithm

Let’s denote the two starting time series, ordered according with the increas-

ing trend of their values, with U = {u1, ..., uN} and V = {v1, ..., vN}. The
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Figure 1.6: D-V partitioning in two dimensions.

three-dimensional space identified by these points and the actual values of

the future of one of them can be divided into a certain number of different

sizes cubic shape sub-spaces (generally we start with 8 cubes, whose vertices

are identified by the points on the axes having probability equal to 0, 0.5 and

1).

Each of these cubes will contain a certain number of points, on which

the χ2 statistic can be calculated to verify the points being or not uniformly

distributed in space [4]:

sχ2 =
8∑
i=1

(Mi − µM) (1.32)

in which {M1, ...,M8} represents the series’ points numbers in each cube and

µM is the total number of points in the probability space divided by 8 (or

the number of cubes). If the sχ2 test value is numerically greater than the

χ2
95%(7) value (5% significance level with 7 degrees of freedom), then the null

hypothesis can be rejected, and for each of the eight cubes we proceed to a
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further division into eight subcubes in the same way (figure 1.6).

In a recursive way we will reach a point where the null hypothesis can no

longer be rejected: the last eight cubes will be considered as a single entity

(ie, the last partition has no validity) and we end up with a certain number

L of partitions of the probability space, number in which have been deleted

partitions not containing points within them.

The (1.25) can, therefore, be rewritten as follows:

TU→V ≈
L∑
k=1

nk
P
log

(
nkn

vi−1

k

n
vi−1,ui
k n

vi,vi−1

k

)
(1.33)

with P representing the total number of points in space, nk the number

of points in the k-th partition and n
vi−1

k , n
vi,vi−1

k and n
uink,vi−1

k representing

the number of points in the whole probability space having values between

the limit values (top and bottom) of the k-th partition with respect to the

dimensions indicated in the apex. For example, taking the k-th partition,

if the limits of the same are 1 and 5, n
vi−1

k represents the number of points

throughout the space whose values, independently on the other dimensions,

are in the range [1, 5] along the dimension of vi−1.

1.5.4 Comparison of the algorithms

It is possible to compare the results from different algorithms outlined above.

Using a series of simulated data [4], it has been proved that all three methods

effectively identify the appropriate time interval elapsing between an event

in the channel X and the one it “caused” in channel Y (the lag, in this case

it is equal to 2, as one can see in figure 1.7); also, the calculated TE level is

comparable in the first and in the third case, while with the KDE algorithm

there was a slight decrease (figure 1.7). This leads us, in the choice of the

algorithm to use, to lean towards the former model, both for issues related

to the computation time and because it provides both higher mean values of

TE than in the two other cases in the time intervals in which there is do an

actual causal connection between the two channels.
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Figure 1.7: comparison between the different algorithms [4]; the error bars

represent the interquartile range.

1.6 Multivariate TE

There are cases in which the space-time series constituting a complex system

are more than two, such as the inforation flow between various areas of the

cerebral cortex. More importantly, these series can interact between them,

so that the behavior of each of them is not determined only on the one of

another, but on the net and contemporary behavior of all the others.

In this case the formulation of the TE outlined here is insufficient, since

it does not take into account this effect, but only the relationship between

two of them, as if the surrounding universe did not exist (the bivariate case).

To overcome this deficiency, the theory must be reformulated in the mul-

tivariate way, trying to introduce corrections that provide the net amount of

information exchanged uner the action that other occurring time series can

have on that under investigation [8].

Fortunately, the TE formalism outlined here lends well itself to multivaria-
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te extension (MVAR), and requires only a redefinition of relation (1.19).

Let therefore X, Y and Z three time series (three channels) that can

mutually interact. If we denote, for shorteness of notation, with X−, Y −

and Z− their past (vectors whose size depends, as we have already seen, on

the model order), with x the current value of the series X and with ⊕ the

concatenation operator, then it can be shown that, with a procedure identical

to that already seen, one get [9]:

TY→X|Z =H(x|X− ⊕ Z−)−H(x|X− ⊕ Y − ⊕ Z−) =∑[
p(xn+1, xn, yn, zn)log

(
p(xn+1|xn, yn, zn)

p(xn+1|xn, zn)

)] (1.34)

with H(·|·) representnig the conditional entropy. All other possible combi-

nations of the three (or more) channels can be obtained and calculated with

the same modalities seen previously, being the partitive algorithms become

richer just of a few more dimensions.

1.7 Cross-Correlation

As we have seen so far, the calculation of TE is intimately linked to the choice

of the lag parameter, ie, the elapsed time between the current value of the

time series under examination and the past of time series that are supposed

to influence it.

Obviously, this value may make more or less valid the study, therefore its

choice must be made using appropriate tools.

The best way to do so is to perform the calculation of TE varying time

to time the lag value, so as to obtain the temporal variation of transferred

information and, once identified the maximum, to obtain the moments in

time where the exchanged information is maximum. Moreover, this is the

best way to study the temporal dynamics of information as it makes obvious

the temporal changes in interaction between the various time series under
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Figure 1.8: trend of the CTCC for two time series: on top, the X series,

and in the center the Y serie. Bottom, the CC: the positive peak at about

2 seconds indicates the instant of maximum transfer of information between

the two series (a few moments after the synchronization).

investigation. However, this requires a long computation time, especially be-

cause it is not known a priori the temporal extension of the lag, and this

inevitably leads to an unnecessary waste of calculation time.

One way to impose constraints on the variability of the lag is to cal-

culate the Cross-Correlation (CC) between the two time series, defined as

the covariance of the two temporally ordered and normalized series X and

Y . Formally, it can be considered as the normalized convolution of the two

series, which in the case of discretized data can be expressed as:

Cxy(t) =

∑k
j=1 x(t+ τj)y(t+ τj)√[∑k

j=1 x
2(t+ τj)

]√[∑k
j=1 y

2(t+ τj)
] (1.35)

where k is the number of bins (common to X and Y ) in which the two

time series were decomposed. In the case of biological series, k can be the



CHAPTER 1. INTRODUTION TO INFORMATION THEORY 30

Figure 1.9: CC mean value within a second of all pairs of channels of an

EEG. This matrix takes the name of functional activation map.

number of stimulations which the patients are submitted to during the EEG

recording, therefore the duration of the bin ranges from approximately 1/5

second to 1 second. In this case, the CC feature is called Cross-Trial Cross-

Correlation (CTCC).

The result of the calculation, for each pair of channels, is a time series

itself, twice long as the two original series, whose values lie in the range [−1, 1]

and scoring as close as the unity when the two sets are functionally coupled

with each other (Figure 1.8). The CC is basically a coefficient comparing

between them the shapes of two time series: by making the product of the

first series for the second shifted (ie, performing the convolution) we obtain

values close to ±1 if the waveforms are similar to each other, and 0 if they

are very different. At the same time, the CC measures the extent to which

interval of time the effect of the first time series is translated in the behavior

of the second: in this context, the CC proves useful in imposing limits on

the lag as it allows identification of the time windows in which the series

will exchange information, allowing us to choose the appropriate constraints

on the lag value and reducing the computation time only considering the

intervals that really are indicative of an interaction between the channels.
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Moreover, the output from CC can be averaged over time generating a

matrix (or map) of functional activation between all pairs of channels.

Note that the (1.35) is invariant under exchange of the two time series be-

tween them, and this makes symmetric the functional activation map (figure

1.9).

1.8 Synchronization Entropy

A second type of entropy that can be evaluated between two channels X and

Y is the Synchronization Entropy (SE), defined in a similar way to that of

Shannon’s information (1.12), but referring to the probability that the two

time series are synchronized.

It is important to note immediately that the synchronization between two

time series is not synonymous of their correlation (or coherence). However it

can be shown [10] that if two systems are synchronized, then certainly they

are also correlated (this condition is necessary, but not sufficient).

With this regard, the most appropriate way [11, 12] to define the phase

of a signal (or a time series) s(t), variable in time, is to introduce a generali-

zation of the signal the same in a complex space, imagining that s(t) is only

the real part of a complex signal, ie composed by a real part and a purely

imaginary one. We denote by ζ(t) this complex function of a real variable

(the time, t), which can be rewritten as [13, 14]

ζ(t) = s(t) + isH(t) = A(t) · eiφ(t) (1.36)

with SH(t) representing the Hilbert transform of the original signal s(t):

sH(t) =
P.V.

π

∫ +∞

−∞

Re[ζ(τ)]

t− τ
dτ (1.37)

and PV indicating the principal value integral. Once the calculation of (1.36)

has been done, the signal amplitude A(t) and its phase φ(t) are fixed instant
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by instant. We note explicitly as the Hilbert transform does not contain

additional parameters to be calculated.

From a formal point of view, equation (1.37) can be considered as a convo-

lution of the signal s(t) with the function 1/πt, and basing on the properties

of this particular type of product, the Fourier transform of SH(ω) of SH(t) is

the product of the Fourier transform of s(t) and 1/πt. This means that, for

the frequencies having a physical meaning (ω > 0), the Hilbert transform

can be implemented as an ideal filter whose amplitude response is 1 and

whose frequency response is equal to π/2 throughout the entire frequencies

band.

It can be demonstrated [15] that (1.36) has physical meaning only in the

moment in which the initial signal s(t) is constituted by a narrow band of

frequencies: in this case the amplitude A(t) represents the envelope of the

signal s(t), and the instantaneous frequency is the frequency of the signal

presenting a maximum in the spectrum of s(t).

Considering two different time-varying signals, s1(t) and s2(t), we can

define the generalized phase difference among these in the following way:

Φm,n(t) = [mφ1(t)− nφ2(t)]mod 2π (1.38)

where m and n are two appropriate weights; as it is evident, φm,n is defined

up to an additive factor 2π. If the two signals, within a certain time inter-

val, are synchronized, the distribution of the phase difference will be peacked

on a certain value, otherwise it will present itself as uniform. Similarly, if

we report the values of the two phases in a two-dimensional diagram, the

synchronization will be revealed by the points clustering in a specific area

of the graph, in spite of what happens if there is no synchronization, when

the experimental points tend to either follow separated straight lines or to

disaggregate from each other (figure 1.10).



CHAPTER 1. INTRODUTION TO INFORMATION THEORY 33

Figure 1.10: effects of synchronization: top, no synchronization; bottom, we

can notice a thickening in the central horizontal area with phase difference

next to π.

The choice of the two parameters m and n can be made on the basis of

considerations about the nature of the two signals. In principle all possible

couples should be considered, but if the series are of the same nature, then

it is possible to consider both of them as equal to 1.

As already seen for the CC, the SE is invariant too under the inversion of

the two sets X and Y , for which the corresponding functional map, obtained

by associating to each pair of channels the SE value, will be symmetrical

(figure 1.11).

The SE can be calculated, as previously mentioned, similarly to (1.12),

namely:
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Figure 1.11: SE over all couples of channels for an EEG.

SE = −
N∑
i=1

p(i)log[p(i)] (1.39)

in which N represents the number of intervals within which the probability

is subdivided, and p(i) is the probability of occurrence for the i-th event

(the phase difference, in the specific case). However, differently to what

happened for the calculation of the TE, in the present case it is possible to

make a correction to the previous relations that cancels the error due to the

quantization interval in which the probability is subdivided [16]:

SE = −
N∑
i=1

p̂(i)log[p̂(i)] +
m− 1

2N
(1.40)

where p̂(i) represents the frequency with which the i-th combination is present

and m is the number of intervals in N having at least one point.



Chapter 2

Time-Frequency analysis of

signals

2.1 Introduction

For a time series, the Fourier transform (or series) is a useful tool for very

different purposes. One of these, and probably the main one, lies in the fact

that its modulus describes the contribution given to the time series from

the various frequencies which can be decomposed, while its square module

describes the contribution of the various frequencies to the total energy. Very

often, in fact, it is of primary importance to know whether certain frequencies

in a signal are more active than others, as their presence, absence or different

relative amplitude can be related, for example, in pathological changes of the

electroencephalographic rhythms of patients suffering from a given disease.

2.2 Fourier Analysis

Given a signal f(t) ∈ L2(R) in the time domain, the Fourier Transform (FT)

gives a new representation of the signal in the new variable ω domain. The

mathematical expression identifying the FT is the following:

f̂(ω) =

∫ +∞

−∞
f(t)e−ωtdt (2.1)

35
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If the variable ω is considered as a pulse and we require that ω = 2πν,

then we get:

f̂(ν) =

∫ +∞

−∞
f(t)e−2iπνtdt (2.2)

The function generated by (2.2) depends only on the variable ν, which

can be identified as a frequency. The usefulness of such transform resides in

the fact that its squared modulus returns, for each frequency, the amplitude

of each sinusoidal component constituting the signal, if this is imagined, of

course, as the sum of infinite periodic components.

In turn, the individual components are involved with their contribution

to the definition of the signal total energy. If we remember, in fact, that for

a signal limited in time the total carried energy is

Ef =

∫ t2

t1

|f(t)|2dt (2.3)

the Parseval relation ensure that:

Ef =

∫ t2

t1

|f(t)|2dt =

∫ +∞

−∞
|f̂(ν)|2dν. (2.4)

Sf (ν) = |f̂(ν)|2 is called energy spectrum of the signal f(t). Similarly, we

obtain for the signal power:

Pf =
1

∆T

∫ ∆T/2

−∆T/2

|f(t)|2dt =
∑
ν

|Aν |2 (2.5)

with ∆T representing the time duration of the signal and Aν indicating the

amplitude of the single harmonic component (the sum is extended to all

components). The limited time duration of the signal is required from an

entropic point of view, since otherwise the energy carried by the signal of

infinite duration would diverge. PF is called spectral power and, in analogy

with the energy, represents the power carried by the ν-frequency component

of the signal.
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The analysis of the signal spectrum and its spectral power is one of the

first tools in the analysis of biological origin signals and electroencephalo-

graphic in particoular: it is widely known how alterations in the relative am-

plitudes of certain frequencies or their appearance and disappearance often

characterize the onset of certain diseases and can also frequently anticipate

their debut.

However, the analysis of (2.2) also highlights a limitation of the “classi-

cal” spectral analysis: the application of the transform does lose, from an

analytical point of view, the functional dependence of time: the signal f(t),

in fact, provides the time characterization with infinite resolution (ie, no un-

certainty) on the time axis, hiding, at the same time, any information on the

frequency content of the signal, on whose axis has null resolution; vice versa,

the FT of a signal provides detailed information on the frequency content,

but simultaneously presents infinite uncertainty on the time axis. Substan-

tially, the FT gives us informations on the frequencies composing a signal,

but does not tell us nor when these components are present, neither if we are

dealing with transients or if such a components are present throughout the

entire duration of the signal.

Let’s consider, for example, the two signals shown below:

f1(t) =
3∑

n=1

Ansin(nωt) t ∈ [0, 1] e f2(t) =


A1sin(ωt) t ∈ [0, 0.3]

A2sin(2ωt) t ∈ [0.3, 0.6]

A3sin(3ωt) t ∈ [0.6, 1]

(2.6)

On the basis of what has been seen, the Fourier analysis would return, for

both signals, the same spectrum: a series of three integer multiples frequen-

cies of ω, the amplitude of each is Ai, and this even though the two signals

are deeply different. And this applies to any series of frequencies (see figure

2.1).

This phenomenon must not be surprising: in accordance with the Heisen-



CHAPTER 2. TIME-FREQUENCY ANALYSIS OF SIGNALS 38

Figure 2.1: the Fourier analysis of two different time series can lead to the

same frequency spectrum. In this case, the harmonics have a frequency of

10, 25, 50 and 100 Hz. Arbitrary units for magnitudes (y axis).

berg uncertainty principle, the more precise the frequency characterization

of a signal, the poorer the time localization of each component frequency.

By contrast, in biological series (as in many other branches of science)

it is important to study the dynamics of the time series, highlighting, for

example, the occurrence of oscillations or transients following a certain event

such as, in case of an electroencephalographic recording, a stimulation.

2.3 Wavelet Analysis

A first way to overcome the problem of temporal localization of a compo-

nent frequency could be switching from classical Fourier transform to the

windowed or short-time Fourier transform (STFT or WFT) which, instead

of acting on the examinated time series through its entire length, only acts
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on time windows which can be taken gradually narrower, in such a way to

highlight, with the time passing, differences in the frequency composition of

the signal.

In this case, the individual elementary components of the signal are ex-

tracted by means of the function W (t) = w(τ − t)eiωt, where w(t), called

“window”, is a function with compact support that allows the localization of

the temporal component of the signal. The localized Fourier transform then

becomes:

(TLu)(ω, t) =

∫
R
u(τ)w(τ − t)e−iωtdτ = u(t) ? W (t) (2.7)

The SWFT, however, has poor inflexiblity because the signal portions are

extracted all of the same length, regardless of the frequency content of the

signal. Furthermore, the ability of this method to resolve the signal compo-

nents in the right moment (or at least in compatibility with the uncertainty

principle) depends on the windows width which, with the approximating zero,

can generate undesirable “edge effects”; it can even require the introduction

of “artificial” signals on the external right and left of the window, and this

would fit in the window non-real frequencies (in truth, as we shall see, the

wavelet transform will suffer from the same problem, but in that case there

exist a quantitative parameter taking this phenomenon into account).

A more complex version of SWFT, but that best suits the problem, is

to reconsider the form of the window function w(t), its magnitude and its

temporal extension.

The basic idea of the wavelet functions analysis (meaning “small waves”)

is to use rectangles of different amplitudes to localize components in the

time-frequency plane: more precisely, the localization in frequency decreases

logarithmically with the increasing frequency, while the temmporal localiza-

tion gradually becomes higher (figure 2.2). Differently form Fourier analysis,

which passes from a purely temporal representation of the signal to a purely
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Figure 2.2: the time-frequency plane for the elementary harmonics of Fourier

analysis (left), the SWFT (center) and wavelet (right).

frequency representation, the wavelet analysis reaches a compromise four-

nishing a time-frequency representation.

The time-frequency localization is obtained by replacing, in (2.7), the

W (t) function with the so-called mother wavelet function, ψa,b(t), where t

is as always the time and a and b are two characteristic free parameters,

the first called scaling parameter and the second translation factor. These

two parameters are responsible, respectively, to stretch or shrink the wavelet

(and, consequently, to vary the frequency of the wave packet into it) and

slide the wave along the time series, in agreement with the definition of con-

volution product.

From a geometrical point of view, the mother wavelet is a wave packet

localized in time and modulated by a Gaussian, whose width is related to

the frequency of the wave packet in such a way that, beneath the envelope,

a well-defined number of oscillations can take place. In this context, the

parameters a and b are particularly important:

• large values of the scale parameter a is equivalent to lengthen the

wavelet and its support, decreasing consequently the frequency of the

wavelet the same, the reverse being true for low scaling parameters;

• small values of the scale parameter a must match equivalently small
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values of the b translation parameter, in such a way to ensure suffi-

cient coverage of the time axis; vice versa, for large values of the scale

parameter we can use larger values of b.

Based on these reasons, the Wavelet Transform (WT) turns out to be, in

analogy with (2.7):

ũa,b = (TWu)(a, b) =

∫
R
u(τ) · 1√

a
ψ∗
(
t− b
a

)
dt = u(t) ? ψa,b(t) (2.8)

As a result of the convolution of the two time depending functions, the

matrix ũa,b does not depend on time, and each element is a coefficient quan-

tifying the similarity between the original signal and the wavelet function at

specific scale a (equivalent to a certain frequency) and at a specific time shift

b.

In the passage from the continuous to the discrete case, typical in com-

puter procedures, one can choose to tie together the two parameters using

the integer j in the following way: a = 2−j and b = ka = k2−j, with j, k ∈ Z.

On this basis, the ψ(2jt− k) components correspond, in the time-frequency

plane, to rectangles of variable size 2−j × 2j (figure 2.2).

The main advantage of the wavelet transform usage is the fact that pro-

vides a multiscale decomposition of the signal: for each scale j, the signal is

decomposed into elementary components whose frequency content increases

with the scale. In general, the multiscale decomposition of a signal consists

in a poorly accurate mean value of the signal at a given scale (content at

low frequencies) with more details calculated at more accurate scales (high

frequency content). If the signal varies slowly, the details are not important

to reconstruct the signal, so the multiscale representation provides a natural

tool for the compression: it is sufficient to overlook details below a certain

threshold and transmit only the most significant ones. The same technique

can be used to reduce noise. On the other hand, the most significant details

provided by the wavelet analysis correspond to the areas where the signal
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has large variations, for example in correspondence of a peak: this causes the

wavelet analysis to be successfully applied in the analysis of signals where

you need to extract information about the “ geometrical” stuctures of data.

Finally, the mothers wavelet (or “bases”) can be used for the represen-

tation and compression of integro-differential operators: this allows to build

efficient numerical methods for the solution of integral equations or of par-

tial derivatives. Several of these applications are discussed in [17], where a

detailed bibliography is also given.

2.4 Mother Wavelet

The mother wavelet function must have specific characteristics defining it

uniquely. As we said, it must be a function with a compact support to the

very principle of localization of component frequencies.

Second, it must meet a number of specific mathematical requirements,

such as presenting a Fourier transform ψ̂(ω) leading to a limited cψ parame-

ter:

cψ =

∫ +∞

0

|ψ̂(ω)|2 dω
|ω|

< +∞ (2.9)

For this condition it is sufficient that the wavelet is such that:∫
R
ψ(t)dt = 0 (2.10)

This consideration arises from the fact that, as in the case of Fourier

transform, for the WT too it must be possible to trace back the energy

spectrum of the signal, but in a localized way compared to the FT, which

represents, in some way, the time integral.

Considering, in fact, both the transform (2.8) and its inverse

u(t) =
1

cψ

∫ +∞

−∞

∫ +∞

0

[
ũa,b ·

1√
a
ψ

(
t− b
a

)]
dadb

a2
(2.11)
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we can firstly find that there is no information loss in the passage from u(t)

to ũa,b and vice versa, and that we have, for the Parseval relationship:∫ +∞

−∞
|u(t)|2dt =

1

cψ

∫ +∞

−∞

∫ +∞

0

|ũa,b|2
dadt

a2
(2.12)

ie, there is no energy information loss of the signal passing from the time

domain to the time-frequency plane, but just its redistribution in correspon-

dence of the activation time intervals and around the component frequencies

of the signal is composed with, defined by the ũa,b coefficients of the matrix.

This is of paramount importance for our studies: for stationary signals

the using of the Fourier transform arised because the information on the

dynamics of the signal and the time variation of the spectral power is com-

pletely contained in the phase of the transform, and it is completely lost when

we take the module, used for the power calculation. Instead, non-stationary

signals such as most of the biological series, do not lend themselves to such

a loss, and need a time localization of the energy spectrum.

Another feature that the mother wavelet can own (although it is not

strictly necessary) is that the higher moments (at least the second, as we are

going to see in the next section) are all zero:∫
R
tnψ(t)dt = 0 (2.13)

or that, at least, the first two moments are zero: this aspect is conencted

to the best resolution that a wavelet presents at high frequencies with the

increasing number of vanishing moments (see below). Furthermore, it must

be fullfilled the condition

|ψ(t)| < C

1 + |t|p
(2.14)

with C > 0 and p ∈ N. Moreover, a feature that the mother wavelet should

possibly have is to be “localized” both in the frequency domain and in time.
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Figure 2.3: the cone of influence of abscissa τ is formed by the points of the

plane for which the support of ψa,b intersects t = τ

Before we can browse the most commonly used mothers wavelet, it is

imperative to introduce the concept of cone of influence of a mother wavelet.

As we have seen, the convolution between two signals requires the wavetet

mother to be translated, with all its support (say, [−S, S]), along the sig-

nal to be analyzed. However, at the initial and final eges of the signal, the

wavelet support can easily (and, as a matter of fact, it does) exceed that of

the signal, thus causing unwanted edge effects. These effects can be analyti-

cally treated extending the signal out of its cradle, for example by assuming

the periodicity of the signal outside of its support, or performing a mirroring

of the same. These corrections, however, do not eliminate artifacts that can

occur, but their weight can be evaluated considering the cone of influence of

the transform.

Let’s imagine, therefore, to consider the generic point τ of the time series.

The cone of influence of this point is defined in the time-frequency plane as

the set of all points in the plane such that the point τ is content in the

mother wavelet ψa,b(t) = a−1/2ψ((tb)/a) support. Being the latter equal to

[b− aS, b+ aS], the cone of influence of τ is analytically defined as

|b− τ | ≤ Sa (2.15)

Consequently, if b is located in the cone of influence of τ , then the wavelet
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Figure 2.4: Haar wavelet

transform of the signal depends on the value of b in the neighborhood of the

point τ (Figure 2.3). The envelope of all the cones of influence of individual

points indicates what are the points of the time-frequency plane that are

mostly influenced by edge effects, and sholud, in this way, be appropriately

considered basing on the assumptions made on the aignal analytical exten-

sion.

Let us now consider a series of wavelet which, generally, the analysis is

performed.

2.4.1 Haar Mother Wavelet

The Haar wavelet is the simplest among the mother wavelet that is possible

to use. It’s defined as follows:{
1 if t ∈ [0, 1/2]

−1 if t ∈ [1/2, 1]
(2.16)

(see Figure 2.4). It is simply a high-pass filter having the advantage of being

simple to implement, it’s a fast algorithm for the WT, is reversible, compact,

real and odd. However, this simplicity is balanced by obvious disadvantages,

the first of which lies in the fact that in nature there are very few examples

of rectangular signals, and the lack of regularity of the mother wavelet could

generate a number of artifacts in the calculation of matrix elements of ũa,b.

Moreover, it is easy to verify that only the first moment of (2.13) is zero.
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Figure 2.5: above, the WT with the first derivative order of the Gaussian filter

(antisymmetric); bottom: WT relative to the second derivative (symmetric);

it is evident the greater detail at high frequencies for the second wavelet.

2.4.2 Mexican Hat

It is possible to demonstrate that any p-order derivative of a Gaussian func-

tion has the characteristics previously seen to be considered a mother wavelet.

In addition, it can be shown that in this case all the moments up to p-th van-

ish.

Starting from this principle, we can construct an entire family of mother

wavelet whose elements are characterized by the growing derivative order,

each having higher resolution at higher frequencies. If we observe, in fact,

figure 2.5, we can notice how, with the passage of the derivative order from

the first to the second, the resolution at high frequencies for the time series

shown in the top -common to both analyses- increases (area circled in red).
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More in detail, it is evident the way in which the wavelet of the first

and second order are odd and even respectively: this is reflected in the way

in which the first order is more sensitive to only increment or decrement of

the signal, while the second, more accurate, better distinguishes the speed

with which the signal varies over time. For this reasons, the second order

derivative is preferred to the first (and to any succeeding, both even and odd).

So, starting from the Gaussian function, with σ = a2/2

Fσ(t) =
1

2
√
πσ

e−
t2

4σ2 (2.17)

the corresponding mother wavelet is

ψ2(t) =
d2Fσ
dt2

=

(
t2

4σ2
− 2

σ

)
Fσ(t) =

e−
t2

4σ (t2 − 2σ)

8σ2
√
πσ

(2.18)

Because of its shape, such a wavelet is called Mexican Hat (or “sombrero”,

see figure 2.5, bottom). As it is evident since the previous relation, it can be

considered as the difference between two Gaussian filters of different scale,

divided by the scale difference itself.

In consequence of the above mentioned Parseval relation, the localized

spectral energy density for a Mexican Hat is given by the relation∫ +∞

−∞

∫ +∞

0

2|ũ2|2
dσdt

σ
(2.19)

A further step forward for this class of wavelet consists in making the

functions ψ2 complex, for example using the Hilbert transform. However,

when it becomes necessary to switch to a complex formulation, we prefer to

rely on other mother wavelets families.

2.4.3 Morlet Wavelet

The Morlet wavelet, complex, is one of the most used for the time-frequency

analysis of signals. It consists of a wave train of central frequency z0 modu-

lated by a Gaussian whose width is z0/π:
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Figure 2.6: the real component of the Morlet wavelet

ψMz0 (t) = cψ(e2iπt − e−
z20
2 )e−2π2t2/z20 (2.20)

The factor e−z
2
0/2 is called “correction factor”, as it is used to correct the

non-zero mean of the complex sine wave. cψ is the normalization coefficient

that is not uniquely determined, but related to the value of z0 that, in addi-

tion to defining the central frequency, also controls the number of oscillations

within the package. The choice usually accepted for z0 is 5 or 7, as for these

values (larger than 5) the correction factor is very small and can be approxi-

mated to zero. In the following table, we show some pairs (z0, cψ) used in

literature:

z0 4 5 7 10

cψ 1.1676 1.4406 1.9955 2.8353

Similarly to the previous case, the power spectral density of the signal

can be expressed by means of the Parseval relation:∫ +∞

−∞

∫ +∞

0

1

2
|ũM |2

dωdt

ω
(2.21)

with ω = 1/a and ũM representing the wavelet transform of the signal.
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Figure 2.7: frequency spectrum of the different mother wavelet: Haar (top),

Morlet (middle), Mexican hat (bottom). In abscissa the frequency is indi-

cated, and the ordinate units are arbitrary.

Since this is a complex wavelet, the transform will be composed by a

real part and an imaginary part: the first provides information on amplitude

variation of frequencies that make up the signal, the second will describe the

phase variation of the components themselves.

2.4.4 Comparison of the mother wavelet

The choice of the mother wavelet to be used to perform the transform is

subject to the specific utility of the result and the characteristics the single

wavelet.

A first comparison between them can be carried out considering the

Fourier spectrum of the wave packet. The Haar mother wavelet, for ex-

ample, presents a frequency spectrum that is not limited as a consequence of

non regularity at the extremes of the support (figure 2.7). In contrast, the

frequency spectrum of the Morlet and Mexican hat has a limited variability

and a rapid decrease, which implies a better selectivity in frequency. From

this point of view the Morlet is favored compared to the Mexican hat to have

a narrower band, even if the latter presents a better location performances

in the time domain.
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Figure 2.8: top left panel:the signal being analyzed; in the bottom left, the

wavelet transform with the Mexican hat at the second order; right top panel:

the WT with the Morlet wavelet for the amplitudes; right bottom: Morlet

WT for the phase (z0 = 5). In all cases the cone of influence is reported

(dark line).

A second comparison between the wavelets can be conducted considering

the cone of influence of each of them. As visible in figure 2.8, the Morlet

wavelet has a wider cone with respect to the Mexican hat, as a consequence

of the fact that the Morlet capture a greater number of oscillations with

respect to the Mexican hat at fixed frequency, which covers only 1.5 obscil-

lations.

A final comparison can take place according to the shape of the wavelet.

The Mexican hat has little periodicity (a central maximum and two minima

at the two sides of the support) and consequently a more marked tendency to

highlight local maxima and minima when these are not rapidly succeeding: as

already said, in fact, the transform coefficients represent the level of similarity

between the mother wavelet and the fragment of analyzed signal. The Morlet

wavelet, at the contrary, presents a strong periodicity and appears to be more

suited to highlight fast sequences of maxima and minima, at the cost of lower

temporal resolution.



Chapter 3

Causality

3.1 Introduction

As we saw earlier, it is possible to assess whether and how two or more time

series share information or exhibit similarity of different nature. In the sec-

tion dedicated to the TE, for example, we understood how to study, starting

from the statistical data, the information flowed from a series X to a series

Y that have been recorded simultaneously. We are now going to understand

if we can not only study what happened between two time series, but even if

we can go further and try to predict the trend of a time series on the basis of

its own previous behavior and on the basis of what happens in one or more

contemporary time series.

The first attempt of this kind is due to Clive Granger [24], who in a pio-

neering article of 1967, awarded two years later with the Nobel Prize for

Economics, proposed a vector autoregressive model (VAR) to study the mu-

tual influences between the financial markets. Although it was born in the

economic sphere, the model of Granger Causality (or G-causality, GC) can

also be extended to other areas including the dynamics of nonlinear systems

[25, 26] and neuroscience [27], helping us to understand what are, for exam-

ple, the causal relationships between heart rate and blood arterial pressure

or between heart rate and respiratory rate [28] and so on.

51
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In recent times, the development of computer technology and the increase

in computational power of computers let it possible to extend the scope of the

GC until the nonlinear study of complex systems consisting in a large number

of time series, which are, for example, recordings of electrical potentials on the

scalp, thus opening the door to the numerical study of information dynamic

in the cerebral cortex [29].

3.2 Granger Causality: the linear model

To fully understand the vector autoregressive model proposed by Granger

[24], it is necessary to introduce, since the beginning, the formalism that we

will use from now on. Let {x̄i}i=1..N and {ȳi}i=1..N , two time series of data

simultaneously measured, with the same number N of samples. From here

on we will assume that, for our model to be valid, the two time series are

stationary: this means that we have to deal with constant mean and variance

signals, and the covariance of any pair os segments belonging to the signal

depends only on their relative distance in the signal itself.

Let us consider now the integer m, that will be called, as for the TE,

order of the model, and the integer k, which can take values from 1 to the

integer M = N−m. We will denote by xk the (k + m)-th element of the

initial series, x̄k+m. Since m is related to the “width” of the considered

window to calculate the causality, xk is the k-th element after the considered

time window. The same holds for the second series. Finally we define the

series Xk = (x̄k+m−1, ..., x̄k) and Yk = (ȳk+m−1, ..., ȳk) as the “past” of the

elements xk and yk respectively. Since k ranges from 1 to M , depending on

the model order we can consider M realizations of the stochastic variables

(x, y,X,Y). The VAR model provides, at this point, the introduction of the

following linear system {
x = W11 ·X + W12 ·Y
y = W21 ·X + W22 ·Y

(3.1)
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where {W} is a set of four real m-dimensional vector whose values will be

derived from the actual time series data.

The system can be solved with respect to the set {W} by means of least

squares techniques, giving [30]:(
W11

W12

)
= Ã−1

(
T11

T12

)
(3.2)

and (
W21

W22

)
= Ã−1

(
T21

T22

)
(3.3)

in which the operator Ã identifies the block matrix

Ã =

(
Σxx Σxy

Σyx Σyy

)
(3.4)

The elements of the Σ matrix, and that of the vectors T, are obtainable

from the actual elements of the series in the following way:

[Σxx]αβ = (Xα, Xβ) =
1

M

M∑
k=1

Xk
αX

k
β , α, β = 1, ...,m (3.5)

[Σxy]αβ = (Xα, Yβ) =
1

M

M∑
k=1

Xk
αY

k
β , α, β = 1, ...,m (3.6)

[Σyx]αβ = (Yα, Xβ) =
1

M

M∑
k=1

Y k
αX

k
β , α, β = 1, ...,m (3.7)

[Σyy]αβ = (Yα, Yβ) =
1

M

M∑
k=1

Y k
α Y

k
β , α, β = 1, ...,m (3.8)

while for the vectors T:

[T11]α = (x,Xα) =
1

M

M∑
k=1

xkXk
α, α = 1, ...,m (3.9)
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[T12]α = (x, Yα) =
1

M

M∑
k=1

xkY k
α , α = 1, ...,m (3.10)

[T21]α = (y,Xα) =
1

M

M∑
k=1

ykXk
α, α = 1, ...,m (3.11)

[T22]α = (y, Yα) =
1

M

M∑
k=1

ykY k
α , α = 1, ...,m (3.12)

where ( , ) represents an inner product.

As one can see, the dimensionality of matrices and vectors in question

increases with the order of the model, and with this latter also increases the

accuracy in the estimation of the error (this is an autoregressive model, so

error must exist and must be different from zero) and its absolute value. If

we denote by εxy and εyx such errors, their form appears to be [30]:

εxy = V ar (x−W11 ·X−W12 ·Y) =
1

M

M∑
k=1

(xk −W11 ·Xk −W12 ·Yk)2

(3.13)

εyx = V ar (y −W21 ·X−W22 ·Y) =
1

M

M∑
k=1

(yk −W21 ·Xk −W22 ·Yk)2

(3.14)

in which V ar() represents the variance operator. This model hypotizes, of

course, that both sets Xk and Yk contribute to “cause”, within a given

range, the trend of the variables x and yk. If we forget for a moment this

cross-dependence, then the model, simply called autoregressive (AR), would

provide that {
x = V1 ·X
y = V2 ·Y

(3.15)

In this case, the least square method would return the results
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{
x = V1 ·X
y = V2 ·Y

(3.16)

with (
V1

V2

)
=

(
Σ−1
xx 0

0 Σ−1
yy

)(
T11

T22

)
(3.17)

As a result, the estimated variance of x−V1 ·X and y−V2 ·Y, that we

denote with εx and εy (representing the prediction error of xk and yk on the

basis of the knowledge only of their past) generates the following results:

εx = V ar (x−V1 ·X) =
1

M

M∑
k=1

(xk −V1 ·Xk)2 (3.18)

εy = V ar (y −V2 ·Y) =
1

M

M∑
k=1

(yk −V2 ·Yk)2 (3.19)

If the prediction error εxy is found to be smaller than εx, then we could

say that considering both the series helps to predict the future of xk better

than just considering only its past. The same is true for the pair εyx and εy.

It is said that the signal {ȳi} has a causal influence or Granger-causes the

set {x̄i} at the order m.

One way to quantify this causality is to compare among them the predic-

tion errors: we can introduce two parameters, c1 = εx− εxy and c2 = εy− εyx,
and define a directionality index D in such a way that:

D(l) =
c2 − c1

c2 + c1

=
εy − εx + εxy − εyx
εy + εx − εxy − εyx

(3.20)

in which the superscript l indicates the linearity of the calculation procedure

for the indicator.
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The meaning of D(l) is obvious: ranging from 1 (x → y flow) to -1

(influence of type y → x), the index measures how much a signal x causes

another signal y according to Granger, also providing an indication on the

direction of causality. The intermediate values may indicate either a smaller

causal connection between the two time series or a bi-directionality of the

same, in such a way that the two flows (different in strength and of opposite

sign) will compensate and generate intermediate values. The limiting case is

the one in which the measured value is zero: in this case it cannot be said

with certainty that there is no causal connection between the two series, but

simply that there is not a net flow of causality between the source and the

destination.

This imprecision is exceeded, as we shall see in the following paragraphs,

reconsidering functional form of D(l), cue even for important considerations.

For sufficiently long time series (ie, for N sufficiently large, as for example

the EEGs we are going to deal with, spanning from a few thousand to about

105 samples), and according to the definition of causality, the following two

properties hold:

• if Y is not correlated with X and x, then εx = εxy;

• if X is not correlated with Y and y, then εy = εyx.

Considering only the first of the two properties (for the second the sym-

metrical speech holds), the non-correlation results mathematically in the fact

that the operator Ã−1 is diagonal (Σxy = Σyx = 0) and at the same time the

vector T12, that somehow blend causal dependencies, is identically zero. As

a result, VAR and AR models coincide.

According to the definition, the possibility that the indicator D(l) proves

himself suitable to describe a linear type causality lies in the verifying of

above mentioned properties. However, it may be necessary to overcome the

assumptions of linearity and consider possible nonlinear causal links between
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two temporally ordered series, as in these conditions the higher order cor-

rections may become more important than in the linear case, in which are

confined in bidding for small corrections.

In this case the two previously considered properties must be restated

[31] in the following way:

• if Y is statistically independent of X and x, then εx = εxy;

• if X is statistically independent of Y and y, then εy = εyx.

As recent studies [32] have tried to bring the non-linear causality in the

filed of the linear one (as occurs with the local approximation of a curve with

a straight line segment in Euclidean spaces), the best practicable choice is to

consider sets of functions that, characterizing the non-linearity of causality,

can globally fullfill the property just enunciated.

3.3 Granger Causality: nonlinear model

To characterize the non-linearity in the Granger causality we must reconsider

the initial system (3.1) introducing two generic non-linear vector functions,

each of n components and m variables, Ψ = (ψ1, ..., ψn) and Φ = (φ1, ..., φn)

[30]: {
x = Ω11 ·Ψ(X) + Ω12 ·Φ(Y)

y = Ω21 ·Ψ(X) + Ω22 ·Φ(Y)
(3.21)

where {Ω} is a set of 4 real n-dimensional vectors. The choice of the integer

n is related, as we shall see, to the choice of the basic nonlinear functions.

Once the two functions Ψ and Φ are fixed, the system (3.21) represents a line-

ar space generated by the components of the two functions in 4n variables

{Ω}, whose elements have to be established to minimize the prediction errors.
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Using, as before, the least squares method to solve the system (3.21) we

obtain: (
Ω11

Ω12

)
=
(
S1 S2

)†
t1 (3.22)

and (
Ω21

Ω22

)
=
(
S2 S1

)†
t2 (3.23)

where † refers to the pseudo-inverse matrix [33] and elements of S and t are

computed as follows:

[S1]kρ = ψρ(X
k) with k = 1, ...,M ; ρ = 1, ..., n

[S2]kρ = φρ(Y
k) with k = 1, ...,M ; ρ = 1, ..., n

[t1]k = xk with k = 1, ...,M

[t2]k = yk with k = 1, ...,M

(3.24)

Based on the knowledge of these elements, we obtain

εyx =
1

M

M∑
k=1

[
yk −Ω21 ·Ψ(X)k −Ω22 ·Φ(Y)k

]2

(3.25)

εxy =
1

M

M∑
k=1

[
xk −Ω11 ·Ψ(X)k −Ω12 ·Φ(Y)k

]2

(3.26)

Such non-linear VAR model is to be compared, as previously, with the

non-linear AR model, which is based on system{
x = Γ1 ·Ψ(X)

y = Γ2 ·Φ(Y)
(3.27)

and consequently

Γ1 = S†1t1 , Γ2 = S†2t2 (3.28)
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εx =
1

M

M∑
k=1

[
xk −Ω11 ·Ψ(X)k

]2

(3.29)

εy =
1

M

M∑
k=1

[
yk −Ω22 ·Φ(Y)k

]2

(3.30)

Even in this non-linear model, the D(nl) parameter has the same func-

tional structure as the linear case, with the only difference that the deter-

mining elements has a nonlinear behavior.

It is possible to prove [30] that this choice satisfies the conditions seen

previously: if we impose the conditions are true (eg, the first), then for every

µ = 1, ..., n and for every ν = 1, ..., n, the function φµ(Y ) results as not

correlated with x and Ψν(X). It follows that

V ar [x−Ω11 ·Ψ(X)−Ω12 ·Φ(Y)]

= V ar [x−Ω11 ·Ψ(X)] + V ar [Ω12 ·Φ(Y)]
(3.31)

and for very large N , εxy tends to zero in accordance with its definition, Ω12

will be identically null and the non-linear AR and VAR coincide. The same

procedure is true swapping x and y .

What still remains unsettled is the choice of non-linear functions to be

used. The indication is to use classical p-degree polynomial functions (return-

ing, for p = 0, the linear case) or Gaussian functions. From the computational

speed point of view of there is not much difference between the two; how-

ever, the Gaussian function is preferable, both because best approximates

the probability distribution of the experimental points (as has already been

seen for the TE), and because is well suited for use in clustering algorithms

as kernel [34, 35, 36].

In this case, setting n << M in the space spanned by the vector X, n

different centers of coordinate {X̃ρ}Mρ = 1 are primarily identified (with any
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clustering method applied to the data {Xk}Mk=1). The same occuring in the

space of the vectors Y, finding the n centers {Ỹρ}Mρ=1. Such centers repre-

sent the prototypes of the variables X, for which the functions ψ represent a

measure of the similarity between the paths from these to every other point

in the space. The same applies to {Ỹρ} and φ .

From a mathematical point of view, for the p-degree polynomials, the

choice of the functions to be used is

ψρ(X) =
(

1 + X · X̃ρ
)p
, with ρ = 1, ..., n

φρ(Y) =
(

1 + Y · Ỹρ
)p
, with ρ = 1, ..., n

(3.32)

while for the Gaussian functions we have:

ψρ(X) = exp

(
−||X− X̃ρ||2

2σ2

)
, with ρ = 1, ..., n

φρ(Y) = exp

(
−||Y − Ỹρ||2

2σ2

)
, with ρ = 1, ..., n

(3.33)

in which σ is a parameter that must be fixed in each case in such a way as

to avoid the data overfitting, but whose order of magnitude, in any case, is

that of the average distance between the points of the spaces generated by

X and Y. The advantage of using Gaussian functions with respect to the

polynomials lies in the fact that the first describes all degrees of non-linearity

of the distribution of the experimental points.

Finally, note how the (3.32) and (3.33) assume the kernel used to be

linear both in X and Y, not there being an explicit relationship mixing the

variables X and Y. This choice is, at moment, the only one compatible with

the conditions of statistical independence between X and Y imposed at the

end of the previous paragraph.
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3.3.1 Complete Multivariate Model (MVAR)

As we have seen in the last paragraph, the GC has a vagueness in the defi-

nition of the indicator D, not defining precisely how much a time series is

G-causing a second if not for the net influence that the second can have on

the first. To overcome this ambiguity, we can choose [37] not to use the given

definition, but to directly compare the variances of their accuracy errors in

the VAR and AR cases: in this way the systems (3.1) and (3.15) can be

corrected by introducing the precision errors ε(.) and generalizing to the case

of all the future of every single series X and Y in the following way [38]:


x(t) =

∑m
j=1 W11, j ·X(t− j) +

∑m
j=1 W12, j ·Y(t− j) + εxy(t)

y(t) =
∑m

j=1 W21, j ·X(t− j) +
∑m

j=1 W22, j ·Y(t− j) + εyx(t)

(3.34)

and {
x(t) =

∑m
j=1 V1, j ·X(t− j) + εx(t)

y(t) =
∑m

j=1 V2, j ·Y(t− j) + εy(t)
(3.35)

where m is as always the model order (ie, number of elements of the past

that may affect the future of destination series) and the vectors x(t) and y(t)

represent all elements of the future (what you want extended in time, let’s

just say, T ) of the set X and Y.

As seen above, if the error εxy is smaller than εx in module, then the set

Y has a causal influence on X (“Y G-causes X”). Obviously we can not use

the difference between the two errors to define the indicator D(l) (or D(nl)),

otherwise we would commit the same above error: we will use, rather, the

ratio of their variance in the following way

D(l)
x→y = ln

(
V ar(εx(t))

V ar(εxy(t))

)
(3.36)

which is, of course, time-independent (in fact it is calculated on the entire

future of the time series). The extension to the nonlinear case trivially occurs
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with the same procedures as previously seen. We will return on the value of

the m parameter, the order of the model.

What makes crucial the calculation of G-causality is not, however, the

model used (linear or not, of any order), but the fact that this, as presented

so far, does not yet take into account the contemporary influence that each

other time series may have on the series under consideration (in the case of

electroencephalograms we are going to deal with, there are about 60 time

series influencing each other). In any case, the mathematical structure of

GC is well suited for multivariate extension (MVAR), and to prove it [37]

let’s consider as an example the case of three time series X, Y and Z in-

fluencing each other (higher dimensional cases follow immediately from this).

If we insert the three series in the VAR model we obtain:



x(t) = W11, j ·X(t− j) + W12, j ·Y(t− j) + W13, j · Z(t− j) + εxyz(t)

y(t) = W21, j ·X(t− j) + W22, j ·Y(t− j) + W23, j · Z(t− j) + εyxz(t)

z(t) = W31, j ·X(t− j) + W32, j ·Y(t− j) + W33, j · Z(t− j) + εzxy(t)

(3.37)

where the sum over the index j from 1 to the order m of the model is upon-

intended. Now the errors ε(.)(t) consider both the case of the simultaneous

presence of the three series and the case in which, case by case, one of the

three series is not taken into account. In the same way, the corresponding

MAR model must consider all possible combinations.

A simple way to proceed is to consider separately the covariance matrix

of the complete model:

Σ =

 V ar(εxyz) Cov(εxyz, εyxz) Cov(εxyz, εzxy)

Cov(εyxz, εxyz) V ar(εyxz) Cov(εyxz, εzxy)

Cov(εzxy, εxyz) Cov(εzxy, εyxz) V ar(εzxy)

 (3.38)
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and the n − 1 covariance matrices of the restricted models, or better the

models in which, case by case, a time series is omitted:

ρx =

[
V ar(εxy) Cov(εxy, εyx)

Cov(εxy, εyx) V ar(εyx)

]

ρy =

[
V ar(εxz) Cov(εxz, εzx)

Cov(εzx, εxz) V ar(εzx)

]

ρz =

[
V ar(εzy) Cov(εzy, εyz)

Cov(εzy, εyz) V ar(εyz)

] (3.39)

The meaning of the matrices elements we have just seen is quite straight:

for example, if we consider only the elements εxyz and εxz we have:

εxyz = V ar(x−W11X−W12Y −W13Z)

εxz = V ar(x−W11X−W13Z)
(3.40)

and so on for all the others.

In this model, certainly more realistic of the previous, the amount (mea-

sured in bits) with which the series X G-causes the set Y in the presence of

the set Z (affecting Y too) is

D
(l)
x→y|z = ln

(
(ρx)11

Σ11

)
(3.41)

In this way, the uncertainty due to the difference of the two informa-

tion flows inherent in the first definition of D is exceeded, the contemporary

presence of a second time series that may affect the first is considered and,

for each pair of the n time series appearing in the model, a not necessarily

symmetric n× n connection matrix is achieved.

An important parameter to be fixed is the order m of the model [39]:

if from a purely theoretical point of view, m should be as high as possible

(for m → ∞ there would be the cancellation of the uncertainties and their
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variances), from a computational point of view we must seek a compromise

between computational speed and accuracy of the model. Generally, the

estimation of the model order is made on the basis of two hypotheses, which

in a different way minimizes the ratio between the variance of the model

and the number of coefficients to be calculated (basing on the n time series

we chose to consider). A first choice is from Akaike (Akaike Information

Criterion, [40]), which calculates this integer as the minimum of the following

function

AIC(m) = ln [det(Σ)] +
2mn2

T
(3.42)

while the second, the Bayesian Information Criterion (BIC, [41]) assumes

that the function to be minimized is

BIC(m) = ln [det(Σ)] +
ln(T 2) ·mn2

T
(3.43)

The BIC model is certainly the most used in neuroscience, as more agile

when we have to manage particularly extended data series. However in cases

where the BIC (or AIC) provides or an order m too high for the calculation to

be computationally efficient, or even in the case in which there is not a defined

minimum (presence of more than one only minimum or even plateaux ), then

the parameter m can be chosen smaller [37], provided the models BIC/AIC

substantially do not present further decrease beyond that limit [39].

3.4 Equivalence between Transfer Entropy

and Granger Causality

Let us return to the formulation of the multivariate GC and show that, in the

calculation of the lowest linear order of GC and TE, the two quantities are

equivalent as long as the original time series exhibit a Gaussian distribution.

In a slightly different formalism from the one we have used till now but

absolutely equivalent due to Geweke [37] and already used for the multivari-
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ate redefinition of TE (cite paragraph 1.6), if we denote by Σ(ε) the error

variance of ε(·), then (3.41) can be rewritten as follows:

D
(l)
x→y|z = ln

(
Σ(εxz)

Σ(εxyz)

)
= ln

(
Σ(x|X− ⊕ Z−)

Σ(x|X− ⊕ Y − ⊕ Z−)

)
(3.44)

Let’s assume now that the time series on which TE is calculated are

characterized by a Gaussian distribution, for which we can rely on the re-

lationship between the entropy of the time series (let’s call it X) and its

variance [42]:

H(X) =
1

2
{ln (|Σ(X)|) + n ln (2πe)} (3.45)

where n is the dimension of X. For the conditional entropy there is a very

similar relationship. We start, in fact, from considering the well known

property [42]:

H(X|Y) =H(X⊕Y)−H(Y) =

=
1

2
ln (|Σ(X⊕Y)|)− 1

2
ln (|Σ(Y)|) +

1

2
n ln (2πe)

(3.46)

and remember that, at the same time:

Σ(X⊕Y) =

(
Σ(X) Σ(X,Y)

Σ(X,Y)† Σ(Y)

)
(3.47)

By inserting at this point the known matix identity [43]∣∣∣∣∣A B

C D

∣∣∣∣∣ = |D| · |A−BD−1C| (3.48)

we easily obtain

Σ(X⊕Y) = |Σ(X)| · |Σ(X|Y)| (3.49)

ie the profit result:
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H(X|Y) =
1

2
{ln (|Σ(X|Y)|) + n ln (2πe)} (3.50)

that, extended to the case of three variables (with a recursive procedure) and

substituted into (1.33, Chapter 1), returns:

Ty→x|z =
1

2
ln

(
Σ(x|X− ⊕ Z−)

Σ(x|X− ⊕ Y − ⊕ Z−)

)
=

1

2
D

(l)
x→y|z (3.51)

therefore the Granger causality coincides with the Transfer Entropy less than

a factor of 2 if the parental time series shows a Gaussian distribution. The

property still keeps true even when the number of the considered time series

is greater than the three used in this demonstration.



Chapter 4

Brain Networking

4.1 Introduction

The analysis presented so far, and in particular those relating to the connec-

tivity between different brain areas, only fournishes a partial view of what

happens in the transmission of information between cortical areas: the TE,

like the GC, provides simply a “map” of functional activation that can be

studied in greater detail with more sophisticated tools as network analysis,

the so-called Networking [44].

Born in computing science as an evolution of the classic graph theory, this

theory deals with the description, both global and local, of the connection

between the sub-components of a complex system, as one can consider the

brain (in our case, the cortex only, with related areas) [44]. A number of in-

dicators, in fact, verify if the flow of information passes unhindered through

these components, if is facilitated by some areas and inhibited by others, if

the network is organized in sub-structures that communicate between them or

that tend to isolate themselves and so on. We can say that if the connectivi-

ty analysis is engaged in intensity of connections, the networking studies the

internal dynamic of connections and the relationship between its components.

The application of this theory to the cortex functional connectivity is

67
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called Brain Networking (BN), and constitutes the frontier of research in

computational neuroinscience.

4.2 Networking Principles

A network is the mathematical representation of a real system in what you

want complex, defined by a set of nodes (or vertices) and connections be-

tween them (links, or edges).

Basically there are three different types of networks that can be studied:

anatomical, functional and effective. The first studies the structure of physio-

logical connection between brain areas, highlighting traits of organic matter

that physically connect them. The other two, instead, study respectively the

correlation and the causal relationship between the electrical activity of vari-

ous brain areas: one can say that while the first is a “physical” network for

the brain, the other two represent the network of causality and information

flowing through it.

In BN, nodes represent specific areas of the cortex: in particoular the

scalp areas covered by individual electrodes that can be later reorganized

into the more “classical” frontal, central, temporal, parietal and occipital

lobes, left and right in the variants [45]. What is particularly relevant is

that the mounting pattern of the electrodes must cover the whole scalp as

much as possible without overlapping, in order to avoid effects of masking

of the actual measures or create “ghost” areas that would appear, as will be

clear later, particularly segregated [46, 47]. It ’also important to emphasize

that the assembly diagram and covering of the scalp (parcellation) should be

uniquely determined and never changed during the analysis, as the results

differ according to the same scheme [48, 49].

This does not mean, however, that the results change with the order in

which the channels are followed in the analysis: it can be shown, in fact, that

the results of the analysis are invariant under permutation of the channels
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within the same parcellation scheme. As part of this work we have used the

internationally recognized extended 10-20 scheme, or 61 electrodes uniformly

distributed over the scalp.

Similarly, the nature of the link and the interpretation of their intensity

varies depending on the connection matrix used: for anatomical connection,

the link strength is an estimate of the amount of white matter that acts

like a “bridge” between different brain areas, while for the functional and

effective networks, the link represents the intensity of the connection or the

correlation, both in linear and non-linear type [50, 51].

From the computational point of view, the description a network requires

an activation map whose individual elements represent the strength of the

connection between the nodes i and j. For the functional and effective net-

works, the connection matrix belongs from the connectivity analysis per-

formed with the tools seen in the previous chapters: the SE and the CTCC

are used for functional connectivity being symmetric matrices (or “undi-

rected”), while the TE and the GC are preferred for the study of effective

connectivity (“directed” matrices). Anyway, matrices from TE and GC can

be symmetrized (for each pair {i, j} the largest matrix element in the module

is chosen), in order to be used as an entry for the functional network.

Another exception should be made on the form of the connection matrix

elements. In fact, it is possible to work with binary or weighed matrices: in

the first case (after applying a suitable threshold, see below), the elements

have logic 1 or 0 value (presence or absence of connection), while in the

second case the value is the one calculated with the appropriate indicators,

highlighting an intensity value of the connection too.

In the present study, the anatomical connectivity will not be considered,

since -at the moment- the results cannot be compared with those of the

other two types of network: these, in fact, start from the assumption that

the information transmission takes place at cortico-cortical level, while the
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Figure 4.1: Examples of thresholding and readjustments of the activation

map: the TE starting map (top); at center, the same map undergoing thresh-

olding of 60 % has been firstly binarized (BD) and then symmetrized (BU);

bottom: after the threshold application, the map has been symmetrized

(WU), or simply left unchanged (WD).
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Figure 4.2: example of a graph associated with a directional network con-

sisting in 12 nodes and 40 links. The bimodular structure of the network is

evident as well as the strong centrality of node 7, which acts as an interme-

diary between the two strongly segregated sub-network, 1↔ 6 and 8↔ 12.

Also, notice all the motifs (such as the blue line pattern) and the triangles

(the red circuit, which can not be path reversally) present in the network.

anatomical connectivity (deduced, for example, by an MRI tractography)

generates a network whose connections are cortico-subcortical in addiction.

For sure, the next step in the description of the brain real network will be

the interconnection and simultaneous interpretation of the anatomical and

informational network, but will not be the subject of this work.

We will therefore focus, as we shall see in more detail, on the functional

and effective connectivity, favoring whenever possible the latter, as the as-

pect of direction of the information flow through the links is of paramount
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importance in this study: an indirect matrix (symmetric or symmetrized) in

fact does not show differences in flow directionality, since nodes i and j are

linked with the same intensity, while in the case of directional matrices it is

possible to distinguish differences in connectivity from i to j and vice versa;

in this case we can reconstruct the actual path followed by the information

which may, in principle, be not perfectly symmetric in the path back and

forth between two nodes.

We can not choose a priori, however, which version of the connection

matrix deal with (binary or weighted, directed or indirect), as each single

quantity described later or relies on a particular version (the distance, for

example, measures the distance between two nodes counting the number of

intermediate vertices: the binary version of the connection matrix is suffi-

cient), or presents two versions of itself, weighted and binary (it is the case,

for example, of the couple degree - strength). For this reason, hereinafter,

using as much as possible the weighted versions of the activation matrices

is preferred, binarizing them only if strickly necessary or when requested by

the definitions. The same considerations apply to the direct and indirect

(symmetrized) versions of the same matrix: the first will always be preferred

to the latter. In other words, effective connectivity will always be preferred

to functional one.

4.3 The threshold problem

Before we can use them for analysis, any element whose value is particularly

small must be properly removed from the connection matrices, as they repre-

sent spurious or little significance connections that can obscure the topology

of strongest and most significant connections [52]. It is therefore necessary

to apply a threshold to eliminate those items.

The choice that can be made is twofold: the threshold can be absolute or

relative (or adaptive): in the first case an absolute minimum value is chosen,
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Figure 4.3: examples of network subjected to adaptive thresholding. From

top to bottom we find TE, CC and SE undergoing different threshold values.

All versions are left weighted and directed (WD).
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independently of the model used or the applied stimulation, under which

threshold each array element is reset. In the second case a value between 0

and 1 is chosen which cuts, for each activation matrix, each element whose

module falls below the product between this value and the largest matrix

element in the matrix: in practice, every element whose module is below a

certain percentage of the maximum value of the entire array is set to zero.

This second method is more efficient than the first, since it allows to avoid in-

consistent results as identically null matrices (that is, a “totally disconnected

network”) and allows the study of the network basing not on the intensity of

the connection but according to the relative dynamics between its parts [53].

Likewise, the wisest choice would be the one that does not uniquely fix

the threshold and preserves it throughout the analysis, but does consider

the different behavior of the network throughout the entire threshold range,

so as one can analyze the variability of the quantities as a function of the

information flow level (although if integrated) flowing through the network.

It is also true that, as we shall see in the data analysis section, within a

broad ranges of threshold value, the network does not present a great variabil-

ity, for which the choice of the threshold could fall into one of these intervals

in which the indicators have not a monotonically increasing or decreasing

trend but presents a plateau both in absolute value and in variance. Usually

these intervals are the central ones, ranging between 0.35 and 0.75.

4.4 Caracteristic features of BN

A single measurement made on the network is able to characterize various

aspects of brain connectivity, both at local and global level. Throughout

this section, we present several measures that, in different ways, describe

different aspects of functional integration and segregation, which quantify

the importance of the individual cortex areas, characterize the information

routes and the different possible circuits that can be followed by information,
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analyzing the potentialities of a network to restore the connections that may

have interrupted due to any cause (pathological, physical, etc..).

4.4.1 Basic Measures

Each measurement made on BN is based on the definition of some fundamen-

tal quantities, which serve, in various ways, to characterize the network right

from the start and to better interpret the subsequent and more sophisticated

measures, better placing them in the general context.

Each single measure should not be considered in its singularity, but as

part of a distribution that best characterizes the network in one hand and

data ensambles on the other.

Let then N the number of all possible sets of nodes in a network and

n their total number. Let L the number of all possible link sets and l their

total number. (i, j) represents a link between the nodes i and j, with i, j ∈ N .

Let ai,j the connection status between i and j: if ai,j = 0, then the two

nodes are disconnected, otherwise they are defined close (ai,j = 1 in the bi-

nary network, ai,j = wi,j if the network is weighted: from now on, the weights

will be considered normalized, so that 0 ≤ wi,j ≤ 1).

For a binary network, the number of links is defined as

l =
∑
i,j∈N

aij (4.1)

while for the weighed ones it has the form

wl =
∑
i,j∈N

wij (4.2)

Note that for undirected networks, ai,j = aj,i, therefore in (4.1) and (4.2)

each link is counted twice, while for directed networks each link is counted

once and only once, each of them being directed from node i to the j in a
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unique way.

The first measure that can be made on the network is the degree of each

single network node, considered as the number of connections (total, ingoing

and outgoing) departing from each single node:

ki =
∑
j∈N

aij (4.3)

For the direct version we can distinguish the degree in two ways, for the

incoming and outgoing traffic:

kini =
∑
j∈N

aji , kouti =
∑
j∈N

aij (4.4)

In this context, the degree is a measure of how many nodes are close to

the actual node (neighbor node). If the network is undirected, the number of

ingoing connections equals the outgoing ones. In any case, the total degree

is the sum of two degrees in input and output. Moreover, the degree is a

measure of the importance that a node (or a cluster of nodes) plays within

a network.

The weighted version of the node degree, called strength, sums the inten-

sities of each individual connection of a node instead of the individual nodes

number:

si = wki =
∑
j∈N

wij (4.5)

The set of degrees of all nodes in the network defines the degree distri-

bution, an important indicator of the ability of the network to regenerate

broken connections, actually dropped due to internal or external causes.

The average degree of the entire network is known as density, and is the

wiring cost of the network: the higher this indicator, the more efficient the

network.
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We can try to measure the shortest path length between two single nodes

i and j by firstly expressing with gi↔j the smaller path in length between

node i and the j (ultimately, the geodesic between two nodes) and then

summing over all the links belonging to them. The weighted version also

requires the calculation of the map (ie, the inverse matrix) from weights to

lengths, f(wi,j):

dij =
∑

auv∈gi↔j

auv , wdij =
∑

auv∈wgi↔j

f(wuv) (4.6)

The directed version, as for the degree, distinguishes the distance from i

to j from the inverse, replacing the generic geodesic gi↔j with the direct one

gi→j:

d→ij =
∑

auv∈gi→j

auv , wd→ij =
∑

auv∈wgi→j

f(wuv) (4.7)

It is important to emphasize how the characteristics of a network are

strongly influenced by these initial measures, as well as by the number of

nodes and links. For this reason, wheter we have not at least two populations

to compare among them or we want to test the null hypothesis that our results

are only artifacts or due to casual distribution of nodes within the network,

it is possible to artificially generate comparison networks for each measure

(the so-called null model, NM) that has to share all these quantities with the

real network under investigation. On the other hand, the topology of the

NM and its node’s spatial distribution plays no role: different topologies are

allowed, ranging from random to fractal [54].

4.4.2 Functional Segregation measures

Functional segregation refers to the network tendency to let certain pro-

cesses take place only within particoluar areas that, most of times, are inner

densely connected and present, at the same time, a quite reduced number of

connections from and to the outside compared to the internal ones.

In the first place, the segregation measures quantify the number of such

areas, called modules (or clusters), the presence of which indicates the possi-
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bility that the related areas of the network are segregated. Alternatively, it

can be stated that, in functional and effective networks, the abnormal pres-

ence of clusters is an indicator of a possible strongly structured hierarchy in

the information path.

The simplest measures of segregation are based on the counting of trian-

gles (or polygons, closed circuits in the patterns followed by the information,

consisting of n nodes and the same number of link) in the network, whose

relative abundance is an important factor in the study of segregation.

We will define the triangles around the node i in the binary network by

means of the following relation:

ti =
1

2

∑
j,h∈N

aij aih ajh (4.8)

while for weighed and directed ones the following definitions apply:

wti =
1

2

∑
j,h∈N

(wijwihwjh)
1/3 (4.9)

t→i =
1

2

∑
j,h∈N

(aij + aji)(aih + ahi)(ajh + ahj) (4.10)

For each single node, the fraction of triangles surrounding each vertex is

defined as the clustering coefficient

Ci =
2ti

ki(ki − 1)
(4.11)

therefore the entire network clustering coefficient can be calculated as follows:

C =
1

n

∑
i∈N

Ci (4.12)

with the usual weighted and directed variants:

wC =
1

n

∑
i∈N

2 · wti
ki(ki − 1)

(4.13)
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C→ =
1

n

∑
i∈N

2t→i
(kouti + kini )(kouti + kini − 1)−

∑
j∈N aijaji

(4.14)

By definition, the clustering coefficient is defined only for ki ≥ 2, oth-

erwise it is identically zero. It can be proved [55] that such a quantity is

equivalent to the fraction of nodes that, in triplets, are close to each other.

The average of this coefficient throughout the network reflects the presence

of a strongly centralized connectivity around one or more nodes (or areas).

Following the definition of the clustering coefficient, we note that this

indicator is, indeed, strongly influenced by the presence of low degree nodes,

being normalized node to node. A variation of this coefficient, the transitivity

T =
2
∑

i∈N ti∑
i∈N ki(ki − 1)

, wT =
2
∑

i∈N
wti∑

i∈N ki(ki − 1)
(4.15)

T→ =
2
∑

i∈N t
→
i∑

i∈N

[
(kouti + kini )(kouti + kini − 1)− 2

∑
j∈N aijaji

] (4.16)

is normalized with respect to all nodes in the network, and so is not affected

by such a dependency [56]. Note that the transitivity is not defined for the

single node, but for the entire network.

More sophisticated measures of segregation not only describe the presence

of densely interconnected cortex areas, but can even reconstruct the exact

size and composition of these groups. The latter variant, the composition,

is determined by the modular structure subdividing the network into groups

of nodes having the highest possible number of inter-connections and the

minimum possible number of extra-connections [57].

However, the level in which the network can be divided into these sub-

groups (which should, in any case, be non-overlapping) is measured by the

modularity feature [58], that despite all other measures, is not calculated

exactly but via optimization algorithms [59], which generally sacrifies a few
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degrees of accuracy in favor of calculation speed.

If we denote by M the set of all the non-intersecting modules the network

can be divided in and by euv the total fraction of link connecting the modules

u and v, then the modularity Q is defined by the relation

Q =
∑
u∈M

euu −(∑
v∈M

euv

)2
 (4.17)

In a completely equivalent way we can reformulate the expression of Q

according to Newman [60], getting

Q =
1

l

∑
i,j∈M

(
aij −

kikj
l

)
δmi,mj (4.18)

where mi and mj represent two modules contained in M, l is the total number

of links and δmi,mj is the usual Kronecher delta. From this expression it is

possible to derive the form of modularity coefficient for weighted and directed

network:

wQ =
1
wl

∑
i,j∈M

(
wij −

wki · wkj
wl

)
δmi,mj (4.19)

Q→ =
1

l

∑
i,j∈M

(
aij −

kouti · kinj
l

)
δmi,mj (4.20)

As Newman’s algorithm [60] is very fast and accurate, it is optimized

for networks in whitch the number of nodes does not exceed a few units (at

most, a dozen), while for our purposes (over 60 nodes) the algorithm recently

developed by Blondel [61] ensures a reliable performance for large networks

but sacrifies too much computation time because of its ability in highlight-

ing any hierarchical structure within the modules (smaller modules within

larger modules). The most obvious solution has been to use both of them

depending on the size of the module identified within the network.

However, as we will see in the section concerning centrality, for our pur-

poses it is not imperative that modules remain always separated from each
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other, and indeed will be important to identify those nodes (or cluster of

nodes) playing a junction role between two or more modules: it will there-

fore be necessary to consider the hypothesis that one or more nodes belong

simultaneously to two or more modules. In this case the algorithm developed

by Palla [62] seemed to us the most appropriate for such a description, keep-

ing in mind the fact that the regions of the cortex that we consider in our

studies are not exactly juxtaposed zones, but show a minimal overlapping (as

it is evident considering the names of the electrodes that define their position

on the scalp).

Finally, we define the concept of Local Efficiency of a node (or a cluster

of nodes) as the tendency of that node to communicate with its neighbors

using the shortest possible path.

So let djk(Ni) the length of the shortest path from j to k passing only

through the neighbors of node i. The local efficiency of node i is defined in

the three variants as

Eloc,i =

∑
j,h∈N,j 6=i aijaih [djh(Ni)]

−1

ki(ki − 1)
→ Eloc =

1

n

∑
i∈N

Eloc,i (4.21)

wEloc,i =

∑
j,h∈N,j 6=i

(
wijwih

[
dwjh(Ni)

]−1
)1/3

ki(ki − 1)
→ wEloc =

1

2

∑
i∈N

wEloc,i

(4.22)

E→loc,i =

∑
j,h∈N,j 6=i(aij + aji)(aih + ahi)

([
d→jh(Ni)

]
+
[
d→hj(Ni)

])
(kouti + kini )(kouti + kini − 1)− 2

∑
j∈N aijaji

→ E→loc =
1

2n

∑
i∈N

E→loc,i

(4.23)

4.4.3 Functional Integration measures

Functional integration refers to the ability of the scalp areas to rapidly re-

combine together specialized information coming from different and sepa-

rated areas. This concept is expressed in the framework of BN by means of
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an estimate of the ability in witch different and separated cortex areas com-

municate bewteen them by considering the concept of path, or the set of all

sequences of nodes and links that information can potentially follow to reach

the node j from the node i. The distribution of these lengths expresses the

intensity of the functional connection between two nodes (or areas intended

as a cluster of nodes): average short lengths express strong integration be-

tween two nodes (areas), while high average lengths compete to underserved

areas poorly integrated with each other. In this order of ideas, integration

in functional connectivity is much less easy to interpret than the anatomical

connectivity.

The mean value of the path length between each pair of nodes on the

entire network is called characteristic length of the network and is considered

the most important integration measure [55].

Called Li the average distance between node i and all the other nodes in

the network, the characteristic path length is defined, in its binary version,

as

L =
1

n

∑
i∈N

Li =
1

n

∑
i∈N

∑
j∈N,j 6=i dij

n− 1
(4.24)

while the weighted and directed version, we have:

wL =
1

n

∑
i∈N

∑
j∈N,j 6=i

wdij

n− 1
(4.25)

L→ =
1

n

∑
i∈N

∑
j∈N,j 6=i d

→
ij

n− 1
(4.26)

It is important to note that, while for the binarized version of the connec-

tion matrix the value of the characteristic length is evaluated by adding the

active links from node i to node j, for the weighted version the bond lengths

are added, being the latter quantity inversely proportional to the weight of

each link, as larger weights are indicative of stronger ties and, as a result,

smaller characteristic path and an higher “closeness” of two nodes.
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The inverse of the average length is defined as the network global efficiency

[63], that for the single node can be calculated as

Ei =

∑
j∈N,j 6=i d

−1
ij

n− 1
(4.27)

(d−1
ij is always the inverse matrix of distance between two nodes, but in this

case we deal with the average over the entire network), so the global efficiency

of the whole network is

E =
1

n

∑
i∈N

∑
j∈N,j 6=iEi

n− 1
(4.28)

and similarly for weighed and direct versions:

wE =
1

n

∑
i∈N

∑
j∈N,j 6=i

(
dwij
)−1

n− 1
, E→ =

1

n

∑
i∈N

∑
j∈N,j 6=i

(
d→ij
)−1

n− 1
(4.29)

Unlike the path length, the global efficiency can also be calculated on par-

tially disconnected network: the path length, in fact, is defined as “infinite”

in case of two disconnected nodes, and this leads to both an infinite charac-

teristic length and to null efficiency. In general, the path length turns out to

be strongly influenced by longer routes, while the global efficiency is mostly

influenced by short ones. According to some authors [64] this makes the

global efficiency a much more effective and significant measure of functional

integration.

In general, it is possible to demonstrate [53] that effective networks are

statistically more globally efficient if compared to functional networks, which

show a lower integration between different modules.

4.4.4 Small-world Connectivity

The different instances of segregation (strong hierarchical structure in in-

formation processing and a few extra connections) and integration (strong

interconnections between modules) are studied by the so-called small-scale
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connectivity (or small-world brain connectivity), which measures how much

the behavior of a network is close to that of an ideal, that is a network pre-

senting the same number of nodes and links as the one under examination,

but whose spatial distribution ensures that the work done by highly speciali-

zed areas is efficiently redistributed toward other highly specialized areas as

well.

This linking ability appears to be carried out by the anatomical connec-

tivity, which is not indeed the subject of our research. However, a certain

number of studies [65] have shown that by combining functional connectivity

characteristics with that of the effective, one can bring insightes about the

small scale connectivity, as both of them are able to highlight modular struc-

tures within the network and, by comparison, the effective connectivity also

highlights connecting structures between separated areas: facilities which si-

multaneously show high segregation and integration will be caracterized by

a high small scale connectivity, while others with high integration and low

segregation properties will have characteristics very far from that of the ideal

network.

Alternatively [66], using the definition of connectivity on the small scale,

we can define the small-worldness of a network by comparison with an ar-

tificially generated one with random topology: a network shows small scale

connectivity if it is much more clustered of another with the same characteris-

tic path length.

Let then two networks be given, one of which being artificially gener-

ated by a computer and having a random topology, and let respectively C

and Crand their clustering coefficients. Let also L and Lrand the characteris-

tic lengths of the two networks. We define the small-worldness of the first

network as compared to the second in the following way:

S =
C/Crand
L/Lrand

(4.30)
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If this ratio is much greater than unity, then the first network shows the

peculiar characteristics of microconnectivity. The extension to weighted and

directed network is trivial.

4.4.5 Motifs of the network

The global measures (ie, extended to the whole network) of the different pre-

viously regarded quantities tend to mask a series almost infinite number of

topologies such as local loop, more or less extensive closed circuits and varied

forms of recurrings: a simple example consists in the triangles that we have

seen in the previous paragraphs. But the most various structures can occur,

whose number is multiplied if we also consider directionality within them.

Be given the generic direct path h (consisting of nh nodes and lh links in

any ordered sequence) within the network. h is defined as functional motif

within the network itself if, taken a generic path in the network or any part

thereof (or its sub-network), the sequence of links of the latter coincides with

that of h [67]. We can define Jh as the percentage of occurrence of the pat-

tern h in the network. These motifs within the network are often associated,

both at the anatomical and functional level, to particular cortex activities,

and their presence becomes more important as the numerosity with which

they occur grows, often referred to as the motif z-score.

The latter quantity is defined by considering not only the network under

investigation, but also a number of other artificially generated networks with

a random topology, each with its own occurrence rate of the pattern h. If such

a set of network presents a standard deviation σJh,rand for the distribution of

Jh, then

zh =
Jh − 〈Jh,rand〉

σJh,rand
(4.31)

Considering, however, the motif distribution around individual nodes, one

can get the node fingerprint in the network, characterizing the functional role
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of that node (or region of the cortex) which belongs [67], using the already

considered motif occurrence precentage Jh:

Fnh(h) =
∑
i∈N

Jh,i (4.32)

in which Jh,i is the h pattern occurrence pertentage around the node i. For

weighted network it is necessary to introduce the concept of intensity of the

motif h:

Ih =
∑
u

 ∏
(i,j)∈Luh

wij

1/lh

(4.33)

where the sum is extended to all patterns where this h is present and Luh

is the set of links in the u-th element of summation. On the basis of these

quantities we define the motif z-score intensity :

zIh =
Ih − 〈Ih,rand〉
σIh,rand

(4.34)

and the motif fingerprint intensity as:

F I
nh

(h) =
∑
i∈N

Ih,i (4.35)

It should be noted that the functional and effective networks motifs only

partially coincide with those of the anatomical network, as the firsts only

partially use the paths described by the latter, which is the reason why it

would be more correct to separate the concept of functional and anatomical

motifs, defining the firsts as the set of all possible closed paths that can be

included in tha anatomical ones.

4.4.6 Centrality measures

Some areas of a network plays an important role as hubs of information and

connection between highly specialized areas (ie, segregated), and also their

role -as we shall see in the next section- becomes more and more important

when due to external or internal causes, the different areas can no longer
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communicate with each other. This is the paramount concept of centrality,

which can be extended to both the cases of individual nodes and the whole

areas of the network (in our case, the different cortex areas).

The first measure of centrality we can consider is the degree, already

seen in the introduction to this chapter, having an immediate interpretation:

areas with a particularly high number of connections (both incoming and

outgoing) are more likely to interact and sort the information.

Degree measures can be specialized by considering the intra-modular and

inter-modular variants, describing connectivity and centrality within the spe-

cialized modules (ie, the previously considered segregated areas) and between

them [68].

The intramodular z-score is calculated, for each node, identifying which

module belongs to the node i (let’s call it mi) and counting the number of

links between i and all other nodes in mi: if we denote this number by ki(mi)

and by k̄(mi) and σk(mi) the mean and standard deviation respectively, we

obtain

zi =
ki(mi)− k̄(mi)

σk(mi)
(4.36)

zouti =
kouti (mi)− k̄out(mi)

σkout(mi)
(4.37)

zini =
kini (mi)− k̄in(mi)

σkin(mi)
(4.38)

moreover

wzi =
wki(mi)− wk̄(mi)

σwk(mi)
(4.39)

The participation coefficient is defined by means of the same quantities:
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yi = 1−
∑
m∈M

(
ki(mi)

ki

)2

(4.40)

youti = 1−
∑
m∈M

(
kouti (mi)

kouti

)2

(4.41)

yini = 1−
∑
m∈M

(
kini (mi)

kini

)2

(4.42)

wyi = 1−
∑
m∈M

(
wki(mi)

wki

)2

(4.43)

Nodes (or cluster of nodes) having high intramodular degree and low

participation coefficient (known as local hubs) have an high probability of

playing a key role in facilitating the segregation of an area, while an high

participation coefficient corresponds to an high probability for that node (or

cluster of nodes) to facilitate the intermodular integration (connection hubs).

Most of the measures regarding centrality start from the assumption that

the central nodes (or areas) are present in many patterns within the network,

especially the shorter ones, thus acting as a control clearinghouse for infor-

mation flows. For example, the closeness centrality is defined as the inverse

of the average shortest path between a node and all the others in network:

for the i-th node it is defined by the relations

L−1
i =

n− 1∑
j∈N,j 6=i dij

(4.44)

(wLi)
−1 =

n− 1∑
j∈N,j 6=i

wdij
(4.45)

(L→i )−1 =
n− 1∑
j∈N,j 6=i d

→
ij

(4.46)

Similarly, the betweeness centrality is defined as the fraction (on the total

existing in the entire network) of shortest paths passing through a given

node:
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bi =
1

(n− 1)(n− 2)
·

∑
h,j∈N

h 6= j, h 6= i, j 6= i

ρhj(i)

ρhj
(4.47)

where ρhj is the number of shortest paths from h to j and ρhj(i) is the number

of shortest paths from h to j that passes through i. We can get the weighed

and directed versions simply by replacing{
ρhj → wρhj ∨ ρ→hj

ρhj(i)→ wρhj(i) ∨ ρ→hj(i)
(4.48)

In this sense, nodes with a very high betweeness centrality behave as a

bridge to connect two or more nodes otherwise separated. Naturally, the con-

cept can be extended to links, not only to nodes, and in this way we can get

two variants of the betweeness centrality: the Vertex Betweeness (VBC) and

the Edge Betweeness (EBC), both of them calculable with fast algorithms

such as those of Brandes [69] and Kintali [70].

It should be noted how anatomical nodes showing a strong centrality are

also those who, connecting regions otherwise disconnected between them,

facilitate their integration, increasing their functional connection. At the

same time, however, these anatomical links make the functional centrality of

these nodes less important, which are consequently less easy to spot.

4.4.7 Resilience Measures

Resilience is defined as the potential ability of a network to recover its func-

tionality as a result of interruptions (pathological, structural or whatever)

of the connections between the various constituting modules: in fact, the

deterioration of the anatomical connections between brain areas inevitably

leads to a similar deterioration in functional and effective connectivity both

among the directly injuried areas or even between areas using that one as an

information hub. The analysis of the network allows us to highlight those

network areas that, in case of such a damage, are able to restore the lost
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connectivity.

The resilience measures can be subdivided into two classes: direct and

indirect ones. By their nature, direct measurements [71] require long periods

of observation and experimentation for the measurement to be performed,

as they test the actual adaptation of the network to the progressive deteri-

oration of anatomical and, by consequence, functional connectivity. In this

case, which is not of our interest, the applicability of the chosen measures

has to be possible on disconnected network, as one or more areas can evolve

this way over time.

The resilience measures of our interest, however, are the indirect ones,

which test the potential capacity of recovery of networks and areas present-

ing an high risk of deterioration.

One of such a measures is the degree distribution of the network [72].

If p(ki) is the probability that the node i has degree ki, then the degree

distribution can be defined as follows:

P (k) =
∑
k′≥k

p(k′) (4.49)

and the weighted and direct versions can be trivially obtained. Nodes or

areas presenting low grade power laws distributions may be more resilient to

deterioration of the random networks, but at the same time are more vul-

nerable in case of damage of high egree central nodes.

As the real network does not always follow a defined grade power law,

it is possible that some modules inside it present defined degree distribution

(most of the times, a low grade). The analysis of these areas can result in

some cases useful the entire network resilience study [64].

A second measure that can effectively characterize the resilience of a

network is the assortativity coefficient, a measure of the correlation between
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the degree of the nodes at the beginning and at the end of an information

path:

r =
l−1
∑

i,j∈L kikj −
[
l−1
∑

i,j∈L 1/2 (ki + kj)
]2

l−1
∑

i,j∈L 1/2
(
k2
i + k2

j

)
−
[
l−1
∑

i,j∈L 1/2 (ki + kj)
]2 (4.50)

wr =
l−1
∑

i,j∈Lwij · wki wkj −
[
l−1
∑

i,j∈L 1/2wij (ki + kj)
]2

l−1
∑

i,j∈L 1/2wij
(
wk2

i + wk2
j

)
−
[
l−1
∑

i,j∈L 1/2 · wij (wki + wkj)
]2

(4.51)

r→ =
l−1
∑

i,j∈L k
out
i kinj −

[
l−1
∑

i,j∈L 1/2
(
kouti + kinj

)]2

l−1
∑

i,j∈L 1/2 ((kouti )2 + (kinj)2)−
[
l−1
∑

i,j∈L 1/2
(
kouti + kinj

)]2

(4.52)

The positive assortativity presupposes that the two ends of the paths

consist of nodes (or clusters, particularly hubs) interconnected between them

and of comparable resilience; vice versa, a negative coefficient expresses the

possibility that the central nodes are uniformly distributed in the network

and that, consequently, their eventual removal makes vulnerable the entire

network generating an unstable behavior.

Two other measures that may characterize the resilience of a network are

the local assortativity coefficient (ie, a localized version of the coefficient of

assortativity, only extended to modules or areas) and the average neighbor

degree [73]:

knn,i =
∑
j∈N

aij · kj
ki

(4.53)

wknn,i =
∑
j∈N

wij · wkj
wki

(4.54)
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k→nn,i =
∑
j∈N

(aij + aji)(k
in
i + kouti )

2(kouti + kini )
(4.55)

Low values of these indicators show a high risk of impairment for the

entire nestwork if the nodes which are referenced were removed.



Chapter 5

EEG Data analysis

5.1 Introduction

The tools we have presented up to this point can be applied to various fields

of research and inference analysis, ranging from econometric data (for which

they were originally developed, although not all of them) to the weather data,

and so on.

The analysis of electroencephalographic data is intended to highlight,

through the techniques set out above, any differences which may exist be-

tween two or more populations of migraine patients in terms of total quantity

of information flowing between different cortex areas or efficiency that they

may have in distributing, processing it and so on.

For this purpose, it becomes necessary to consider at least two populations

in each study, one of which must be considered as a reference for the analysis

(in the present case, the so-called “controls”, or patients not suffering the

disease under study). Moreover, the choice of the particular stimulation, of

course decided by the neurologist, has been made time by time in such a way

as or to stimulate areas particularly suited to recipe it (for example, visual

stimulation, which affects the parieto-occipital areas, is used to highlight any

cognitive deficiencies of a population or to verify that, in migranic patients,

their relative neuroelectric activity is more intense than the others, as it is

93
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well known in neurology), or to affect as many areas as possible in order

to verify the integration state of the network (it is the case of painful laser

stimulation that, by acting directly on the brainstem system and on pain

receptors, arrives directly to the cortex without passing by one of his areas).

5.2 Characterization of EEG and

10-20 system

The data considered in this work, as widely mentioned in previous chapters,

are of biological origin, and precisely they constitute the recordings of elec-

trical potentials measured at specific sites of the human scalp, arranged in

such a way as to cover as much as possible the entire extension of it (the

so-called “channels”), each of which records a signal whose magnitude is a

few tens of µV and whose value is the sum of all the potentials underlying

the cortex area covered by the electrode.

Such a system of data is called electroencephalogram (EEG), and for the

purposes of this research it is a system of 64 channels with a sampling rate of

256 points per second, which makes the cortex EEG analysis of neuroelectric

activity an high temporal resolution analysis. In reality, not all of these chan-

nels are used in the analysis: two of them in fact, 63 and 64, only controls

the so-called electro-oculogram, EOG, used to control the eyes movements

and one, number 32, is the recording of the electrocardiogram (ECG); the

number of usable channels falls then to 61.

The need for using the EOG derives from the fact that each movement of

the patient undergoing stimulation and EEG recording may introduce arti-

facts in the recording the same that can make it completely unusable around

the event. The most common of these artifacts is the eye-blinking, which

creates evident spikes in the recording: the registration of the eye movement

makes it possible to check for any interval of time that must be removed from

all the channels of the track in the pre-processing phase, being the coregis-
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Figure 5.1: the 10-20 system for mounting the electrodes.

tration of the time series of primary importance, as noticed, for the analysis

of TE, GC and all other indicators.

Our first work, however, has been conducted using only a 12 channels

system for data recording, only 6 of which almost free from artifacts to be

taken into account, as a result of an older registration system with respect

to the one that has been adopted later. However, both recording systems

share the arrangement of the common electrodes, for which the system con-

sisting of 61 channels can be considered to all effects as an extension of the

one with 20 channels, and is indeed a model with an higher spatial resolution.

An important consideration is to be done. As it is well known, not all

skulls are equal, and if proper precautions are not used, the risk of recording

the neuroactivity of cortex areas that can not be related to the specific areas

indicated with reference to the name of the electrode (F1, T8 and so on, as
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visible from figure 5.1) is quite high. To overcome this problem it has been

constructed the so-called 10-20 system for the system with 20 channels, which

in the case of 64 channels is called extended 10-20 system, which covers up to

a maximum of 128 channels, which we will not use. Such a model assumes

that the electrodes are placed (individually or embedded in a suitable cap)

in a sequential way, starting from two particular points of the head that are

located on the median line connecting the point at the center of the frontal

bone (or eyes, called nasion) with the point to its opposite in the occipital

area (inion). In this way, the first five electrodes are fixed on the midline

equidistant between them in such a way that the edges are situated at a

distance from the two reference points equal to 10% of total distance, and

the other at 20% of the total distance between them. The same happens

along the sagittal direction, ie from ear to ear (the reference point, in this

case, are singularly called trago). In the intersecting point of the two medial

lines, called vertex, the electrode attached to the top of the skull, called Cz,

takes place.

All the other electrodes are fixed in such a way to consider the distance

between two of the previous electrodes as a reference and to leave constants

the relative distances between each pair of electrodes. In this way, the actual

position of the electrodes reflects the one they would have on an “ideal” head,

and especially it can be said to be common to all shapes and dimensions of

the skull, as widely demonstrated in the medical literature [74].

5.3 Frequency Bands

As all the signals varying in time, the EEG too can be considered as the sum

of different contributors sine wave at different frequency (or pulse). However,

a spectral characterization would not be easy to treat, since the number of

sinusoidal components of the signal is theoretically infinite.

It has been thought, therefore, to use not the individual frequencies as
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Figure 5.2: filtering of the EEG signal (top) in the four frequency bands. In

abscissa, the time is measured in seconds.

a reference, but frequency bands, each of which is characterized by a cer-

tain range of frequencies and that reflect, individually, a determined type of

cortex activity (figure 5.2): from slow-waves or longwaves which reflect the

activities of the oldest areas of the brain (the amygdala, for example) to the

rapid activity which is expressed for example when the cortex, in a steady-

state, must recognize particular types of stimulation or perform specific tasks.

Specifically, there are four to six bands, depending on the conventions on

two sub-bands. This convention provides the following distinction:

• δ band, from 0.5 to 4 Hz is the bandwidth of long waves and unconscious

activity, associated generally to deep sleep;

• θ band, from 4 to 7 Hz associated with light sleep or drowsiness;

• α band, from 7 to 12 Hz is the first band of consciousness associated

with the resting state and relaxation with eyes closed while awake con-

ditions;
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• β band, from 12 to 30 Hz, is the bandwidth related to the neuroactivity

of waking and attention.

This is the four-band system that will be used from now on, but it is

not the only possible choice: some authors prefer to split the α band in two

equiextended bands, α1 and α2, other authors prefer to include the γ band,

with frequencies from 30 Hz on, but belonging only to frontal areas. Obvi-

ously the choice is of convenience and reflects the specific needs of a given

research work. Moreover, the separation of the bands is not always so clear:

their thickness is often extended right and left of each interval of 0.5 Hz, so

as to obtain not separated bands, but intersecting.

The localiztion of the brain waves is not a prerogative of the γ band

only: even β waves are present in the front and central areas almost exclu-

sively. In addition, the alteration of some frequency component is closely

related to specific disorders: the alteration of δ rhythms can be an indicator

of a medium-to-severe disorder of brain activity, while the alteration of θ

rhythms is often a sign of a mild-to-moderate disorder of cortical activity.

However, this topic is beyond the scope of this work, and for a more in-depth

case studies, please refer to specialized medical literature.

The choice of the bands to be used (all the four bands, or only α and

β, and so on), however, is not always related to the type of stimulation

performed on the patient: the flashing light at a certain frequency will not

affect necessarily the frequency bands in which it is located but even its

neighbors, in something like a resonance effect, as well as a laser stimulation

painful not only affect the lower and the higher band, being the processing

bands of the stimulus during wakefulness (β band) and pain (δ band): it will

be seen in fact, as the neural response interests quite all the frequency bands.
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5.4 Data pre-processing

Before analyzing the available EEGs, it is necessary to clean up data from

all kind of artifact that could lead to significant errors both from the point

of view of measurement of the real quantities, both from the one of results

comparison among populations (patients suffering from a specific pathology,

healthy patients, etc.).

Following the procedures universally adopted by the scientific commu-

nity, the technician responsible for carrying out the recording session and

the neurologist have first applied a digital band-pass filter in the range of

frequencies between 0.1 and 70 Hz, and then applied a Notch filter to remove

interferences and harmonics at 50Hz from the power line that may have af-

feted the recording.

Finally, an electrode has been chosen to be the reference for the measure-

ment of potential differences, namely Fpz. The electrodes used presented a

total impedance of less than 10 kΩ.

The band filtering was performed using a two-tailed Butterworth filter of

the second order.

5.5 Potentials evoked by visual stimulation

(SVEP): flashing light

In the studies performed on functional and effective connectivity of migraine

in all its various forms, the first two types of stimulation which patients were

subjected to were those from visual flashing light, belonging to the cate-

gory of SVEP: “Steady-state Visually Evoked Potential”. The first type of

stimulation considered will be the simple flash with different time frequencies.

The available EEGs were from 19 patients suffering from migraine with
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aura (MA) selected in accordance with the ICHD-II procedure [75], 19 sub-

jects experiencing migraine without aura (MO), whose diagnosis was made

according to the same procedure, and 11 healthy subjects (N), selected among

the nursing staff of the Neurology Department.

Analysis of statistical inference (ANOVA and χ2 tests) have shown that

there are not imbalances in populations in favor of male or female and there

were no peacks about particular values of the age distribution. It has also

been verified that the MA and MO patients were temporally distant from

the last migraine attack and sufficiently furthest from the next, in such a

way as to exclude any effects due to the pre-attack dysfunctional state. Such

a condition has been verified by a telephonic interview after the recordings

have been perfromed.

The visual stimulation has been conducted through an intermittent strobe

with radiant energy of 0.29 J, located 20 cm from the patient, who was asked

not to close eyes during stimulation.

Five different frequencies of stimulation have been used: 9, 18, 21, 24 and

27 Hz, whose choice was not casual, but based on previous physical and neu-

rological studies [76, 77]. Each of them was delivered to patients for about

40 seconds, with an interval of 20 seconds between them, so as to be certain

that the residual effect does not interfere with the next. For each stimulation

about 20 trials were performed.

The potentials were recorded through six electrodes: two occipital (O1

and O2), two parietal (P3 and P4), one central (Cz) and one frontal (Fz),

the assembly of which was referred to nasion.

The frequency bands used in this first work were only the highest two, α

and β.
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5.5.1 Analysis of the spectral power

Using the Fast Fourier Transform for discretized signals (FFT), and selecting

from time to time the signal strength at the stimulation frequency, it was

found that, in correspondence with this frequencies, the EEG signal of MA

and MO was significantly more powerful than that of N, in all channels except

those in the fronto-central region (Fz and Cz, figure 5.3).

5.5.2 Analysis of functional connectivity:

Synchronization Entropy

Once we assigned the two weights: (m,n) = (1, 1), it has been possible to

proceed with the phase synchronization analysis. In order to reduce the

number of multiple comparisons and then lower the Bonferroni correction

factor (see later), we proceeded comparing, for each stimulation frequency,

not the absolute synchronization factor but the one relative to the base,

defining the following factor for each band

Γ = ρflash − ρspont (5.1)

where ρflash is the average synchronization of the cortex in the presence of

light stimuli and ρspont is the base mean spontaneous synchronization in that

band. This difference measures the change in synchronization with the ar-

rival of the light stimulus in relation to the activity of the base, and is called

hypersincnronization. [76]

The statistical analysis conducted with the t-Student test with post-hoc

Bonferroni correction showed that in α band, the MO show a clear hyper-

sincnronization compared to the MA and the N in almost all frequencies of

stimulation (figure 5.4, top panel). ANOVA test with post-hoc correction

showed that the stimulation frequencies have different effect on synchroniza-

tion in α band, even if the post-hoc test showed no significant differences

between the various frequencies, particularly for MO patients compared with

the MA and the N [78, 79].
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Figure 5.3: power spectrum analysis of the EEG signal at the stimulation

frequency. Bars marked with an asterisk indicate statistically significant

comparisons.
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Figure 5.4: mean values and standard deviations of the synchronization index

Γ in α (top panel) and β (bottom panel) bands. At foot of each panel the

values of the corresponding ANOVA tests are reported.
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In β band, however, we are witnessing the effect of desynchronization of

MA with the increasing stimulation frequency (figure 5.4, bottom panel), an

effect that is also present for the N, although with less intensity.

There is also a clear difference between the two groups of patients with

migraine: the MA de-synchronize faster with the increasing frequency of

stimulation than in the case of MO.

5.5.3 Analysis of effective connectivity:

Granger Causality

For the analysis of effective connectivity we chose to use the non-linear GC,

using a Gaussian kernel. The results obtained for each pair of channels and

for each population were averaged and compared with a one-way ANOVA

with post-hoc correction. The magnitude of the connection was significantly

different across populations and stimulation frequencies in α band: the MO

showed values significantly lower than the MA and the N (figure 5.5, top

panel), with the frequency of stimulation at 24 Hz which also shows an ef-

fect of interaction between populations and stimulation frequencies, which

makes the three populations even more separated basing on the mean values

of causality.

In β band, the MA show larger average values of causal connection than

MO and N in all frequencies of stimulation, with the other two populations

showing causality values practically constant throughout the range of fre-

quency stimulation (figure 5.5, bottom panel).

Finally, a further ANOVA test showed that there were significant corre-

lations between SE and GC values in all bands and all frequencies of stimu-

lation.
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Figure 5.5: mean values and standard deviations of the causality index C in

α (top panel) and β (bottom panel) bands. At foot of each panel the values

of the corresponding ANOVA tests are reported.
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5.5.4 Conclusions

As a result of light stimulation, MA and MO show a different behavior in

their neuroelectric activity. In the first population, in fact, an increase in

effective connectivity in β band has been observed, while in the latter there

is a similar increase in α band. Such a difference may indicate a different

neurosynaptic behavior between the two phenotypes of migraine [83].

5.6 Evoked potentials from photic

checkerboard

The second type of light stimulation that has been considered was the one

with bright intermittent checkerboard with two different spatial dimensions:

the first with 5 mm edge and the other with 20 mm; the stroboscopic fre-

quency was always kept at 5 Hz.

Such kind of stimulation was suggested by neurologist in accordance with

Shibata hypotesis [80], in wich a photic checkerboard stimulation could lead

to important differences in cortical activity of migranic patients.

The EEG used in the connectivity analysis consisted of 61 channels record-

ings of neuroelectric activity during the visual stimulation, whose temporal

extension was about 5 seconds. In addition to these, also the unstimulated

neuroelectrical activity recording, the so-called bases, were available.

The sampling rate was 256 Hz, and the recordings were made by placing

the stroboscopic checkerboard, whose radiant energy was 0.29 J, 20 cm from

the patient, which were asked to keep eyes wide open during the stimulation

without blinking their eyes.

The patient’s populations voluntarily undergoing stimulation were three:

migraine with aura (MWA, 29 patients), migraine without aura (MWoA, 19

patients) and patients not suffering from migraine (CONT, 11 subjects).
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Based on these considerations, the statistical analysis was conducted, for

each channel and for each band, using the one-tail (alterned left and right)

t-Student test with a Bonferroni correction for multiple comparisons equal

to

b = ncouples × (nstims − 1) = 3× 2 = 6 (5.2)

The Bonferroni correction is a post-hoc compatibility test, used to in-

crease the confidence level in comparisons for a difference to be considered as

statistically significant, and is performed when the number of comparisons is

greater than one: in this case the universally accepted value of 0.05% c.l. is

lowered to 0.05% / b (in our case, 0.008%, or 0.004% for each tail).

In this type of analysis, we decided to study the behavior of populations

for each channel (or couple of them), without performing averages as in the

case of the bright flashes: the larger number of channels, in fact, allows an

higher spatial resolution compared to the previous case, and gives us the

possibility of studying the effects of the behavior of every single cortex area

regardless that of the other. Such a condition would not be highlighted if we

would have take the mean value over the whole 61 channels parcellation of

the scalp, hiding possible (and, as a matter of fact, real) differences in single

areas behavior that might distinguish populations among them.

In this case, however, a new type of graphycs have been studied to explain

numerical results, in order both to avoid dealing with a large number of plots

of the type already seen in the previous work (in the best case, 61 plots; in

the worst, 61 × 61 = 4096 plots for each stimulation and for each compari-

son: this condition is, of course, unapplyable) and to fournish an immediate

identification and intensity of the distinguishing areas of the cortex.

In this context, we decided to use the topoplot system to visualize re-

sults. Such a system is easy to understand: the human head is pictured
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from above, and each single channel stands for its particular position on it.

The convention we used is the following: if the comparison on that parti-

cular channel gives no distinction, it remains green in color. If, instead, the

channel gives rise to distinction, we can deal with two different pictures: the

first is used in the functional/effective analysis, in which the distinguishing

channel’s color is as deep as the number of the external channels which the

channel communicate with increases; in the second, mainly used while deal-

ing with BN features, each distinguishing channel’s color depth is as deeper

as the percentual difference among populations increases.

The color convention we used is the following: warm colors if the distinc-

tion in in favour of the first element of the comparing couple (eg, in MA/MO

case, red is referred to MA), cool colors otherwise (in the last example, blue

is the distinction in wich MO levels are larger).

In this way only we can deal with few diagrams fournishing both as much

information as possible and a clear location of the distinguishing areas.

5.6.1 Analysis of effective connectivity:

Transfer Entropy

By means of Kolmogorov-Smirnov test we verified that the data distribution

for each channel were parametric and, with the subsequent Spearman post-

hoc test, if the gaussian trend of their distribution was verified. Only at this

point we was able to carry out the statistical analysis of data.

The first parameter that must be fixed in the study of effective connec-

tivity is the lag, which affects strongly the value of cortical connectivity. An

analysis of the average values of the TE as a function of the lag has shown

(figure 5.6) that within 75 ms preceeding each considered sample, the mag-

nitude of the TE does not vary significantly. For this reason the value of 9

samples for this parameter was chosen, corresponding to about 36 ms before

each single element of the series.
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Figure 5.6: trend of TE as a function of the lag.



CHAPTER 5. EEG DATA ANALYSIS 110

Figure 5.7: analysis of the TE in α band for checkerboard stimulation with

5 mm edge. In the first row are shown, for each recording site on the scalp,

the total number of distinguishing channels, both in input and in output,

for the three pairs of populations; as always, warm colors indicate that the

most number of channels is in favor of the first element of the pair, while the

cold colors indicate a distinction in favor of the second element of the pair.

The second row shows histograms with the number of channels that, area

by area, distinguish the two populations: cool colors for the left hemisphere

and warm for the right; the sequence of areas is frontal, central, temporal,

parietal, occipital. In the third row, the same histograms normalized with

respect to the total number of channels for each area: in this case representing

the percentage of each area’s channels that distinguish the two populations.

Starting analyzing the base (ie, the EEG is not subjected to stimulation),

we immediately notice that there were practically no differences in behavior

between the MWA and MWoA; only in β band a few significant differences

between the two populations are noticed, and only in the right frontal area,

which presents a slight difference both in input and output (about 3 - 4%),

moderately higher in MWA. At the same time, there is no difference, in any

band, between MWA and CONT.

A substantial difference can be seen, however, between MWoA and CONT:

the latter, in fact, always show information levels, both incoming and out-

going, larger than the first of 15% on the average, even if this distinction

not always follows a precise pattern: in lower bands (δ and θ) this superior-
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ity is almost uniform, while in the higher bands there is a strong posterior

and right temporal component. In output, however, there was no recursive

schemes.

The second type of stimulation, the one with 5 mm edge checkerboard,

shows the comparisons MWA/MWoA and MWA/CONT very similar, both

from the exchanged information levels point of view and from that of in/out

directionality. In both cases, the two central bands, θ and α, show larger

TE levels in MWA patients (up to 50%), but while in input (figure 5.7) the

area of greatest distinction is always across the right and left hemispheres

in the neighborhood of the vertex, with a structure that vaguely recalls a

capital X whose center is the Fz channel, in output the two comparisons are

different: the second (MWA/CONT) shows a structure similar to that just

described, while the first shows the constant presence of channel Fz, from

which flows information in larger quantities than in MWoA. The outer bands,

however, does show a fast decrease of TE levels in MWA than the other two

populations, particularly in left temporal areas.

The third type of comparison, MWoA/CONT, shows as CONT present, in

the lower bands and in correspondence of Fz, mean information levels larger

than MWoA up to 30%, while in the front left area it’s MWoA that present

larger information levels. In the uppermost band, instead, the MWoA show,

in the frontal areas (right and left) larger levels of transferred information.

The 20 mm checkerboard stimulation shows, however, a marked difference

between MWA and CONT in all frequency bands and with similar structures

and characteristics both in input and in output: around Fz the X-shaped area

is again created and clearly distinguishes the two populations (figure 5.8),

with levels of TE much larger (that could even reach 90% in output) in MWA

than in CONT. Such a structure would seem to tie together anterior frontal

areas with those occipital, creating a sort of corridor that information can

follow.

The comparison between MWoA and CONT shows characteristics very

similar to what has been seen, with the X-shaped area centered around Fz
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Figure 5.8: analysis of the TE in α band for checkerboard stimulation with

200 mm edge.

sending an larger amount of information (more than 60%) in MWoA that in

CONT. At the same time, however, there are nor substantial differences nor

easily recognizable structures that can distinguish MWoA and CONT with

rspect to the outgoing information.

Finally, the comparison between MWA and MWoA shows features very

similar to the smaller checkerboard: in outer bands the exchanged informa-

tion level is slightly lower (about 2%) in MWA compared to MWoA almost

exclusively in the left temporal areas. In the inner bands, however, the

MWA show larger exchanged information level, particularly in the central

and occipital. In output, however, the channel Fz is always the one showing

differences, presenting the highest levels of TE in the MWA.

5.6.2 Analysis of Brain Network

The analysis of the BN began with the study of the overall behavior of

the network in function of the applied threshold used to eliminate spurious

connections. As we saw in section 4.3, it was decided to apply a adaptive

threshold to compensate for the different connections intensities characteriz-

ing the network of each patient.
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Figure 5.9: β band analysis of the Vertex Betweeness trend for the different

cortical areas as a function of the adaptive threshold applied.

The result of this analysis showed (figure 5.9, in which is shown, as a

general example, the trend of the Vertex betweeness) that considering an

adaptive threshold of 65%, the behavior of the network indicators and their

variance reaches a plateau. This choice means that any connection strength

whose value falls below the 65% of the maximum connection value is removed

from the network.

Regarding the statistical treatment of data, it was decided to use a double

investigation key: on one hand we have chosen to continue using the Student’s

t test on each channel, so as to improve, as already said, the spatial resolution

of the analysis, and on the other, it has been chosen to perform a parallel

statistical comparison using the channels of a cortex area (for example, the

right front, the left parietal and so on) as a single ensemble of data, in such

a way that the comparison has not interested channels individually, but the

entire cortex area.

So we have to manage three different cases:



CHAPTER 5. EEG DATA ANALYSIS 114

• the entire area and most of the individual channels differ significantly

across populations : the case anymore simple, since the behavior of the

entire area is determined by that of the individual channels;

• the entire area distinguishes the two populations, but none or just a

few channels do the same: in this case the variances of the indivi-

dual channels in the two populations are too large for the means to be

distinguished, but in the overall case, the global variance of the whole

area (which is the squared sum of the channels individual variances

whose the square root is extracted) may be lower than that of the

individual channel, ensuring the entire area to give contribution to

distinction;

• the area does not distinguishes populations, but many of its channels

do it : the single channel has, in the two populations, a small variance

compared to the indicator mean value, but is globally “drowned” in

the great variability of the area’s variance, that in this way do not

contributes.

Furthermore, each feature calculated on the basis of the real data, before

being used as a tool of a possible distinction between populations, has been

subjected to a comparison with similar quantities derived from computer

artificially generated connection matrices (the NM, already seen in Chap-

ter 4) with both random and fractal topologies: real and simulated data

shared, indeed, degree, number of nodes, their distribution and the average

paths length, so precluding the possibility that results were due to a random

distribution of nodes and links.

Integration measures

MWA/MWoA comparison The analysis of the Characteristic Path

Length (CPL) does not show substantial differences between the two popula-

tions, as long as we do not consider the eccentricity variant that, especially in

the base, shows a larger eccentricity of MWoA than the MWA (about 16%),
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Figure 5.10: comparison of global efficiency in MWA and MWoA populations:

the matrix elements in red (+1) account for larger values in MWA, while

those in blue (-1) account for larger values od MWoA. Green cells mean no

distinction.

which is, in the lower bands, spread all over the cortex, while in the higher

ones is reduced to the left hemisphere.

Of particular interest is, instead, the study of global efficiency in different

bands, particularly if the evolution with respect to the basal activity is con-

sidered. In the latter, in fact, there is no substantial difference between the

two populations, and the application of stimuli (regardless of type) shows how

the MWoA increase the left intra-hemispheric global efficiency with respect

to the MWA, especially in fronto-central areas.

At the same time, the MWA show a larger efficiency in sorting infor-

mation from the left parieto-occipital areas to right cortex areas (higher

inter-hemispherical efficiency).
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This effect is also characterized by a total increase of efficiency and struc-

turing in both populations with the frequency bands (figure 5.10).

Finally, the analysis of density shows how, in all the bands of the basal

activity, the efficiency of the MWoA’s network is higher than that of the

MWA of about 35%.

MWA/CONT comparison Also in this case there are no differences

between MWA and CONT on the basis of CPL, but only in the eccentricity

version, showing once again as the base distinguishes very well MWA, having

lower levels with respect to CONT (about 10%). Considering the previous

distinction with MWoA, we can say that the low eccentricity is a hallmark

of migraine with aura, since the basal activity.

It is interesting to note, however, as during the stimulation, the eccen-

tricity of the MWA in α band increases of about 15% in the central area if

compared to CONT.

The comparison on the basis of global efficiency is interesting too. In the

basal activity, CONT show a larger efficiency in the left fronto-central areas,

while the application of the stimulation leads to an increased efficiency of

MWA in the same areas as compared to CONT. In particular, the 20mm

checkerboard stimulation shows an increase of integration between the left

parieto-occipital and the frontal and central areas, and an increase in effi-

ciency by CONT compared to MWA in the right intra-hemispheric area, and

in the connection between the right and the left hemispheres.

MWoA/CONT comparison Again, the CPL do not show differences

between the two populations but shows a 12% approximately larger eccen-

tricity of the CONT compared to MWoA in the base. It is interesting to note

that in the 20 mm checkerboard stimulation, the MWoA eccentricity in the

central left area is larger than the CONT at higher frequencies by an amount

close to 10%.
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Figure 5.11: MWoA/CONT comparison based on the Global Efficiency. The

three columns stems for, respectively, the basal activity, 5 mm and 20 mm

stimulations.

The global efficiency analysis shows, beyond the almost total lack of dis-

tinction between the two populations in the basal activity (the only difference

is the higher efficiency of the left fronto-central areas in CONT, but only of

a few percentual points), a different spatial distribution of the efficiency de-

pending on the type of stimulation and of the frequency band.

In both stimulations, the first three bands show a reversal with respect to

the basal conditions, as the fronto-central areas efficiency is higher in MWoA;

at the same time, the higherer β band efficiency of the frontal area in MWoA

to transfer and receive information from all other cortex areas is evident.

Stimulation with 20mm checkerboard shows higher right intra-hemispheric

efficiency of CONT and their higher ability to connect the right and left hemi-

sphere between them (figure 5.11).
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In conclusion it can be stated that, on the basis of functional integra-

tion, the two migraine phenotypes show a reduced eccentricity compared to

healthy patients, particularly evident in the left lobe of the central area. This

trend is inverted once the stimulation starts, leading MWoA and MWA to

an higher eccentricity in the same areas. Regarding the global efficiency,

it has been noted that at a basal level the three populations do not differ

substantially, but with the arrival of the stimulation the situation changes

as a function of population: the MWA make the left parieto-occipital areas

more efficient, while the MWoA make the fronto-central areas more efficient

compared to CONT in both stimulations.

Segregation measures

MWA/MWoA comparison At basal level, the comparison between

the two phenotypes of migraine shows how the left central area of MWoA

results 20% more clustered than the MWA. This distinguishing factor should

also be considered on the basis of local efficiency, which shows in the same

area a larger MWoA efficiency than MWA of about 10%. On the basis of this

parallel, it can be stated that MWoA specialize the left central area in order

to process the information, being simultaneously clustered and efficient. This

basal phenomenon is repeated on all frequency bands and in δ band of all

stimulations.

The stimulation arrival leads to two different phenomena: on one hand,

MWoA specialize parietal areas in α band (which are associative areas, who

process and distinguish sensorial stimulation), while MWA specialize the left

central areas: this leads to state that the visual stimulation delivery gene-

rates a segregation increasing (ie, high specialization) of the MWA left central

areas.

No modules number distinction is available for both populations.
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MWA/CONT comparison At basal level, there are no peculiar dif-

ferences between MWA and CONT, if not for the higher clustering of the

last compared to the first in the left central areas (about 25%). This feature

is not accompanied indeed, as in the previous case, by an equally distinctive

local efficiency between the two groups, for which it can not be stated that a

group segregate this area more than the other, but only that the MWA have

a number of triangles smaller than the CONT in the left central area.

In the 5 mm checkerboard stimulation no particular differences are avi-

dent, but the 20 mm checkerboard stimulation shows in α and β bands par-

ticular structures that are both clustered and locally efficient in the MWA.

It is the entire central areas, and in particular channels F7 and TP7 for the

left hemisphere and FT8 and CP6 for the right, which show a deeper mean

segregation of 21% compared to CONT.

At the same time, the left parietal areas are highly specialized in CONT

compared to MWA, albeit lower than the previous: 13 % approximately.

MWoA/CONT Comparison Little differences between the two gro-

ups: basic activity always shows a larger clustering coefficient (approximately

11%) of the CONT compared to MWoA in the right center lobe, which is

not matched by a distinctive local efficiency between the two groups.

Only α and β bands, as before, show a larger segregation of MWoA

compared to CONT in the central-parietal areas and in the same channels

previously seen F7/TP7 and FT8/CP6, in a (combined) percentage 9% ap-

proximately.

At the conclusion of the comparison, it can be affirmed that the stimula-

tion with checkerboards (and especially the one with side of 20 mm) gener-

ates a reversal of specialization in the central areas and with respect to the

central-parietal normal basic activities, which passes from being greater in

CONT in basal conditions to be higher in the two phenotypes of migraine

during stimulation in the higher frequency bands.
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Centrality measures

MWA/MWoA comparison The analysis of the betweeness centra-

lity starts from the Vertex variant (VBC), and clearly shows how, in the com-

parison between the two phenotypes of migraine, the basal activity presents

a strong centrality of the left center areas (on average, 25%) in MWA com-

pared to MWoA in all bands. The stimulation arrival causes, especially the

one with 20 mm edge, the parietal-occipital areas to be more central in MWA

compared to MWoA of about 35% in the higher frequency bands.

Even the analysis of the Edge variant (EBC) clearly shows an increased

centrality of connections between parieto-occipital to almost all other areas

of the MWA and of the fronto-central from all the others. Consequently, it

is possible to speculate for the posterior areas to have a “bypass” function

for the information, that uses these areas to connect otherwise disconnected

areas of the cortex, as seen in figure 5.12, in which are shown the “average”

networks for the two phenotypes [84].

The parallel between the two complementary measures Z-score/partici-

pation provides an interesting result. On the basal activity there are no dif-

ferences between the two groups, while the visual stimulations show, in the

uppermost bands α and β, an higher Z-score in MWA parietal-occipital areas

(which can reach the 40%) and a larger participation coefficient in MWoA

(of about 27%) in the same areas, particularly in the right hemisphere. Ac-

cording to what we have seen in section 4.4.6, this is indicative of the fact

that the parieto-occipital areas of MWA behave essentially as local hubs of

the network, or as areas facilitating the (already seen) functional segregation

of the posterior areas of the cortex.

Of a certain relevance, in the lower bands, is instead the behavior of the

channels FCZ-CPZ, which have a large inter-modular Z-score (which does

not correspond to a high level of participation) during stimulation with 20

mm checkerboard: it is likely that, at low frequencies, these channels behave

simply as hubs for the sub-cluster consisting in frontal ↔ central ↔ parietal
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Figure 5.12: network diagrams for MWA (top) and MWoA (bottom) in the

stimulation with 5 mm checkerboard in α band. It is evident the by-pass role

of the the occipital area in the MWA in the anterior → posterior connection

which is not symmetric as in MWoA.
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areas and between the left and right hemispheres of the central area.

MWA/CONT comparison Beyond a slight distinction (about 4%) in

the α and β bands of the left frontal area which, in the basal activity, shows

a larger VBC of CONT with respect to MWA, no significant distinction can

be made between the two groups.

EBC also shows very little differences both with the increase of the fre-

quency bands and with the stimulation sequence. A single distinction can be

made, in β band, on the central-parietal paths of the MWA, which are 12%

more central than the CONT.

Finally, also the parallel between the couple of measures Z-score/partici-

pation shows no substantial differences between the two groups, if not for a

series of channels, that indeed do not show a defined pattern of distinction.

MWoA/CONT comparison Among the two populations there are

few signficative differences. One of these is the variation of the VBC in the

left frontal area in β band that, if during the basal activity is 10% larger in

CONT, during the stimulation is in favor of MWoA of the same quantity.

No definite pattern of distinction can be found for the EBC.

Even the pair of indicators Z-score/participation shows few differences

between the two groups, and only at the basal activity level: in θ band

only it can be noted that CP2, CP1 and CP5 channels have a larger Z-score

in MWoA (about 50%) and a larger participation coefficient in CONT (a

few percent). Reconsidering this behavior only by reference to the CONT

characteristics, it can be stated that these channels act like local hubs for

MWoA.

Resilience measures

MWA/MWoA comparison A significant difference between the two

migraine phenotypes can be seen in the β activity during stimulation with 20

mm checkerboard, which shows an increase of assortativity in MWoA than
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Figure 5.13: assortativity analysis for MWA/MWoA comparison.

“Both”,‘right” and “left” refers to the tails of the Gaussian.

the MWA (figure 5.13) even presenting, the latter, a joint-degree distribution

whose peack lies on significantly larger values.

Concordantly with the results already seen, the total degree of the left

central area is significantly larger in MWA that in MWoA, as are, during the

visual stimulations, the parieto-occipital.

Also in 20 mm stimulation a larger number of conenctions in the left

temporal area is often present and characterizes the MWoA in comparison

to MWA both from the intensity and the numerosity point of view (40% in

both cases).

MWA/CONT comparison Even if not showing significant differences

in the joint-degree distribution, the comparison between MWA and CONT

on the basis the assortativity shows a larger coefficient of MWA compared

to CONT in α and β bands in the 20 mm checkerboard stimulation (about

12%).

At the same time, the degree and the strength of the connections of the
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Figure 5.14: analysis of total degree distinction in MWoA/CONT compari-

son. Each column is formed by two sub-columns: the first indicates areas that

in their entirety distinguish the two populations (with the usual convention

on the colors), the second indicates locally the possible distinction.
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temporal regions (both right and left) is significantly higher in CONT by a

factor of 0.6, while at lower frequencies of 20 mm stimulation some channels

across the left and right central areas appear to have strong connections

(about 20% stronger) in the MWA.

MWoA/CONT comparison No significant differences between the

two populations in terms of assortativity, but CONT show a network degree

distribution peacked on larger values in MWoA in β band in all stimulations.

In terms of total degree, the distinction between the two groups manifests

itself differently depending on the frequency band and on the stimulation.

In fact, if in β band both stimulations show an increase in the number of

connections of the frontal lobe in the MWoA compared to CONT, in the lower

bands the distinction depends on the type of stimulation: in both cases the

CONT degree is larger if compared to MWoA of more than 30%, but while in

the 5 mm stimulation the distinction affects essentially some channels in the

fronto-central areas (F1 and FCZ) and some of the right parietal area (P2,

PO8), the 20 mm mainly interests the right temporal areas (figure 5.14).

5.6.3 Conclusion

Few differences exist between the basic connectivity of the two phenotypes

of migraine, while CONT always show higher levels of ingoing and outgoing

information with respect to MWoA.

The 5 mm checkerboard stimulation is characterized by increased infor-

mation levels of MWA in central bands, θ and α, associated with a structure

vaguely reminiscent a capitol X centered on the Fz channel for the incoming

flux; for the outgoing information flow this structure disappears, and only

the mentioned channel is still present and distinguishes MWA from CONT

and MWoA. In the outer bands, TE levels for MWA are reduced since below

those of MWoA and CONT.

The same Fz channel shows a significant difference between MWoA and

CONT, since in all bands it shows higher TE levels in CONT, while in the
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front area MWoA always reveal higher levels of exchanged information.

Even in the 20 mm checkerboard stimulation it is possible to distinguish

between the two migraine phenotypes and CONT basing on the Fz channel

behavior and areas in its immediate surroundings: the X-shaped structure

seen in the previous stimulation appears again and distinguishes MWoA and

MWA from CONT, due to an higher level of outgoing information charac-

terizing the first two with respect to the latter in all bands. Even in the

MWA/MWoA comparison the role of the Fz channel is relevant, as the in-

formation levels sent from this site are significantly higher in MWA.

As, furthermore, there are no substantial differences between the popu-

lations in terms of the overall connection length, the eccentricity, a measure

of the anisotropy with which each channel (or cortex area) distributes infor-

mation, distinguishes populations: the low eccentricity of MWA and MWoA

compared to CONT appears to be an hallmark of the migraine phenotypes.

At the same time, it can not be stated that MWA are more efficient

than MWoA in information distribution, as the global efficiency analysis has

shown that stimulation, depending on the population under investigation,

makes efficient different areas: the MWoA increase the intra hemispheric

efficiency compared to MWA, which in turn increases the parietal-occipital

areas efficiency, and this occurs both in relation to the two types of migraine,

both compared to CONT, that in the basic activity, in any case, are more

efficient. This is no longer true during stimulation, in which the two pheno-

types of migraine recover efficiency compared to healthy patients.

Regarding the specialized areas in information processing, it can be steted

that MWoA and MWA specialize the same areas in both stimulations: while

in the basic activity the central areas in MWoA are already specialized, asso-

ciating, during stimulation, the parietal areas (which are responsible for the

associative processing during stimulation), MWAs seem to specialize central

areas “lately” (ie, only during stimulation) with respect to the first. Intro-

ducing also the CONT in the comparison, it has been shown that the two
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forms of migraine show, concerning channels F7/TP7 and FT8/CP6, typical

structures showing high functional segregation if compared to CONT.

The analysis of centrality shows the most important characteristic of the

comparison between MWA and MWoA: the lack of bi-directionality in the

MWA information flow causes the parietal-occipital lobe to act as a bypass to

sort information in MWA if compared to CONT and MWoA; such an effect

is confirmed by the possible attribution to these areas the ststus of local hubs

for MWA. For MWoA, on the other hand, the local hubs seem to consist of

the three channels CP1, CP2 and CP5.

Finally, the analysis of resilience clearly shows how the capacity of re-

covering of healthy patients is higher than those, in sequence, of MWoA and

MWA: the network of the latter, with assortativity and average degree distri-

bution smaller than the others, are potentially less able restore connections

if subject to breakdown.

What, maybe, is of paramount importance is the fact that the results,

submitted to the neurologist opinion, have shown themselves in complete

accordance with the known features of migraine with and without aura, so

the used models and procedures can be considered as a fundamental tool to

recover more aspects of the clinical assets of such a pathologies [81, 82].

5.7 Evoked potentials by laser painful

stimulation

The available EEGs consisted of 61 channels recordings of neuroelectrical cor-

tex activity from both patients experiencing migraine (MIGR, 29 patients)

and healthy patients (CONT, 16 subjects). The sampling frequency of the

signal was 256 points per second again.

The painful stimulation was delivered by a laser striking the right hand,

the power of which was regulated, subject by subject, just above the pain
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threshold and was no longer changed throughout the session. Before the

stimulation arrival, the subject was verbally advised with an hint on the

power of the laser pulse. This suggestion could be correct (threshold of

pain, L(0)), or misleading, inducing in the subject the idea that stimulation

would be below the pain threshold (L(−)) or definitely much higher than this

threshold (L(+)).

The recordings consisted, therefore, in two different sections of the same

length: one second before the stimulation arrival reporting the response to

verbal suggestion, and one second after the laser strike, recording the response

to painful stimulation. For each subject and for each stimulation, from 10 to

15 stimulations were available.

The statistical analysis was conducted by means of the t-Student test (al-

ternating the single tails) for the post-stimulation direct comparisons, with

a Bonferroni correction equal to 4, whereas the comparison between the pre

and post stimulation in the two populations was conducted using a two-way

unbalanced ANOVA with a Tukey Kramer post-hoc correction.

Even in this case, given the high number of available channels, it was

decided to study the behavior of the two populations for each channel, so

as to improve the spatial resolution in the study of the cortical neuroelectric

activity.

5.7.1 Wavelet Analysis

Using a Morlet mother wavelet, each channel was analyzed by means of the

of wavelet transform method. The result (corresponding to the channel CP6)

is shown in figure 5.15 and is illustrative of almost all channels of the scalp,

with the exception of those in the neighborhood of the vertex.

An abnormal activity is immediately visible until θ band in MIGR pa-

tients which, to some extent, anticipate the reaction to the real painful sti-

mulation. Such a phenomenon, that is absolutely not observed in healthy

patients, takes place about a second before the arrival of stimulation and is
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Figure 5.15: wavelet analysis of the response to the verbal and painful stim-

ulations sequence (CP6 channel). The painful stimulation is delivered at the

center of the time axis.

independent on the type of alert preceeding it.

Such an “anticipation” has a shape similar to that which, subsequently,

will be produced by the painful stimulation, therefore represents, in accor-

dance with the neurologist interpretation, a real response to the suggestion

that MIGR offer to the pain stimulation. Its shape is also independent of

the suggested intensity and the particular electrode considered.

From the point of view of the statistical treatment of the data, it was

first necessary to normalize the wavelet images in both population, as the

numerical value of each element was always larger in MIGR than in CONT,

leaving no chances for a morphological analysis of the same.

Once data had been normalized so that they varied in the [0,1] interval,
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the statistical analysis with the Student’s test has showed a statistically

significant difference at 0.2 ± 0.03 seconds after the recording started, or

about 0.8 seconds before the painful stimulation arrival, reflecting the fact

that MIGR somehow anticipate their activity preparing certain areas for the

arrival of the real painful stimulation.

5.7.2 Analysis of effective connectivity:

Transfer Entropy

By using the procedures already seen in the chapter dedicated to TE, and

imposing that the model order m was 1, we firstly investigated the data

distribution trend, verifying its parametric behavior (Kolmogorov-Smirnov

test); by means of a subsequent post-hoc Tukey-Kramer test, the gaussian

behavior of the distribution has been proved, so that we have not only the

certainty of dealing with correct statistical tools, but even to rely on the cited

equivalence between TE and GC.

The analysis of the TE as a function of time lag was conducted, finding

that, within 20 samples (equivalent to approximately 80 milliseconds), there

was no variation in the TE with the lag across cortex areas, which therefore

has been imposed equal to 10 samples (figures 5.16 and 5.17). Such an anal-

ysis has been confirmed by the CTCC average maximum value, whose value

was 37 samples after signals were synchronized.

The result of the analysis has shown (figure 5.18) that during the painful

stimulation, in the first three bands, the information levels exchanged across

couples of channels was uniformly higher (up to 50%) in MIGR compared

to CONT. But while the amount of input information was quite uniform

over all channels, the output information presented differences in the spatial

distribution: in δ band, for example, in all three stimulations, the amount

of output information from the channels of the right frontal areas remained

similar in the two populations, while in α band the output response differen-

tiated depending on the stimulation: as the latter was preceded by the notice
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Figure 5.16: trend of the total TE (in + out) with time : it cannot be inferred

significant changes within 80 ms prior each considered event. The colors refer

to the different frequency bands.

Figure 5.17: total TE trend with time lag in α band in L(0) stimulation: no

variations are evident across cortex lobes.
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Figure 5.18: TE analysis in δ band. At the top, for each electrode, the

number of channels from which (or to which) there is a statistically relevant

difference in the information transferred between the two populations is indi-

cated (warm colors for the channels distinguishing in favor of the MIGR, cool

colors for CONT). In the third row the same results as above are reproduced,

but on an histogram and as a fraction of the total for each cortex area: in

sequence we have front, center, temporal, parietal and occipital areas, respec-

tively in left and right variants; the two indication left and right refer to the

considered tail of the gaussian. In the fourth line we have shown the trends

of the mean input and output information levels for the three stimulation

and for the two populations.
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that it would have been more intense (but that, remember, was always of the

same intensity), the areas in which populations are clearly distinguishable

expands from the only left fronto-central to the whole scalp.

The β band deserves a separate analysis. In input there is a less shaped

difference between the populations, especially in the stimulation declared

lower in intensity, L(−), in which there is a channel from the left parietal area

(P3) showing, in contrast to the others, an average amount of transmitted

information larger in CONT (about 40%) with respect to MIGR. This phe-

nomenon, in fact, is to be considered within a wider context, as it will be

clear in a moment.

Regarding the outgoing information, however, the L(−) stimulation is al-

ways distinguished from the other two for a poorer differentiation of the

response, without presenting a recursive scheme as it does in the other, in

which an area of higher levels of exchanged information is particularly ev-

ident (figure 5.19) across left and right hemispheres. This aspect will be

reconsidered in the comparison between the information networks of the two

groups of patients.

As previously mentioned, the different behavior of the P3 channel is to

be considered within a wider framework. If we consider, in fact, the only

incoming information in the various channels, it can be noted how P3 channel

is only one element (the most evident) of two pairs of channels which differ

in their behavior with respect to the other.

These pairs are primarily located in the parietal area, one of them in

the right hemisphere and the other in the left: these pairs of channels are,

in the left hemisphere, CP5 and P3, while in the right one we can find P2

and CP4. Even within these areas, the situation is particular: while the

second pair clearly distinguishes MIGR by CONT (ie, it represents an area

in which the input information is up to 17% larger for both total quantity of

information exchanged and for the number of channels from which it comes),

the first looks like an input “information dipole”: CP5 infact stands in favor

of MIGR, P3 instead distinguishes much less the two populations (at most
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Figure 5.19: TE analysis in β band.

a dozen channels), and always maintains the information levels 15% lower

with respect to the surrounding channels, until in β band starts distinguish-

ing about twenty channels in favor of the CONT, as already mentioned.

With the availability of the EEG prior to stimulation, it was possible

to make a comparison between the two phases, before and after, by means

of a two-way ANOVA test, post-hoc corrected with a Pearson test. This

comparison shows how the interested areas in the elaboration of stimulation

always remain the same: what changes is simply their extension; in the lower

bands (δ and θ) these distinguishing areas tend to shrink of about 10%, while

in the higher tend to stretch of the same quantity. However, the phenomenon

already seen of the two pairs of channels, CP5-P3 and CP4-P2, is still present,

although less evident than in the stimulated case which, of course, amplifies

the phenomenon.

5.7.3 Functional Analysis: Synchronization

Entropy

The analysis of phase synchronization, conducted by imposing the two weights

m and n both equal to 1 (the time series are of the same nature), shows a

clear difference in pre- and post-stimulation connectivity, with a further dif-
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Figure 5.20: analysis of the SE in β band. A “pincer” structure in the

parietal-occipital areas in L(−) and L(+) stimulations is evident.

ferentiation on the basis of frequency bands.

In general, in the first three bands (0.5 to 12 Hz), the phase preceding

the stimulation shows an higher synchronization level of CONT compared

to MIGR (about 30%), with the exception of the two areas around the cou-

ples CP5-P3 and CP4-P2, which differs much less the two populations; in

particular, when the stimulation L(−) is delivered, most of these areas are

activated, and when the suggestion is correct (L(0)) or is of the type L(+), in

those same areas, the synchronization is smaller, but still in favor of MIGR

in intensity.

After stimulation, the latter are uniformly more synchronized compared

to CONT, showing a strong synchronization in the areas around the usual

channels CP4-P2 and CP5-P3: in this case each of the channels in this areas

synchronizes with on average with about 60-70% of the other channels.

However this strong variation of the post-stimulation compared to the

pre-stimulation is much more evident when stimulation is preceded by mis-

leading advice; but when the stimulation is preceded by a proper notice, the
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cortex synchronizes virtually the same areas that were prepared to recipe the

painful impulse in the pre-stimulation, simply increasing the synchronization

probability. Many of these features will come back when the response of the

information network to stimulation will be discussed.

The β band, however, shows a milder difference between pre- and post-

stimulation: the only areas in which this step increases the synchronization

of MIGR are the ones surroundings the before mentioned CP4-P2 and CP5-

P3 channels, while all the remaining areas are always more synchronized in

CONT (figure 5.20).

In any case, even in this band the difference between the stimulation pre-

ceded by wrong suggestion produces large effects on synchronization than if

preceded by a proper suggestion.

Being such an obvious difference between the pre and post stimulation

and between the two populations, in addition to the usual analysis with

the t Student test, a multivariate two-way ANOVA test was also performed,

considering the two populations as group variables and pre- and post- stimu-

lation as factors, to study the correlation and the possible interaction (figure

5.21).

In this case, all stimulations (L(−), L(0) and L(+)) show that the transition

from one population to the other (indipendentently on the type of stimula-

tion) activates the usual areas around CP4-P2 and CP5-P3, and other two

sites in the front area: the one around FC3 and the one around F4, which

are much more synchronized in MIGR. The rest of the scalp is constantly

more synchronized in CONT.

The transition, however, from the pre to the post stimulation phase shows

a uniform increase in synchronization activity of L(−) and L(+) stimulations

in all bands, while in L(0) an increased activity in the phase preceeding the

stimulation is evident.

The analysis of the interaction between the two effects (groups × factors)

does show an uniform (ie, over the whole scalp) correlation between them,
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Figure 5.21: Two-way ANOVA for L(−) stimulation.
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Figure 5.22: trend of the mean distance between nodes in the two populations

and in the three stimulations as a function of the threshold. Each point

indicates the average distance of a cluster (considered as the area of the

cortex) compared to all other in α band. At the top the MIGR, at the

bottom the CONT.

even not showing a defined recurrency pattern.

5.7.4 Brain Network Analysis

The choice of the threshold to be applied to connection matrices has been

made considering the behavior of different quantities with the threshold the

same. Those who did not show an ascending or descending monotonic trend

(such as degree, clustering, efficiency and so on) showed a maximum at the

adaptive threshold of 60% (figure 5.22): this means that any element of the

activation matrix that is located below this value will be null, and the link
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Figure 5.23: comparison between MIGR and CONT on the basis of the

average characteristic length of the links in networks.

between the relative nodes will be removed from the network.

Integration measures The analysis of Characteristic Path Length (CPL)

shows a larger average length in MIGR connections (about 30%) compared

to CONT (figure 5.23), as well as radius and diameter, pointing out the

fact that information, in order to be delivered from a node to another, has

to follow longer paths, making MIGR for sure less integrated than CONT.

Moreover, the analysis of eccentricity (a measure of the isotropy in informa-

tion distribution among all possible paths in the network) shows that, in the

surroundings of the structure consisting of CP5-P3 and CP4-P2 channels, a

larger eccentricity in MIGR is present, reaching a difference of about 25-27%

(figure 5.24). This phenomenon is evident in all frequency bands and in all

stimulations.

Particularly interesting is the analysis of global efficiency, showing that,

regardless of the frequency bands and the stimulation, the two populations

specialize different cortical areas: the MIGR specialize the left area (parti-
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cularly the frontal ones) while CONT specialize the whole right area. But

while the latter are able to let the two hemispheres to communicate between

them, the former do not show as much efficiency in inter-communication

(figure 5.25).

This effect is particularly evident when analyzing the L(0) stimulation,

while in the other two this effect is less evident.

In the analysis of the different behavior between pre-stimulation and post-

stimulation, the integration does not show fundamental differences between

the first and the second phase, if not for the fact that the areas with larger

global efficiency reduce their estension in the passage through.

Segregation measures The analysis of the clustering coefficient between

shows a widespread superiority in the number of triangles in MIGR com-

pared to CONT (in percentage, from 29% of the base to 22% of the stimuli),

which however show a larger coefficient with respet to MIGR especially in the

higher bands and across the two hemispheres, particularly in the posterior

lobe of the cortex, at a rate of 6-7% approximately. Furthermore, depending

on the stimulation, their extension changes in a sensible manner, extending

of about 5% as the suggestion was preventing more intense stimulation. In

any case, the extension of these areas is reduced with the frequency bands

and the right hemisphere is much more interested than the left.

The simultaneous analysis of the local efficiency shows that, especially in

the uppermost band and in those same areas, MIGR are more efficient than

CONT of about 10%, while the latter are 15% more efficient in the areas

across the two hemispheres, mainly in the L(+) stimulation.

The combined effect of this analysis seems to suggest that MIGR, during

stimulations, specialize areas at the right and left side of the longitudinal

midline of the cortex, but without showing the same efficiency of the CONT

across that line, generating a reduced ability of intercommunication between

the two hemispheres.
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Figure 5.24: trend of the distinction of the CPL “eccentricity” variant on the

scalp.

Figure 5.25: trend of the distinction of the global efficiency in cortical areas.
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Figure 5.26: trends of the local efficiency distinction on the scalp.

Very interesting is the comparison between the pre-and post-stimulation

in relation to the segregation analysis. Basically during L(0) and L(+) stimu-

lation there is no difference between the two phases (ie, the structured areas

from verbal stimulation are those actually used to process the painful stimu-

lation), while in L(−) is evident how the cortical structured areas before the

stimulation (specialized or not) just increase their size, without altering their

shape, of a dozen percentual points.

Centrality measures The analysis the Vertex betweeness does not show

significant results, but only a few channels of the right central area presenting

a larger coefficient in CONT (about 20%) and in the uppermost band, but

that do not follow an unit pattern. The same is true for EBC.

The centrality analysis highlights, particularly in L(0), a higher Z-score

of the left central area in MIGR (about 9%), while in the right front areas
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the CONT show an increased centrality by approximately 25%. The same

occurs in the uppermost band of the other stimulations.

The simultaneous analysis of the participation coefficient shows that in

the same areas and the same bands CONT are more participatory of MIGR

of about 20%. This effect indicates that the CONT have an higher tendency

to centralize the left central area with respect to MIGR using it to sort the

information coming from other cortex areas.

At the same time, the MIGR always have a larger participation coefficient

of in the frontal areas, particularly those on the right lobe, with percentages

ranging from 12 to 19% (figure 5.27).

Even in this case, the difference between the phase of verbal stimulation

and that of painful stimulation is only in L(−), in which, once again, the

areas tending to segregation and cenrtality simply expand themselves, while

in the other two stimulations there is no difference between the first and the

second phase.

Resilience measures The analysis of the assortativity coefficient and of

the network degree distribution indicates, especially during L(0) and L(+)

stimulations, that CONT shows an increased ability to restructure the pat-

tern followed by information (figure 5.29). Even more interesting is the

fact that this happens regardless of the verbal stimulation that precedes the

painful strike. It is therefore a factor independent of the particular response

of healty patients.

5.7.5 Conclusion

The analysis double stimulation sequence (verbal + painful) showed many in-

teresting differences in the two populations’ behavior. First of all, it showed

how MIGR anticipate the activity in θ band before the arrival of the painful

stimulation in the largest part of the cortex regardless of the warning on its

intensity (held constant).
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Figure 5.27: distinction of the participation coefficient on the scalp among

MIGR and CONT.

Figure 5.28: distinction of the Z-score coefficient on the scalp among MIGR

and CONT.
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Figure 5.29: differences in the Joint Degree distribution in the basal activity

and during stimulation.

The analysis of effective connectivity showed that the amount of infor-

mation exchanged between the various cortex areas is different in input and

output and depends on the type of warning preceding the painful stimula-

tion: in the first three frequency bands, the TE level is significantly higher

in MIGR, but while the distinction in input is almost uniform over the entire

scalp, the outgoing TE levels differ depending on the stimulation and on the

bands; in any case, the distinction areas seem to be expanding as the notice

was advising for highest intensity stimulation.

In β band, however, it appears to be a channel (P3) showing, in contrast

with the generally higher TE levels in MIGR compared to CONT, a similar

behavior for the incoming information in both populations. In output, how-

ever, the distinction between the two populations covers a wide area across

the two hemispheres, the extent of which increases as the migranic patient is

suggested to be hit with a more painful stimulation.
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The comparison between the pre-and post-stimulation has also high-

lighted as areas that verbal stimulation has somehow “prepared” are then

actually used in the processing of the painful stimulus itself. The only differ-

ence between the two phases consists in the extension of these areas, that in

the transition between the two phases tend to either retire (δ and θ bands)

or expand (α and β).

In this context, P3, CP5, CP4 and P2 channels form a structure in the

form of a “pincer” that from the parietal-occipital area goes up to the central

one, and mark a significant difference in the functional connectivity of the

two groups: such a structure, altough well-known in neurological literature,

in which the SE levels are higher in MIGR than in CONT, is always similar

in shape to itself in all bands, in all stimulations and in all comparisons be-

tween the two populations.

The analysis of the characteristics of the averaged networks of the two

populations show a wider integration of CONT compared with MIGR, having

the last a longer average length of the connections. However, it is also evident

that the two populations make efficient different areas, regardless of the type

of stimulation: the MIGR acts on the left areas of the cortex, the CONT

acts on the right and the inter-hemispheric connections. These areas tend to

shrink themselves in the transition from the first (verbal stimulation) to the

second phase (laser stimulation).

At the same time, the reduced ability of MIGR to specialize areas across

the median line of the cortex (the one separating the right and the left hemi-

sphere), which is a peculiar feature of the CONT, suggests a reduced ability

of communication between the two hemispheres of the MIGR compared to

healthy patients. In this context, the transition from verbal to painful stimu-

lation highlights the fact that, while in the stimulations L(0) and L(+) the

suggestion-structurated areas are the ones the populations actually used dur-

ing painful stimulation, in the L(−) such areas just increase their extension.

The CONT, for their part, show a marked tendency to centralize, in order

to sort information, the left central area with respect to MIGR. Once again,
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finally, it is clear from the analysis of the resilience that the CONT have a

higher resilience than the MIGR, regardless of verbal or painful stimulation.

We want to emphasize, here, that the behavior of MIGR patients in the

two types of studies considered (SVEPs and laser) is in no way comparable,

since the two forms of stimulation are completely different: the first is related

to the striated associative areas, while the second is related to the brainstem

activity.

Even in this case, the neurologist opinion is that most of the features

pointed out in this work are consistent with the known ones from medical

literature, confirming once again that the model and the results of the ap-

plication of it on real biological data can fournish more and important new

insights of neuroelectrical dynamics.



Conclusions

At the end of this work, it can be affirmed that the performances and the re-

sults of the different indicators of the brain activity/connectivity are openly

a useful tool to investigate celebral dynamics, as its results have always been

confirmed to be correct on the basis of the actual neurological knowledge.

Moreover, they have stresed the fact that, in addiction to the already

known distinguishing features of the different phenotypes of migraine, they

are also capable of pointing out particular new aspects of connectivity and

specialization of cortical lobes and, when it is possible, of smaller scalp areas,

that is more restricted neural clusters.

The improvement of computing performances and of spatial resolution in

EEG recordings will be capable of obtaining new tools (as the information

storage, the still-under-evaluation evolution of transfer entropy) for the con-

nectivity investigation and more powerful features of brain networking, such

as the Rentian Scaling, so that to have a more complete picture of the brain

dynamics.

148



Bibliography

[1] C.E. Shannon, A mathematical theory of communication, Bell System

Tech. J. 27 (1948) 379-423.

[2] T. Schreiber, Measuring information transfer, Physical review letters,

vol. 85, no. 2, pp. 461-464, 2000.

[3] C.E. Shannon, The bandwagon, IRE Transactions on Information The-

ory, vol. 2, no. 3, p. 3, 1956.

[4] Lee, Joon et al. Transfer Entropy Estimation and Directional Coupling

Change Detection in Biomedical Time Series, BioMedical Engineering

OnLine 11.1 (2012): 19. c©2012 BioMed Central Ltd

[5] M. Lindner, R. Vicente, V. Priesemann, M. Wibral, Information flow in

time series data with transfer entropy, BMC Neuroscience 2011, 12:119

doi:10.1186/1471-2202-12-119

[6] B.W. Silverman, Circulation, Volume 26 of Monographs on Statistics

and Applied Probability. Chapman and Hall.

[7] W. Zucchini, Applied Smoothing Techniques, 1st Edition, October 2003,

McGraw-Hill

[8] T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).

[9] A. Kaiser, T. Schreiber, Physica D, 166, 43 (2002).

[10] Rosenblum, Pikovsky, Kurths, Schafer, Tass: Phase synchronization:

from theory to data analysis, Handbook of Biological Physics, Elsevier

149



BIBLIOGRAPHY 150

Science, Series Editor A.J. Hoff, Vol. 4, Neuro-informatics, Editors: F.

Moss and S. Gielen, Chapter 9, pp. 279-321, 2001.

[11] D. Gabor, J. IEE London 93, 429-457 (1946).

[12] M. Smith and R. Mersereau, Introduction to Digital Signal Processing.

A Computer Laboratory Textbook (Wiley, New York, 1992)

[13] L. Rabiner and B. Gold, Theory and Application of Digital Signal Pro-

cessing (Prentice-Hall, Englewood Cliffs, NJ, 1975).

[14] P. Panter, Modulation, Noise, and Spectral Analysis (McGraw-Hill, New

York, 1965).

[15] B. Boashash, Proc. of the IEEE 80, 520-568 (1992).

[16] T. Schurmann 2004 Bias analysis in entropy estimation, J. Phys. A:

Math. Gen. 37 L295âL301.
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