SI GUIDE

File Name: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References.

File Name: Supplementary Data 1 Description: Downregulated miRNAs in the microarray

File Name: Supplementary Data 2 Description: Upregulated miRNAs in the microarray

File Name: Peer Review File Description:

Antibody	Dilution	Reference	Supplier	Fixation
Mouse anti-his tag	See Text ^o	BAM050	R&D Systems	N/A
(biotinylated)				
Mouse anti-VEGF	10µl/test ^o □	IC2931P	R&D Systems	N/A
Mouse anti-VEGF Receptor 2	1/50◆	ab9530	Abcam	4% PFA
Rabbit anti-human p-Flk-1	1/1000©	sc-101819	Santa Cruz	N/A
(Tyr 1175)				
Rabbit anti-human p-Flk-1	1/1000 [⊙]	sc-101820	Santa Cruz	N/A
(Tyr 1214)				
Rabbit anti-CDKN1A	1/50◆□	sc-397	Santa Cruz	4% PFA
Rabbit anti-ZO1	1/200◆	61-7300	Invitrogen	4% PFA
Mouse anti-VE-cadherin	1/50◆	sc-9989	Santa Cruz	4% PFA
Alexa Fluor 555 anti mouse	1/200◆	A21422	Molecular	4% PFA
			Probes	
Alexa Fluor 488 anti rabbit	1/200◆	A11034	Molecular	4% PFA
			Probes	
Cy3 anti rabbit	1/100◆	111-165-144	Jackson	4% PFA
			Immunoresearch	
DAPI	2 µg/ml◆	D9542	Sigma	4% PFA

Supplementary Table 1. Antibodies used for experiments

^oMicroparticle preparation/characterization (for the amount of antibodies, please, see the text), [◆]immunofluorescence, [◎]WB, and [□]flow cytometry.

Gene/RNA	Forward sequence	Reverse sequence
SNORD48	ATGATGACCCCAGGTAACTCT	GCTGCGGTGATGGCAT
5S rRNA	GATCTCGTCTGATCTCGGAAG	GGTATTCCCAGGCGGTCT
hsa-miR-17	CAAAGTGCTTACAGTGCAGGTAG	Universal primer
hsa-miR-217	TACTGCATCAGGAACTGATTGGA	Universal primer
hsa-miR-222	AGCTACATCTGGCTACTGGGT	Universal primer
U6	TCGGCAGCACATATACTAA	GAATTTGCGTGTCATCCT
EIF4G2	GAGCCATTGCTAAGATCAAG	CTAATCTAGGTCCCACTGTC
GRM7	TGAACTCAATGTCCAGAAAC	CTGTTTGGGTCTACGTTTTC
SATL1	GATAGCCATCACAACTCAATG	CTGTTAAACCTGAAGAGATGC
ZNF652	GTTTCAGTACAAGTACCAGC	AGATAAAGGGTTTCTCTCCAG
CCND1	GCCTCTAAGATGAAGGAGAC	CCATTTGCAGCAGCTC
CDKN1A	CAGCATGACAGATTTCTACC	CAGGGTATGTACATGAGGAG
E2F1	CTGATGAATATCTGTACTACGC	CTTTGATCACCATAACCATCTG
SIPR1	CAGACAAGCAAAACAAAGTG	CATCAACAAAAGTGCCAAAG
HSPB1	CTTCACGCGGAAATACAC	ATGGTGATCTCGTTGGAC
JAK1	GAAAAACAAGATCCGGGAAG	TCCATTTTCTTGTTGTCCTG
MAPK9	CCTGAAGATCCTTGACTTTG	ATCAACGTTCTCTTTGTAGC
CASP3	AGCGAATCAATGGACTCT	TTTCTGAATGTTTCCCTGAG
CASP9	TTGTTCATCTCCTGCTTAGA	TCTGGTTTGCGAATCTCT

Supplementary Table 2. Primers used for quantitative RT-PCR

Gene ID	Gene	Locus	Ctrl FPKM	Transf FPKM	Log2_FC	q Value
XLOC_046949	FAM65B	6:24797548-25057301	8.542	0.008	-10.0525	0.000675141
XLOC_004640	CD84	1:160506862-160549306	0.038	6.274	7.35534	0.000675141
XLOC_037760	C3orf65	3:185360843-185542844	1.108	0.011	-6.60622	0.0232187
XLOC_038309	CELSR3	3:48673901-48700348	20.027	0.220	-6.50982	0.000675141
XLOC_050299	-	7:64435760-64435947	2.697	134.302	5.63773	0.0165759
XLOC_061341	CDKL5	X:18443702-18690229	1.548	0.037	-5.38025	0.000675141
XLOC_054281	MTND4P15	9:94793357-94877672	0.055	2.100	5.26693	0.0405763
XLOC_031778	-	2:96497268-96500294	0.899	0.025	-5.15123	0.0208843
XLOC_047912	SAMD3	6:130465459-130686570	0.034	1.084	5.00886	0.000675141
XLOC_012270	-	12:105877461-	2.088	0.075	-4.80211	0.000675141
		105881171				
XLOC_053059	-	8:81397172-81397365	2.305	63.537	4.78454	0.0381035
XLOC_036358	GRM7	3:6532165-7783215	0.125	3.287	4.7208	0.000675141
XLOC_012269	-	12:105875536-	1.788	0.070	-4.68055	0.00125545
		105877390				
XLOC_018141	FAM81A	15:59427112-59815748	0.233	0.009	-4.65827	0.000675141
XLOC_018244	GLCE	15:69452922-69564549	903.080	36.124	-4.64382	0.0133201
XLOC_019972	TMC5	16:19421817-19510435	0.992	0.046	-4.43902	0.000675141
XLOC_015426	TMEM253	14:21484921-21572881	0.864	0.040	-4.42957	0.0057667
XLOC_016127	-	14:86101873-86102316	0.182	3.837	4.39655	0.0497288
XLOC_012926	IFLTD1	12:25562226-25801513	1.360	0.065	-4.39061	0.000675141
XLOC_008587	-	11:58345977-58346438	4.933	0.237	-4.38203	0.0278032

Supplementary Table 3. The individual results for the top 20 most differentially expressed known mRNA genes detected by mRNA sequencing

Table of the 20 most differentially expressed mRNAs, with log fold change (Log2_FC) between groups with Benjamini-Hochberg FDR corrected q-values. The list is sorted on Log2_FC.

Supplementary	Table 4.	The	individual	results	for	the	top	20	most	differentially	expressed
isoforms detected	l by mRN	A se	quencing								

Isoform ID	Gene	Locus	Ctrl FPKM	Transf FPKM	Log2_FC	q Value
XLOC_019533	ANPEP	15:90328119-90358633	1.34842	1.02E-155	-515.306	0.0399145
XLOC_015291	COL4A1	13:110801317-111165380	106.989	4.68E-137	-459.62	0.0385023
XLOC_031368	EFEMP1	2:56093101-56151274	13.6848	3.17E-130	-433.962	0.0280797
XLOC_009759	EIF4G2	11:10804859-10830657	6.11E-97	88.4983	326.083	0.0494118
XLOC_012686	ANO2	12:5641034-6233936	1.98074	1.03E-82	-273.339	0.0328669
XLOC_037744	PSMD2	3:183852825-184402546	1.80386	4.44E-65	-214.627	0.0344827
XLOC_030854	SEPT2	2:242166678-242293442	1.05888	6.10E-65	-213.4	0.0344827
XLOC_017896	THBS1	15:39873279-39891667	18.9287	1.72E-58	-196.13	0.0265174
XLOC_036170	RPL3	22:39708886-39716394	4.37E-33	1.20503	107.765	0.0216794
XLOC_047558	EEF1A1	6:74225472-74280319	0.919699	3.48E-33	-107.705	0.0344827
XLOC_013317	SMARCC2	12:56544579-56584068	3.13E-25	0.740708	80.9687	0.0494118
XLOC_047558	EEF1A1	6:74225472-74280319	1629.19	1.69E-19	-73.0315	0.0313791
XLOC_017114	LTBP2	14:74964872-75079306	20.9293	1.56E-18	-63.5379	0.0328669
XLOC_009915	CD59	11:33719806-33757991	1.06E-17	66.6759	62.4475	0.0297186
XLOC_034040	TGM2	20:36756858-36794980	1.19E-13	37.1242	48.1503	0.023296
XLOC_017896	THBS1	15:39873279-39891667	441.431	1.46E-09	-38.1407	0.0328669
XLOC_017896	THBS1	15:39873279-39891667	824.637	3.68123	-7.80743	0.0265174
XLOC_033810	RRBP1	20:17594321-17662940	0.220206	47.8513	7.76356	0.0425472
XLOC_003088	UBR4	1:19400999-19536770	11.2597	0.335811	-5.06737	0.00335663
XLOC_012270	-	12:105877461-105881171	2.08817	0.0748493	-4.80211	0.00335663

Table of the 20 most significantly differentially expressed isoforms, with log fold change (Log2_FC) between groups with Benjamini-Hochberg FDR corrected q-values. The list is sorted on Log2_FC.

Supplementary Table 5. The top 20 differentially expressed novel transcripts identified in mRNA sequencing

Novel Transcript	Closest	Locus	Ctrl	Transf	Log2_FC	q Value
ID	Related			FPKM		
	Known Gene					
TCONS_00085720	COL4A1	13:110801317-111165380	106.989	4.6E-137	-459.62	0.0385023
TCONS_00052415	EIF4G2	11:10804859-10830657	6.11E-97	88.4983	326.083	0.0494118
TCONS_00075943	SMARCC2	12:56544579-56584068	3.13E-25	0.740708	80.9687	0.0494118
TCONS_00205680	TGM2	20:36756858-36794980	1.19E-13	37.1242	48.1503	0.023296
TCONS_00099624	THBS1	15:39873279-39891667	824.637	3.68123	-7.80743	0.0265174
TCONS_00204501	RRBP1	20:17594321-17662940	0.220206	47.8513	7.76356	0.0425472
TCONS_00085429	ABCC4	13:95672082-95983687	3.14261	0.159508	-4.30026	0.00335663
TCONS_00124039	TBC1D10B	16:30368421-30381585	1.43246	26.6936	4.21992	0.00335663
TCONS_00206441	ATP9A	20:50213052-50385173	10.181	0.595275	-4.09619	0.0164573
TCONS_00032986	SCD	10:102106876-102124591	66.1694	4.37847	-3.91766	0.0164573
TCONS_00128759	XAF1	17:6658765-6678989	1.87214	24.5972	3.71573	0.0164573
TCONS_00122809	SMG1	16:18814404-18937776	5.37056	0.411391	-3.70649	0.00335663
TCONS_00231057	TMEM115	3:50384760-50397041	2.25671	27.4838	3.60629	0.0344827
TCONS_00228488	RFTN1	3:16306699-16555533	2.35405	28.302	3.58769	0.00605201
TCONS_00271547	SASH1	6:148558720-148873186	16.0977	1.36713	-3.55763	0.00335663
TCONS_00020947	DDAH1	1:85731456-86044046	1.76149	20.2906	3.52594	0.0372105
TCONS_00193475	TGOLN2	2:85545146-85555548	2.21071	24.8707	3.49186	0.0372105
TCONS_00088299	LGALS3	14:55590827-55612126	2.5356	28.131	3.47176	0.0359069
TCONS_00004639	MAST2	1:46252658-46501896	0.904814	9.65157	3.41507	0.0412828
TCONS_00073957	SLC38A1	12:46576838-46663800	7.93558	0.752308	-3.39894	0.0454058

Table of the 20 most differentially expressed novel transcripts, with log fold change (Log2_FC) between groups with Benjamini-Hochberg FDR corrected q-values. The list is sorted on Log2_FC.

Supplementary Table 6. A list of potentially significant GO (Biological process) terms

GO ID	Term	Annotated	Significant	Expected	Rank in ClassicFisher	CI Fisher	ClassicKS	ElimKS
GO:0019083	Viral transcription	56	56	56	1	1	0.00088	0.00088
GO:0048596	Embryonic camera-	12	12	12	2	1	0.00238	0.00238
00.0010090	type eve	12	12	12	-	1	0.00250	0.00250
	morphogenesis							
GO:0045454	Cell redox	15	15	15	3	1	0.00252	0.00252
	homeostasis							
GO:0009653	Anatomical	418	418	418	4	1	0.00166	0.00166
	structure							
	morphogenesis							
GO:0006413	Translational	61	61	61	5	1	0.00311	0.00311
	initiation							
GO:0006809	Nitric oxide	11	11	11	6	1	0.00317	0.00317
	biosynthetic process							
GO:0043624	Cellular protein	64	64	64	7	1	0.00336	0.00336
	complex							
~~~~~~	disassembly	1.0	1.0					
GO:0050792	Regulation of viral	18	18	18	8	1	0.00406	0.00406
00.0040550	process	2	2	2	0	1	0.00447	0.00447
GO:0042558	Pteridine-	3	3	3	9	1	0.00447	0.00447
	comtaining							
	compound motobolio process							
CO:0051280	Brotein	11	11	11	10	1	0.00460	0.00460
00.0031289	homotetramerization	11	11	11	10	1	0.00409	0.00409
GO:0003333	Amino acid	7	7	7	11	1	0.00496	0.00496
00.0005555	transmembrane	/	/	/	11	1	0.00470	0.00470
	transport							
GO:0090257	Regulation of	22	22	22	12	1	0.00525	0.00525
	muscle system							
	process							
GO:0033157	Regulation of	41	41	41	13	1	0.00527	0.00527
	intracellular protein							
	transport							
GO:0007166	Cell surface receptor	472	472	472	14	1	0.00595	0.00595
	signaling pathway							
GO:0051208	Sequestering of	10	10	10	15	1	0.00598	0.00598
	calcium ion							
GO:0010557	Positive regulation	254	254	254	16		0.00651	0.00651
	of macromolecule							
00.0002520	biosynthetic process	125	125	125	17	1	0.00/05	0.00/05
GO:0002520	Immune system	135	135	135	17	1	0.00695	0.00695
CO:0051172	Desitive reculation	252	252	252	10	1	0.00754	0.00754
GO:00311/3	of nitrogon	233	255	255	18	1	0.00734	0.00734
	compound							
	metabolic process							
GO:0071318	Cellular response to	3	3	3	19	1	0.00762	0.00762
20.00/1010	ATP	2	2	5	.,		0.00702	0.00702
GO:0006414	Translational	51	51	51	20	1	0.00851	0.00851
	elongation							

according to mRNA sequencing results

The top 20 significant GO terms for the genes found to be differentially expressed and their corresponding annotation for Biological process (BP).



Supplementary Figure 1. Characterization of MPs. (a) Evaluation of VEGF conjugation onto MPs by flow cytometry. His-VEGF-conjugated MPs were stained with PE-conjugated anti-human VEGF antibody before flow cytometry characterization. Blue histogram indicates MPs without VEGF while orange histogram indicates VEGF-coated microparticles. (b) Amount of VEGF conjugated to microparticles: effect of the initial ratio of his-VEGF and anti-his-VEGF antibody. The immobilization of his-VEGF was quantified by ELISA measurements. Values are given as average  $\pm$  SEM (n=4-8). (c) Release of iron from microparticles up to 7 days as determined by ICP-MS analyses. Microparticles (MPs Control) and EGM-2 (Medium Control) were used as controls. Values are given as average  $\pm$  SEM (n=3).



**Supplementary Figure 2. MP cytotoxicity evaluation.** (a) OEPCs cultured in monolayer were treated with different ratios of MPs (1:10, 1:25, 1:50, 1:100 cell:MP ratio) up to 5 days. Compared to cell aggregates, higher cell:MP ratios were used due to the fact that cell-bead interaction is lower in monolayer cultures. WST-1 was used to follow kinetics of cell proliferation. (b) Viability of OEPCs in cell aggregates having variable cell number. Different numbers of OEPCs (2,500-20,000 cells/aggregate) were seeded as hanging drops and the viability of the cells was evaluated up to 3 days. (c) Viability of OEPCs in cell aggregates having 1:1 and 1:2 cell:MP ratios. 20,000 cells were used per cell aggregate. (d) OEPC apoptosis as quantified by TUNEL assay. Cell aggregates (20,000 cells with a 1:1 cell:MP ratio) were cultured for 2 days before analyses. The number of TUNEL positive cells per field

was quantified. (e) Representative images of TUNEL staining. Scale bar corresponds to 50  $\mu$ m. The values in (a-d) are given as average  $\pm$  SEM for 4-6 different samples for each group.  $P \le 0.05$  (*),  $P \le 0.01$  (**),  $P \le 0.001$  (***). In (a) and (c), one-way Anova followed by a Bonferroni post-test was used for statistical analyses. In (b) and (d), unpaired *t-test* was performed between cell aggregates and cell aggregates containing MPs.



Supplementary Figure 3. VEGF-MPs internalization and VEGFR-2 clustering. OEPCs cultured in monolayer were treated with VEGF-MPs (1:2, cell:VEGF-MP ratio) or with same amount of sVEGF for different time points (i.e. 10, 30, 60, 120 min). VEGFR-2 clustering was quantified by confocal microscopy after cell fixation and immunostaining. (a) Representative confocal microscopy images of receptor clustering and analyses. Black and white images prepared by ImageJ were used for quantification of VEGFR-2 clustering. Time zero images were used to determine the threshold of particle size. Cell numbers in each image were calculated using DAPI stainings to normalize the results (cluster/cell). (b) Quantification of VEGFR-2 clustering. Values are average  $\pm$  SEM. Images from 3 samples in each group were used in the analysis. Unpaired *t-test* was performed between sVEGF and VEGF-MPs groups for statistical analysis.  $P \leq 0.001$  (***). (c) Representative confocal microscopy images showing the internalization of VEGF-MPs after 2 h. OEPCs cultured in monolayer were treated with VEGF-MPs (1:2, cell:VEGF-MP ratio) for 2 h. VEGF-MPs internalization was quantified by confocal microscopy after cell fixation and immunostaining. Arrows indicate intracellular MPs. Scale bar corresponds to 20  $\mu$ m.



Supplementary Figure 4. Ultrastructural analysis of OEPC aggregates. (a) Transmission electron micrographs of OEPC aggregates containing blank MPs or VEGF-MPs showing the internalization of MPs by the cells after 24 h (Scale bars: 4 µm for 5,000× magnification; 2 µm for 12,000× magnification; arrows indicate MPs with the size of 4.5 µm). (b) The OEPC aggregates containing soluble (sVEGF) or immobilized VEGF (VEGF-MPs) show lower formation of cellular stress-related lipid droplets than control groups (cell aggregates) or blank MPs (Scale bars: 4 µm; magnification: 8,000×; time point: 24 h; arrows indicate lipid droplets). (c) Control group clearly shows necrotic cells in OEPC aggregates (Scale bar: 2 µm; magnification: 6,000×; time point: 24 h; arrow indicates necrotic cell in EC aggregate). (d-e) Quantification of lipid droplets (d) and lysosomes (e) in OEPC aggregates for different experimental conditions. The countings were performed using TEM photographs with 12,000× magnifications. Values are average ± SEM, n=3-8. For statistical analysis, one-way Anova followed by a Bonferroni post-test was used.  $P \le 0.05$  (*),  $P \le 0.01$  (**),  $P \le 0.001$  (***).



Supplementary Figure 5. Bioactivity of sVEGF and VEGF-MPs in OEPCs. (a-b) VEGFR-2 tyrosine phosphorylation induced by sVEGF or VEGF-MPs. OEPCs were aggregated up to 60 min and then lyzed. (c-d) VEGF-MPs and MPs interaction with OEPCs when seeded on Matrigel. (c) VEGF-MPs strongly interact with OEPC cord-like structures on Matrigel while blank MPs tend to aggregate and not to interact with cells. Arrows show the MPs that are not interacting with cells. Bar corresponds to 50  $\mu$ m. (d) Quantification of non-interacting MPs. Values are average  $\pm$  SEM, n=2 images/group were used for the calculations. The statistical analysis was performed using unpaired *t-test*.  $P \le 0.01$  (**).



hsa-miR-216a, hsa-miR-503, hsa-miR-31, hsamiR-100, hsa-miR-24, hsa-miR-23a, hsa-miR-27a, hsa-miR-30a, hsa-miR-151-5p, hsa-miR-29c, hsamiR-20a, hsa-miR-17, hsa-miR-106b, hsa-let-7f, hsa-miR-21, hsa-miR-126, hsa-miR-374a, hsalet-7g, hsa-miR-126*

miR-576-5p

Supplementary Figure 6. miRNA microarray analysis. The common miRNAs downregulated or upregulated in VEGF-MP group compared with cell aggregates, MPs and sVEGF experimental groups were determined using VENNY software and presented in the figure.



Gene ID	Gene	Locus	Control AntagomiR FPKM	AntagomiR-17 FPKM	Log2 FC	q value
TCONS_00052415	EIF4G2	11:10804859-10830657	6.11352E-97	88.4983	326.083	0.0494118
XLOC_036358	GRM7	3:6532165-7783215	0.124649	3.28693	4.7208	0.000675141
XLOC_024345	ZNF652	17:47366567-47447360	2.74285	14.3267	2.38496	0.000675141
XLOC_061942	SATL1	X:84343441-84364054	1.01125	5.03149	2.31484	0.0314161
XLOC_045782	CDKN1A	6:36555310-36932613	106.49	124.417	0.224474	0.633159

Supplementary Figure 7. Evaluation of *miR-17* downregulation and *miR-17* gene targets. (a) Confirmation of *miR-17* downregulation in OEPCs and HUVECs treated with *antagomiR-17* for 48 h. Results are average  $\pm$  SEM, n=4. The statistical analysis was performed using unpaired *t-test*.  $P \leq 0.05$  (*). The results were normalized to the control antagomiR condition for each cell type. (b) Interaction of *miR-17* with its gene targets determined by sequencing data in our system (Info taken from the database: <u>www.microrna.org</u> [1]). (c) Top transcripts upregulated after the transfection with *antagomiR-17*, which are the targets of *miR-17*, according to the mRNA sequencing data (n=3).



Supplementary Figure 8. CDKN1A expression in OEPCs after transfection with *amiR*-17. OEPCs were transfected with 50 nM *amiR*-17 or 50 nM control amiR for 48 h. After additional incubation in hypoxia (0.1% O₂) for 24 h, they were stained with mouse antihuman CDKN1A antibody. (a) Fluorescence microscopy results. CDKN1A increased at protein level for OEPCs transfected with *amiR*-17. Scale bar corresponds to 20 µm. (b) Flow cytometry results. Results are average  $\pm$  SEM, n=3. For statistical analysis, unpaired *t*-*test* was performed.  $P \le 0.001$  (***).



Supplementary Figure 9. Silencing of *miR-17* targets. (a) qRT-PCR results confirm the downregulation of gene targets (i.e. *ZNF652* and *CDKN1A*) after the treatment with siRNAs against human *ZNF652* and *CDKN1A*. (b) Quantification of CDKN1A silencing at protein level (results obtained by image analyses of confocal microscopy images). Corrected total cell fluorescence was calculated according to the equation: Integrated density – (Area of selected cell × Mean fluorescence of background readings). Results were given as average  $\pm$  SEM. n=4 in (a) and n=3 in (b). Unpaired *t-test* was used for statistical analysis.  $P \le 0.05$  (*),  $P \le 0.01$  (**),  $P \le 0.001$  (***).



Supplementary Figure 10. Expression of CASP3 and CASP9 transcripts in OEPCs. (a) Silencing of gene target CDKN1A by siRNA for 48 h showed an increase in the expression of CASP3 around 10 times and CASP9 around 8 times. (b-c) Conjugated VEGF decreases the expression of CASP3 and CASP9 both *in vitro* (b) and *in vivo* (c) (subcutaneous injections, after 24 h). U6 was used to normalize the results. Values are given as average  $\pm$  SEM, n=4. For statistical analysis, one-way Anova followed by a Bonferroni post-test was used.  $P \le 0.05$  (*),  $P \le 0.01$  (**) and  $P \le 0.001$  (***). The asterisks on CDKN1A siRNA+Ctrl AmiR group (***) in (a) indicate that in this group, the increase in CASP3 and CASP9 is statistically significant ( $P \le 0.001$ ) compared with all other groups in the graph.



Supplementary Figure 11. Silencing of *miR-17* target *CDKN1A* reduces sprouting of OEPCs after treatment with *amiR-17*. OEPCs were double-transfected with 40 nM siRNAs (i.e. control siRNA, *ZNF652* siRNA or *CDKN1A* siRNA) and 50 nM antagomiRs (control amiR or *amiR-17*) for 48 h and incubated under hypoxia conditions  $(0.1\% O_2)$  in starvation medium (EGM-2 without VEGF and with 1% FBS). (a) Representative light microscopy images of all experimental groups. (b) Effect of silencing *ZNF652 or CDKN1A* in the angiogenic effect of *amiR-17*. *ZNF652* siRNA-treatment did not impair angiogenesis potential of *amiR-17*, while *CDKN1A* siRNA-treatment decreased significantly the effect of *amiR-17*. The values are normalized to their control groups and given as average  $\pm$  SEM (n=5). Unpaired *t-test* was used for statistical analysis.  $P \le 0.05$  (*),  $P \le 0.01$  (**). The sprout photos were taken using IN Cell Analyzer from GE Healthcare with 2× objective and analyzed in ImageJ.



**Supplementary Figure 12. Full gel images for WB.** Uncropped images of the gels for Supplementary Fig. 5a-b. White rectangles indicate the bands used for the calculations.

## Supplementary Reference

**1.** Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. *Nucleic Acids Res* **36**, D149-153 (2008).