Supplemental Figure Legends

Figure S1: Enteric glial elimination in PIp1^{CreER};Rosa26^{DTA} mice is dependent on the presence of both Cre recombinase and tamoxifen.

(A-D) Neurofilament-H (NF-H) and S100β immunoreactivities in the colons of Rosa26^{DTA} (Cre⁻, control) and Plp1^{CreER};Rosa26^{DTA} mice (Cre⁺, experimental), imaged at focal plane of the myenteric plexus. Glial loss is Cre-dependent.

(E-F) NF-H and S100 β immunoreactivities in the colon of Plp1^{CreER};Rosa26^{DTA} mice (Cre⁺) imaged at focal plane of the myenteric plexus. There is no glial loss in Cre⁺ mice in the absence of tamoxifen treatment. Scale bar = 50µm

Figure S2: Enteric glial elimination in PIp1^{CreER};Rosa26^{DTA} mice does not cause histological evidence of intestinal inflammation.

Hematoxylin and eosin stained cross-sections of duodenums, ilea and colons from Cre⁻ (control) and Cre⁺ (glial-ablated) mice at 7, 11 and 14 days post-tamoxifen treatment (dpt) reveal no evidence of inflammation. Representative images from at least 4-5 mice examined per condition.

Figure S3: Valganciclovir treatment of GFAP^{HSV-TK} mice leads to extensive injury to non-targeted cells; this non-specific toxicity is not observed in Plp1^{CreER};Rosa26^{DTA} mice.

(A-B) HSV-TK and phosphorylated histone 2AX (pH2AX) immunoreactivities imaged at the level of the myenteric plexus in ilea from TK⁻ (A) and TK⁺ (B) mice treated with valganciclovir (VGCV). Neither HSV-TK, nor pH2AX immunoreactivities are evident in control tissue (A); however, abundant transgene expression (magenta) and apoptosis (green) can be seen in the experimental TK⁺ mouse tissue (B). Although many of the apoptotic cells display simultaneous transgene expression, some apoptotic cells express only pH2AX (arrows) suggesting that toxicity is not limited to transgene-expressing cells. Nuclei counterstained with TO-PRO3 (blue). Scale bar = 50μ m

(C-D) The ultrastructure of bundles of nerve fibers in interganglionic connectives from the small intestines of VGCV-treated TK^- (C) and TK^+ (D) mice. Note that the glial sheath completely envelops the connective in the control preparation (C), partitions groups of axons, and maintains a tightly packed order among the axons. Following glial ablation (D) the perineuronal glial sheath is deficient, gaps appear within the connective, the order of the connective is disrupted, and many axons are in direct contact with the

surrounding connective tissue. Some of the neurites (arrows) appear to be vacuolated and the cytoplasm of some axons is increased in electron density (*). Scale bars = 500 nm

(E-F) Phosphorylated histone 2AX (pH2AX) immunoreactivity does not differ in the ilea of Rosa26^{DTA}

(Cre⁻, control) and Plp1^{CreER};Rosa26^{DTA} mice (Cre⁺, experimental). Nuclei are counterstained with DAPI.

Scale bar = 50µm

Supplemental Table 1: Mouse Lines

JAX Stock	Reference
005975	Doerflinger NH, Macklin WB, Popko B. Inducible site-specific
	recombination in myelinating cells. Genesis 2003;35:63-72.
	Voehringer D, Liang HE, Locksley RM. Homeostasis and effector
	function of lymphopenia-induced "memory-like" T cells in constitutively
009669	T cell-depleted mice. J Immunology 2008;180:4742-53.
N/A	Casper KB, Jones K, McCarthy KD. Characterization of astrocyte-
	specific conditional knockouts. Genesis 2007;45:292-9.
	Madisen L, Zwingman TA, Sunkin SM, et al. A robust and high-
007909	throughput Cre reporting and characterization system for the whole
	mouse brain. Nature Neuroscience 2010;13:133-40.
003474	Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter
	strain. Nature Genetics 1999;21:70-1.
	Garcia AD, Doan NB, Imura T, et al. GFAP-expressing progenitors are
012886	the principal source of constitutive neurogenesis in adult mouse
	forebrain. Nature Neuroscience 2004;7:1233-41.
	Bush TG, Savidge TC, Freeman TC, et al. Fulminant jejuno-ileitis
005698	following ablation of enteric glia in adult transgenic mice. Cell
	1998;93.189-201.
	JAX Stock 005975 009669 N/A 007909 003474 012886 005698

N/A: Not applicable

Supplemental Table 2: Primary Antibodies

Antibody	Vendor	Catalogue Number	Dilution
Chicken anti-NFH	Millipore	AB5539	1:2500
Rabbit anti-S100β	DAKO	Z0311	1:500
Rabbit anti-Ki67	Abcam	ab15580	1:1000
Goat anti-HSV1 TK	Santa Cruz	sc-28038	1:200
Rabbit anti-GFAP	Sigma	G9269	1:1000
Chicken anti-GFAP	Millipore	AB5541	1:1000
Human anti-ANNA-1	Mayo Clinic	Gift from V. Lennon	1:40,000
Rabbit anti-PH2A.X	Cell Signaling	9718P	1:200
Rabbit anti-nNOS	ImmunoStar	24287	1:1500
Rabbit anti PGP9.5	Cedarlane	CL95101	1:1000
Rabbit anti-ZO-1	Invitrogen	61-7300	1:100
Rat anti-E-cadherin	Invitrogen	13-1900	1:100
Goat anti-SCFR	R&D Systems	AF1356	1:500

Epithelial function		
Approach	Phenotype	Reference
Chemical: Gliotoxin 6-	Ultrastructure of colonic epithelium was normal in mice	
aminonicotinamide	treated with 6-aminonicotinamide.	1
Chemical: Gliotoxin	No histological evidence of inflammation in wildtype mice	
fluorocitrate reversibly	treated with fluorocitrate for 7 days. Colonic epithelial	
disrupts glial glucose	permeability measured in Ussing chambers was not	
uptake	different between vehicle and fluorocitrate-treated mice.	2
Genetic: Acute ablation of		
expression of connexin-43,	Colonic epithelial permeability was measured in Ussing	
a gap junction protein, in	chambers, and was not different between control and	
Sox10-expressing cells	conditional knock-out mice.	3
Chemogenetic: Activation of		
DREADDs [designer		
receptors exclusively	Colonic epithelial permeability was measured in Ussing	
activated by designer	chambers, and was not different upon CNO (DREADD	
drugs] within GFAP-	ligand) treatment between DREADD-expressing mice and	
expressing cells	control mice.	3
GI motility		
Approach	Phenotype	Reference
	Mice treated with 6-aminonicotinamide developed diarrhea.	
Chemical: Gliotoxin 6-	Transit time was not measured. Ultrastructure of enteric	
aminonicotinamide	neurons was normal.	1
	Small intestinal motility was slowed in fluorocitrate-treated	
Chemical: Gliotoxin	mice relative to controls. Colonic bead expulsion time was	
fluorocitrate	unchanged.	2
	Total GI transit time and 1 hour fecal pellet production were	
Genetic: Acute ablation of	not different between control and conditional knock-out	
connexin-43 in GFAP-	mice. Colonic bead expulsion was slower in conditional	
expressing cells	knock-outs.	4
	Transgenic DREADD mice and wildtype control mice were	
	treated with the ligand CNO, and GI motility was measured.	
	Total GI transit time and upper GI transit were not different,	
Chemogenetic: Activation of	but 1 hour fecal pellet production increased and colonic	
DREADDs within GFAP-	bead expulsion was faster. Ex vivo, CMMC frequency,	
expressing cells	speed and amplitude all increased slightly.	5

Relevant References:

- 1. Aikawa H, Suzuki K. Enteric gliopathy in niacin-deficiency induced by CNS glio-toxin. Brain Res 1985;334:354-6.
- Nasser Y, Fernandez E, Keenan CM, et al. Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function. Am J Physiol Gastrointest Liver Physiol 2006;291:G912-27.
- 3. Grubisic V, Gulbransen BD. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. J Physiol 2017.
- 4. McClain JL, Grubisic V, Fried D, et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology 2014;146:497-507 e1.
- 5. McClain JL, Fried DE, Gulbransen BD. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol Gastroenterol Hepatol 2015;1:631-645.

