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Supplementary Note
High-throughput genotyping data derived based on whole genome sequencing

information

We hamessed the single nucleotide polymorphism (SNP) variation by aligning the genotypic
data of the japonica Nipponbare reference genome with the high-quality re-sequencing data
generated from 591 accessions enriched with indica, temperate and tropical japonica
subspecies that represents the global genetic diversity originating from 72 countries!. After SNP
calling, we have identified a total of 2,933,037 high-quality SNPs with a total genotyping rate
of 98.89%. A total number of 2,260,030 and 1,562,078 SNPs segregated within indica and
japonica (tropical and temperate japonica) sub-group, respectively, while 889,071 were
common SNPs. The mean SNP density was approximately one SNP at every 127 base pairs (or
8.053 SNPs/kb) across the rice genome. This value is comparable to reports from other
previously published studies that worked on re-sequencing data 2# and higher than array-based
genotyping methods >7.

Genetic structure and linkage disequilibrium estimation in rice germplasm panel

Principal component analysis (PCA)® was carried out to summarize the global genetic variation
present in selected panel of 591 accessions based on 2.9 million high quality SNP data matrix
(Fig. A). The first two principal components (PC) explained 42.57% of total genetic variation,
38.24% was from PC 1 and the remaining 4.33% was from PC 2. These two principal
components were able to show the genetic differentiation of subspecies present in the
germplasm. Based on an unsupervised clustering of germplasm that arose from dimension
reduction it was observed that indica and japonica were majorly represented. The japonica
subspecies subdivided further into temperate japonica and tropical japonica. Few represented
lines from aus subpopulation were interspersed between indica and japonica subgroups. The
calculated mean pairwise population differentiation (Fst) value between both subspecies was
0.46, which confirmed the distinct diversity present at the subspecies level among these diverse
germplasm. These calculations have shown that we have captured a representative genetic
diversity from the original set of 3,000 rice genomes setting the stage right for GWAS analysis.
Linkage disequilibrium (LD) decayed more rapidly in indica than in japonica confirming an
expected wider genetic diversity in indica compared to that in japonica (Fig. B) as is currently
known. This was similarly shown by sequence diversity coefficients (m) of 0.0025 and 0.0022
in indica and japonica, respectively, which were higher than the previously published values of
0.0016 and 0.0006, respectively?.
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Figure: Genetic structure and linkage disequilibrium (LD) estimation in 591 germplasm (A)
Principal component analysis (PCA)-plot of the first two components of 591 rice accessions;
PC1 and PC2 represented the genetic variation of 38.24% and 4.33% with a total of 42.57%,
present in germplasm set. (B) Genome-wide LD decay estimated from indica, japonica and

combined population.
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Figure S1: Phenotypic variation for -raw and -cooked grain width, grain length and grain shape in indica and
japonica. Grain dimensions in indica in -raw(A) and -cooked grain(B); grain dimensions in japonica in —raw
(C) and -cooked grain (D). X-axis represents respective trait value (in millimeter) and y-axis represents
number of samples. All traits showed the normal distribution pattern except in case of grain width and length

of japonica, where skewed distribution was observed.
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Figure S2: Transformed phenotypic variation for -raw and -cooked grain width, grain length and grain
shape in indica and japonica using WarpedLMM. WarpedLMM uses the warping function where its search

for most probable function instead of using a static function. Grain dimensions in indica in case of -raw (A)
and -cooked grain (B); grain dimensions in japonica in -raw (C) and -cooked grain (D). The x-axis
represents respective trait value after transformation and Y-axis represent number of samples.
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Figure S3: Q-Q plot for all the SNP-based single-locus GWAS study in -raw grain. Emmax was used for
these association studies with covariates and kinship matrix as random effects. Japonica (top), indica
(middle) and combined population (lower) are represented with vertically arranged grain width (A,D,G),
grain shape (B,E,H) and grain length (C,F,I). Q-Q plots were created using gqgman, an R package.
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Figure S4: Q-Q plot for all the SNP-based single-locus GWAS study in -cooked grain. Emmax was used
for these association studies with covariates and kinship matrix as random effects. Japonica (top), indica
(middle) and combined population (lower) are represented with vertically arranged grain width (A,D,G),
grain shape (B,E,H) and grain length (C,EI). Q-Q plots were created using qgman, an R package.
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Figure S5: Indel-based single-locus GWAS for raw grain width (GWi) trait and identification of the causal
genomic loci on chromosome 3, 5, 7 contributing for GWi trait using EMMA X. Manhatton plots of the single-
locus GWAS on GWi for japonica (A), indica (C) and combined (E) for -raw grain; Q-Q plot for japonica (B),
indica (D) and combined (F) for the same on the right side. Horizontal red and blue lines represent genome wide
and suggestive threshold, respectively. Manhatton and Q-Q plots were created by qgman, an R package. Emmax
was used for the genome-wide association study with necessary covariates and kinship matrix.
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Figure S6: Indel-based single-locus GWAS for raw grain length (GL) trait and identification of the causal
genomic loci majorly on chromosome 3 using EMMA X. Manhatton plots of the single-locus GWAS on GL

for japonica (A), indica (C) and combined (E) for -raw grain; Q-Q plot japonica (B), Indica (D) and
combined (F) for the same on the right side. Horizontal red and blue lines represent genome wide and
suggestive threshold, respectively. Red arrowhead indicates the GWAS peak.
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Figure S7: Indel-based single-locus GWAS for raw grain shape (GS) trait and identification of the causal
genomic region on chromosome 3, 5, 7 using EMMA X. Manhatton plots (left) and Q-Q plot (right) of the
single-locus GWAS on GS for japonica (A,B), indica (C,D) and combined (E, F) panel. Horizontal red and
blue lines represent genome-wide and suggestive threshold, respectively. The figures was created using
ggman, an R package. Emmax was used to do the marker-trait association test with covariates and kinship
matrix as random effects.
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Figure S8: Representative Manhatton plot and Q-Q plot from SNP-based multi-locus association test using
FASTmrEMMA. Manhatton plot for raw grain length (A), raw grain shape (C) and raw grain width (E)
using combined population. Q-Q plot for raw grain length (B), raw grain shape (D) and raw grain width (F),
using combined population. Red and blue lines in Manhatton plot are representing genome-wide and
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Figure S9: SNP-based GWAS for grain length trait and identification of genomic region on chromosome 3
in Indica sub-species significantly associated with grain length; (A) the linkage disequilibrium plot of the 17
tagged SNPs most significantly associated grain length. A scaled and highly dense plot of genomic region on
the chromosome is shown where the positions of the genes are labeled with red boxes scaled according to in
Nipponbare reference genome (MSU release version 7). The positions of the 17 tagged SNPs are indicated

with the plot of significant p-values (-log,,(P)) represented by red bars of respective SNPs where bar

thickness indicate relative effect sizes (negative effect) of SNPs on grain length. Phenotype distribution of 4
blocks also shows as boxplot for -raw grain (B, D, F, H) and -cooked grain (C, E, G, I). The distribution of
these blocks (J, K, L, M) was further examined with data from the 3000 Rice Genomes Project (3K-RGP).
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Figure S10: SNP-based GWAS for grain width trait and identification of genomic region on chromosome 5 in
indica sub-species, significantly associated with grain width (Gwi); (A) the linkage disequilibrium plot of the
16 tagged SNPs most significantly associated grain width. A scaled and highly dense plot of genomic region on
the chromosome is shown where the positions of the genes are represented as red boxes scaled according to in
the Nipponbare reference genome (MSU release version 7). The positions of the 16 tagged SNPs are indicated
with the plot of significant p-values (-log ,, (P)) represented by red bars of respective SNPs where bar thickness

indicate relative effect sizes of SNPs on grain width; black bar implies positive additive effect, while red is the
reverse); Four haplotype blocks identified from LD plot were represented with phenotype distribution as
boxplot for -raw grain (B, D, F, H) and -cooked grain (C, E, G, I). Haplotypes formed from the 16 tagged SNPs
depicted broad phenotypic variation for grain width. The distribution of these blocks (J, K, L, M) was further
examined with data from the 3000 Rice Genomes Project (3K-RGP).
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Figure S11: LD plots for SNP-based GWAS at chromosome 7, representing two genomic regions
associated significantly with grain width trait. LD block 1 and 2 underlies in the region 1 whereas block 3
present in region 2. Region 1 (928kb) and 2 (1.9mb) is separated by ~550 kb from each other; red dotted

line signifies the separation between both of the regions.
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Figure S12: SNP-based GWAS for grain width trait and identification of genomic region 2 on chromosome

7 (GWi 7.2) in combined population significantly associated with grain width; (a) the linkage
disequilibrium plot of the 13 tagged SNPs most significantly associated with grain width. A scaled and
highly dense plot of genomic region on the chromosome is shown where the positions of the genes are
labeled with red boxes scaled according to in the Nipponbare reference genome (MSU release version 7).

The positions of the 13 tagged SNPs are indicated with the plot of significant p-values (-log ,,(P))

represented by black bars of respective SNPs where bar thickness indicate relative effect sizes (positive
effect) of SNPs on grain width; All the identified blocks were presented with phenotype as boxplot for -raw
grain (B, D, F) and -cooked grain (C, E, G). The distribution 3k distribution of these blocks (H, I, J) is then
examined with data from the 3000 Rice Genomes Project (3K-RGP).
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Figure S13: Targeted-gene association study (TGAS) in the region 1 of Chr7 (Gwi7.1). Gene structure along
with phenotype distribution as boxplot and 3k distribution has represented for each gene. LOC_0Os07g37710

(A); LOC_0s07g37790 (B); LOC_0s07g36900 (C); LOC_0s07g37150 (D); LOC_Os07g37156 (E);

LOC_0s07g37920 (F).
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Figure S14: Gene structure with -log,(P)-values, haplotype with phenotype distribution for -raw grain and
-cooked grain and 3K-PGP distribution for some important cloned genes. (A) GL3.1; (B) GLW7; (C) GIF1;
(D) big-grain-2.
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Figure S15: Representative expression profiling of GWi-associated gene LOC_0Os07g36900, (A) Level of expression of gene LOC_0Os07g36900 determined by
using Affymetrix rice genome array at Genevestigator platform (https://genevestigator.com/gv/), across different developmental stages. The log2 transform values
of signal intensity appeared on Affymetrix rice genome array were used to construct a plot. The medium level of expression was estimated in later stages of
development with relatively higher expression in heading stage, whereas, low to medium level of expression observed during early developmental stages. Here, X-
axis represented the specific plant developmental stage, whereas, y-axis represented the level of expression signal that signifies the signal intensity on Affymetrix
rice genome array, (B) differential expression profile of gene LOC_0Os07g36900 in genotypes with high and low grain width mentioned as a suffix (-H) and (-L),
respectively along with the accession name. The contributing haplotype and the grain width (GWi) phenotype of the respective line were also represented on the

right-hand side of the expression map.
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GGTGGCA 2.735

AACATTT 1.915

AACATTT 2.05
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Supplementary Table S4: List of cloned and characterized genes for grain size/shape in rice and detected causal variation through TGAS.

Gene/QTL Locus IDs Encoded Trait Regulation Syntenic Position SNP Trait affected p-value  P-value
protein (reference)* description variation (population)#
Ref Alt
Big grain 1 LOC_0s03g07920 Novel Positively regulate grain Syntenic 4039146 A G GL(C) 0.1736  4.85E-02
membrane- length!
localized protein
likely to involve
in auxin
transport
An-1 LOC_0s04g28280 Basic Helix- Positively regulate grain Syntenic falling 16732643 T G GL(®)) -0.2227 1.63E-03
Loop-Helix length? in break point
Protein region
GS3 Os03g0407400 A putative G Negatively regulates Syntenic 16733441 C A GL(C) -0.4975  5.83E-27
(RAP-db ID) protein y subunit  grain size** Decay in 16734618 G A GL(D) -0.3715  7.15E-09
Corresponding ID collinearity block 16734121 G T GL(D) -0.3601  1.22E-08
not present in MSU 16734333 T G GL() -0.3662  1.99E-08
version 7
qGL3/GL3.1 LOC_0s03g44500 Protein Limiting cell Syntenic 25052969 A G GS(C) 0.2109 2.77E-03
phosphatase with  proliferation®’ Decay in 25046243 AA G GL(C) -0.1551 4.88E-03
Kelch-like repeat collinearity block 25046030 G GS (D 0.2139  9.09E-03
domain
GW2 LOC_0s02g14720 RING-type E3 Restricts cell Syntenic 8122148 T C GWi(D) 0.1419 8.83E-03
ubiquitin ligase proliferation in spikelet 8114649 A T GWi(J) -0.1508 3.18E-02
hulls®
SEED LOC_0Os05g09510- A ubiquitin- Grain width by limiting Syntenic 5361329 A G GS (O) -0.3324  1.03E-07
WIDTH ON  LOC_0s05g09520* related protein cell proliferation®° Falling in break 5361329 A G GL (©) -0.2389  1.56E-03
CHROMOS  (functional point region 5361276 T C GS (D 0.4585  2.48E-19
OME 5 polymorphism 5361276 T C GWi (D) -0.5137 2.38E-21
(@SW5/GW5)  between both genes) 5361509 C A GWi (J) 0.4520  5.05E-09
5361509 C A GL () -0.2457  1.56E-03
5362756 T C Gwi (O) 0.3774  6.27E-09
GW8/0OsSPL. LOC_0Os08g41940 An protein with ~ Promotes cell division Syntenic 26503280 A T GL (©) -0.1188  2.99E-02
16 unknown and grain filling" Falling in
function neighborhood
break point
region
GS5 LOC_0s05g06660 A putative serine  Promotes cell Syntenic 3439806 T G GS (O) 0.1395  3.83E-03
carboxypeptidase proliferation in spikelet 3444708 G A GL (J) -0.3585 1.03E-02
hulls*
GL2 LOC_0s02g47280 Growth- Both cell expansion and Syntenic 28862688 T C Gwi (C) 0.1070  4.29E-02
Regulating cell proliferation’>**
Factor 4
(OsGRF4)
GL7/GW7/S  LOC_0s07g41200 Protein Increasing cell Syntenic 24665290 A G Gwi (O) 0.1585  5.52E-03




LG7 homologous to elongation in spikelet 24665290 A G GS (O) -0.1852  5.52E-04
Arabidopsis hulls*>" 24669663  C G GS (D -0.2763  1.95E-02
thaliana 24666398 G A GS () 0.1630 1.75E-02
LONGIFOLIAY/

2
GLwW7 LOC_0s07g32170 Transcription Positively regulates cell Syntenic 19100263 T C GS (D 0.1804 1.50E-03
factor OsSPL13  size in the grain hull® 19100865 G A GWi (D) -0.2254  2.46E-04
19103121 G C GL (O) 0.1537  2.34E-02
19105134 T C GS (O) -0.1149  1.93E-03
19100263 T C GWi (©) -0.1299  2.19E-03

SRS3 LOC_0s05g06280 An unknown Positively regulate grain Syntenic 3202088 C A GS (D -0.1506  5.75E-03
protein with length® 3210838 C A Gwi (D) 0.1425  1.54E-02
kinesin motor 3210838 A C GS (O) 0.1138  2.11E-02
domain and 3202088 A C GL (B) 0.1174  3.67E-02
coiled coil
structure

SRS5 LOC_0s11g14220 An alpha-tubulin  Positively regulate grain Syntenic 7958592 A T GS (D 0.2834  5.55E-03
protein length by cell Falling in 7958592 A T Gwi (I) -0.2475  2.27E-02

elongation® neighborhood
break point
region

Small grain LOC_0s02g54600 A mitogen- Effect grain size by cell Syntenic 33445344 A G GL (©) -0.1543  2.10E-02

1 activated protein  proliferation® 33441336 C G GWi (D -0.2335  3.43E-02

(smgl) kinase kinase 4

THOUSAND LOC_0s06g41850 A novel protein Effect grain size by Syntenic 25094756 A G GWi (C) -0.1460  3.59E-02

-GRAIN with indole-3- controlling grain Falling in

WEIGHT 6 acetic acid filling® neighborhood

(TGW6) (IAA)-glucose break point
hydrolase region
activity

SHORT LOC_0s09g28520 A protein with Negatively regulate grain 17353421 C A Gwi (C) 0.3895  8.83E-03

GRAIN1 unknown size by decreasing Organ Syntenic 17353421 C A GS (O) -0.2859  3.99E-02
function Elongation® 17353176 T C GS () -0.1682  4.91E-02

HGW LOC_0s06g06530 Ubiquitin- Negatively regulate grain Syntenic
Associated size” Not detected
(UBA) domain
protein

GIF1 LOC_0s04g33740 A cell-wall Positively regulate grain Syntenic 204245682 A G GS () 0.2144  7.75E-03

(GRAIN invertase size® 0424568 A G GL (O) 0.2152  7.69E-03

INCOMPLE required for 20424568 A G GS (O) 0.2095  1.94E-03

TE grain filling 20426957 C T GWi (C) 0.2743  3.28E-02

FILLING 1) 20424744 T G GS (D 0.2673  3.55E-03

Flo2 LOC_0s04g55230 Encode protein Positively regulate grain Syntenic

with
tetratricopeptide
repeat motif to

size®®

Not detected




mediate a
protein—protein

interactions
SRS1/DEP2  LOC_Os07g42410 A novel protein Positively regulate grain Syntenic 25381724 T A GL (©) -0.1406  1.46E-02
of 1353 amino length” 25381724 T A GL () -0.1424  2.15E-02
acid residues
with unknown
functional
domains
Dwarf11/ LOC_0s04g39430 Cytochrome Positively regulate grain Syntenic 23471496 C G GWi (D 0.1343  2.21E-02
CPB1 P450 length®®
(CYP724B1)
enzyme
Big grain 2 LOC_0s07g41240 A cytochrome Positively regulate grain Syntenic 24713710 C G GWi (D 0.3041  9.51E-03
P450 Enzyme size® 24713710 C G GS (D -0.2915 9.13E-03
24712882 A G GWi (J) -0.1500  3.90E-02
24712882 G A GL (O) -0.1857  3.50E-03
24713710 C G GS (O) -0.1951  2.05E-04
24712882 A G GS () 0.1541  1.64E-02
Smg11/D2 LOC_0s01g10040 A cytochrome Positively regulate grain Syntenic 5235440 C A GL (©) -0.1246  4.63E-02
P450 Enzyme size® 5240482 A G GL () 0.2009  4.00E-02
GS6/D62 LOC_0s06g03710 A GRAS-domain Negatively regulate grain Syntenic 1467292 T G GL (O) 0.1594  5.91E-03
protein size 1470261 T C GS (I) 0.1301  3.84E-02
1467292 T G GL () 0.1445  2.56E-02

*Mentions the type of gene regulation and reference of the study (mentioned as superscript) in the respective gene/QTL.
#letter mentioned in parenthesis depicts the SNPs detected in combined (ALL) germplasm panel (C), in only Japonica (J) and indica (1)
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