BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Gender differences in longevity in free-living older adults who eat-with-others: a prospective study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016575
Article Type:	Research
Date Submitted by the Author:	24-Feb-2017
Complete List of Authors:	Huang, Yi-Chen; National Defense Medical Center, Graduate Institute of Life Sciences Cheng, Hsing-Ling; Tri-Service General Hospital, The Department of Food and Nutrition Wahlqvist, Mark; National Defense Medical Center, School of Public Health; National Health Research Institutes, Institute of Population Health Sciences Lo, Yuan-Ting; National Defense Medical Center, School of Public Health Lee, Meei-Shyuan; National Defense Medical Center, School of Public Health; National Defense Medical Center, School of Public Health; National Defense Medical Center, Graduate Institute of Life Sciences
Primary Subject Heading :	Public health
Secondary Subject Heading:	Nutrition and metabolism, Epidemiology, Geriatric medicine, Health policy
Keywords:	elderly, diet, mortality, social activities

SCHOLARONE[™] Manuscripts

TITLE PAGE

Gender differences in longevity in free-living older adults who

eat-with-others: a prospective study

Yi-Chen Huang¹, Hsing-Ling Cheng², Mark L Wahlqvist^{3,4,5}, Yuan-Ting C Lo³, Meei-Shyuan Lee^{1,3,4*}

¹Graduate Institute of Life Sciences, National Defense Medical Center, 161 Minchuan East Road, Sec. 6, Taipei, Taiwan 11490, Yi-Chen Huang Postdoctoral fellow, Meei-Shyuan Lee Professor

²The Department of Food and Nutrition, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Road, Neihu District, Taipei, Taiwan 11490, Taiwan, Hsing-Ling Cheng Dietitian
³School of Public Health, National Defense Medical Center, 161 Minchuan East Road, Sec. 6, Taipei, Taiwan 11490, Mark L Wahlqvist Professor, Yuan-Ting C Lo Postdoctoral fellow, Meei-Shyuan Lee Professor

 ⁴Institute of Population Health Sciences, National Health Research Institutes, No. 5 Keyan Road, Miaoli County, Taiwan 350, Mark L Wahlqvist Professor
 ⁵Monash Asia Institute, Monash University, Caulfield, VIC 3800, Australia, Mark L Wahlqvist

Professor, Meei-Shyuan Lee Professor

*Correspondence to: Prof Meei-Shyuan Lee, School of Public Health, National Defense Medical Center, 161 Minchuan East Road, Sec. 6, Taipei, Taiwan 11490. Email: mmsl@ndmctsgh.edu.tw; meeishyuan@gmail.com Phone and fax number: +886-2-87910704

Word count: 2831 words (excluding title page, licence statement, abstract, references, figures and tables)

ABSTRACT

Objectives: Social activities such as 'eating-with-others' can positively affect the ageing process. We investigated the gender-specific association between eating arrangements and risk of all-cause mortality among free-living older adults.

Setting: A representative sample from the elderly Nutrition and Health Survey in Taiwan during 1999-2000.

Participants: Some 1,894 participants (955 men and 939 women) who aged ≥ 65 and completed eating arrangement question as well as confirmed survivorship information.

Primary and secondary outcome measures: Eating arrangements, health condition, and 24-hour dietary recall information were collected at baseline. We classified eating arrangements as the daily frequency of eating-with-others (0–3). Survivorship was determined by the National Death Registry until the end of 2008. Cox proportional-hazards regression was used to assess the association between eating-with-others and mortality risk.

Results: Overall, 63.1% of men and 56.4% of women ate with others 3 times a day. Both men and women who ate with others were more likely to have higher meat and vegetable intakes, and greater dietary quality than those who ate alone. The hazard ratios (HRs) (95% CI) for all-cause mortality when eating-with-others 2 and 3 times daily were 0.46 (0.28–0.61), 0.67 (0.52–0.88) in men and 0.68 (0.42–1.11), 0.86 (0.64–1.16) in women, compared with those who ate alone. Multivariable HRs (95% CI) were 0.43 (0.25–0.73), 0.63 (0.41–0.98) in men and 0.68 (0.35–1.30), 0.69 (0.39–1.21) in women. With further adjustment for financial status, HR was reduced by 54% in men who ate with others twice a day. Pathway analysis shows this to be dependent on improved dietary quality by eating-with-others.

Conclusions: Eating-with-others is an independent survival factor in older men. To providing a social environment which encourages eating-with-others may benefit survival of older people, especially for men.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Key words: elderly, diet, mortality, social activities

STRENGTHS AND LIMITATIONS OF THIS STUDY

- Use of a representative free-living Taiwanese cohort with 10 years' follow-up for survival.
- Study design provided an understanding of eating arrangements for older adults in a community setting.
- A comprehensive assessment of the gender-specific associations between eating-with-others and mortality for older adults.
- The frequency, but not duration of time spent eating alone or eating-with-others was considered.
- Participants were mainly of Chinese ethnicity from Taiwan so that the generalisability of findings may be limited.

INTRODUCTION

Social engagement, such as interpersonal relations (e.g., contact and transactions with friends), exchange of information, and receiving and providing emotional support, is a key component of healthy ageing, besides avoiding disease and maintaining physical and cognitive functions.¹ However, opportunities to interact are frequently reduced after retirement because of factors such as loss of physical capacity, loss of mobility, and solitary living.

The word "Meal" means the event of eating and what is eaten. For this reason, social interaction is considered one of the criteria for a meal.² Numerous countries offer nutritional programs, such as congregate meals or meals-on-wheels programs, to encourage eating in a social setting.³ The inverse correlation between eating-with-others and risk of depression has been studied extensively.⁴⁻⁶ Additionally, eating alone can be analyzed as a separate risk factor from living alone with regard to depression or depressive symptoms.^{5 6} Eating-with-others can potentially improve dietary quality, variety, and energy intake through social facilitation. Depression and poor dietary quality increase the risk of chronic disease and mortality in older adults.^{7 8} Solitary eating has been associated with a higher risk of mortality among small cohorts of elders in Botswana and the United States.^{9 10} But, it is unclear whether the daily frequency of eating-with-others is associated with survivorship.

Gender is also a factor in the quality of older people's lives; for example, women frequently exhibit more health-seeking behavior.^{11 12} Yet men face higher risks of depression after widowhood than do women.¹³ Exploring the gender-specific associations between solitary eating and mortality among older adults is potentially of public health value.

Providing simple, achievable steps for healthy ageing can prolong life, maintain quality of life over an extended duration, and limit physical deterioration, all of which are beneficial to public health. The purpose of this study was, therefore, to evaluate whether the daily frequency of eating-with-others is associated with all-cause mortality in a representative, free-living,

 Taiwanese cohort of older men and women.

SUBJECTS AND METHODS

Participants

Participants aged 65 and over were recruited from the Elderly Nutrition and Health Survey in Taiwan during 1999–2000. The details of the survey design and sampling method have been published elsewhere.¹⁴ In total, 1,937 older people completed face-to-face interviews with trained interviewers. We excluded 40 participants with incorrect identification or incorrect identity numbers and those who did not provide relevant or required information. After which 1,894 participants (955 men and 939 women) remained in the study. Trained interviewers collected data on sociodemographics, dietary habits and intake, and disease history. All participants signed informed consent forms prior to being interviewed. This project was approved by the Ethics Committees of the National Health Research Institute and Academia Sinica, Taiwan.

Eating arrangement

Eating arrangements were assessed by asking participants whether they usually ate breakfast, lunch, and dinner with others. Their responses were recorded as one of the following four options: eat alone, eat with spouse, eat with children or relative(s), and eat with friend(s) or neighbor(s). We then classified the eating arrangements as eating-with-others 0 (eat alone), 1, 2, 3 times a day.¹⁵ Information was also obtained about the person responsible for meal preparation.

Dietary assessment

Information on frequency of dietary intake was collected using a validated simplified food

frequency questionnaire.¹⁶ Dietary quality and nutritional intake were measured through one-day 24-hour dietary recall. The dietary quality was evaluated using the dietary diversity score (DDS), which is based on the consumption of a half serving of the following six food groups daily: grains; meat, fish, or eggs; dairy; vegetables; fruits; and oil or fat. The DDS score ranges from 0 to 6, with a higher score representing higher dietary quality. The method of nutrient intake calculation is described elsewhere.⁷

Other variables

Participants were also asked how frequently they cooked or aided with cooking (excluding ready-to-eat meals), and their responses were recorded as never, sometimes, often, or usually. Participants were then asked how many people they lived with. The response "0" was defined as living alone.

Health-related quality of life was measured by a 36 item Short Form (SF-36) in a validated traditional Chinese version. A total of 8 dimensions of health, included physical functioning, role limitations due to physical problems, mental health, role limitations due to emotional problems, social function, bodily pain, vitality and general health. The score was calculated by the norm-based scoring system (μ =50, σ =10) and standardised. Higher scores indicated a better quality of life.¹⁷

Disability was evaluated by activities of daily living (ADL) which included 9 questions about self-care task difficulty in an older adult's daily life.

Outcome ascertainment

National Death Registry data were obtained from Taiwan's Ministry of Health and Welfare. We linked the NAHSIT dataset to the National Death Registry dataset using the participant ID to determine survival rates. Follow-up time was calculated from date of interview to date of

death or until December 31, 2008.

Statistical analysis

All data analyses were stratified by gender. Categorical variables and continuous variables were presented as n (%) or mean \pm standard errors (SE). Chi-square and ANOVA were used to determine the association between eating arrangements and baseline characteristics for categorical or continuous variables, respectively. The Cox proportional-hazards regression model was used to evaluate the association between daily frequency eating-with-others and risk of all-cause mortality. Additional factors were age, education level (illiterate, primary school, high school and above), marital status (married, bereaved, other), region (Hakka, mountains, Eastern Taiwan, Penghu, Northern Taiwan 1–3, Central Taiwan 1–3, Southern Taiwan 1–3), living arrangement (live alone, live with others), BMI (<18.5, 18.5–23.9, 24.0–26.9, \geq 27), DDS (\leq 3, 4, 5, 6), cooking frequency (never, sometimes, often, frequently), appetite status (good, fair, poor), ADL and self-rate financial statue (more than enough, just enough, not enough). All data analyses were performed using SAS 9.2 and SUDAAN 9.0 to adjust for the design effect of sampling.

To explore the pathways which might connect eating-with-others to survival, we have considered the intermediates of dietary quality (DDS), physical functioning, mental health, and general health. The first linkage, using continuous variables, has been assessed by Pearson's partial correlation coefficients. The second linkage to risk of mortality, as coefficients, has been assessed by the Aalen additive hazards model.¹⁸

RESULTS

In total, 63.1% of men and 56.4% of women ate with others 3 times a day. The mean age of men and women who ate alone was significantly higher than those who ate with others 3 times

(74.9 vs. 72.7 years and 75.3 vs. 73.0 years). For both genders, those who ate with others were more likely to be married, better financial status, living with others, and less cooking than were those who ate alone. Men who ate alone had significantly higher ADLs than those who ate with others (p=0.004). (Table 1)

Table 2 presents the dietary quality and food intakes for daily frequency of eating-with-others by gender. A total of 24.1% of men and 30.2% of women who ate alone had a poor dietary quality (DDS \leq 3), compared to those who ate with others 3 times daily (12.1%, 17.5% respectively). Men who ate alone ate less meat (1.02 vs. 1.30 times/d) and vegetables (1.90 vs. 2.47 times/d) than did those who ate with others 3 times a day (p<0.05). Women who ate with others 3 times a day tended to eat more meat (1.13 vs 0.81 times/d), seafood (0.99 vs. 0.70 times/d), eggs (0.38 vs. 0.23 times/d), and vegetable (2.52 vs. 2.09 times/d) intake than did those who ate alone (p<0.05). Further, women who ate alone had lower fat (24.7 vs. 28.9 g/1000 kcal/d) intakes, but higher carbohydrate (155 vs. 144 g/1000 kcal/d) intakes compared with those who ate with others (p<0.05).

Regarding meals, 57.6%, 59.0%, and 60.0% of men and 74.0%, 68.1%, and 67.7% of women prepared breakfast, lunch, and dinner respectively when eating alone. Men were more likely to eat out (highest of 24.3% for lunch) when eating-with-others once a day compared with women (highest of 7.73% for lunch). Furthermore, men who prepared meals for themselves when eating alone were more likely to have purchased the food (61.2%) than were those who ate with others.

Men who ate with others twice per day have significantly high physical functioning compared with other groups (p=0.044). For women, who ate with others once per day have higher physical functioning (50.7 vs. 45.2) and role limitations due to physical problem (51.4 vs. 46.1) compared with those who ate alone. (Table 3)

Table 4 presents the association between daily frequency eating-with-others and risk of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

all-cause mortality by gender. In the crude model, the HRs (95% CI) of risk of all-cause mortality for who ate with others 2 or 3 times a day were 0.42 (0.28–0.61), 0.67 (0.52–0.88) in men and 0.68 (0.42–1.11), 0.86 (0.64–1.16) in women compared with those who ate alone, respectively. When adjusted for age, education, marital status, region, living arrangement, cooking, appetite status, ADL, DDS, BMI, the HRs (95% CI) were 0.43 (0.25–0.73), 0.63 (0.41–0.98) for men and 0.68 (0.35–1.30), 0.69 (0.39–1.21) for women who ate with others 2 or 3 times a day. With further adjustment for financial status, the risk of mortality is reduced by 54% (HR: 0.46, 95% CI: 0.28–0.77) and 44% (HR: 0.66, 95% CI: 0.43–1.02) for men who ate with others 2 or 3 times a day.

The pathway analyses are shown in Figure 1. For men, there are significant positive associations between eating-with-others frequency and dietary quality (DDS) (p=0.006) as well as mental health (p=0.0009). In turn, better dietary quality (p<0.0001) is associated with less mortality risk, as are physical functioning (p<0.0001) and general health (p=0.007). For women, eating-with-others is not associated with any of dietary quality, physical functioning, mental health or general health; however, dietary quality (p=0.0004) and physical functioning (p<0.0001) are inversely associated with mortality risk, while mental health (p=0.043) is positively associated.

DISCUSSION

This study explored the gender-specific associations between eating arrangement and risk of mortality by observing a population-representative older adult cohort with a 10-year follow-up in an Asian country. Eating-with-others was inversely associated with risk of mortality, more evident in men than in women.

Food intake when eating-with-others

Eating-with-others has numerous beneficial effects on health. A randomized controlled trial at a Dutch nursing home found that family-style meals that included the presence of others increased the energy intake and reduced the prevalence of malnutrition. Those who ate with others ate more than those who ate alone. Social eating may stimulate intake through extension of meal duration and improved ambiance.¹⁹ The presence of others in the household did not affect energy intake, but the presence of others during mealtime did, with an average of 114 calories more per meal than those who ate alone.²⁰ Eating socially also improved dietary quality and diversity.²¹ However, the present study shows that after control for dietary quality in the model, eating-with-others and mortality remains associated. A possible reason for this is that solitary eating is often associated with depression,⁴⁻⁶ in turn associated with mortality.

Eating-with-others and mortality

Our findings are consistent with several studies from Western countries. The Nutrition Screening Initiative (NSI) checklist, a tool for malnutrition screening and awareness in older adults in the US, asks questions regarding solitary eating. In a cohort study with 581 community-dwelling older adults, who ate more than 17 meals alone per week, exhibited a 2.07-fold higher risk of mortality (RR=2.07, 95% CI=1.49–2.86) over an 8–12-year period.¹⁰ Another study in Bostwana found that older adults who ate alone had a higher risk of death (OR=6.7, 95% CI=2.2–20.0).⁹ However, these studies did not factor in gender.

Eating alone and gender

In the present study, men who ate with others had a lower risk of mortality than did those who ate alone, for several probable reasons. Men who ate with others had better dietary quality and a higher vegetable intake than those eating alone. We also found that men who ate alone were more likely to eat out, not prepare meals by themselves, and frequently skip meals than did

Page 11 of 26

BMJ Open

women. A Japanese cohort study discovered that men who ate alone were more likely to be underweight and skip meals and less likely to eat fruits and vegetables.²¹ Underweight older adults with poor dietary quality and low fruit and vegetable intakes have been associated with a higher risk of mortality.^{7 22} Furthermore, in our study, eating out is often associated with high-fat foods with poor quality. Men who were solitary eaters had low carbohydrate, protein, dietary fiber, and other nutrient intakes, but a higher fat intake than those who ate with others, although the differences were non-significant.

Compared with Japan,²¹ in our study men have a higher rate of solitary eating, but women have a lower rate. Taiwanese men who eat alone are more likely to be unmarried or live separately from their spouse. We found that the eating companionship of men who ate with others was usually their spouse or children rather than friends or neighbours (data not shown). Davis et al. found that dietary patterns of older men had stronger associations with living arrangements than did those of older women.²³ Cooking itself is a physical activity and a cognitive function, and in Taiwanese culture women are more likely to prepare meals. Men eat out or buy ready-to-eat food more than they cook. In this study, men (47.0%) cooked less than did women (63.9%) when eating alone (Table 1). Men who ate alone shopped more than did women who ate alone (27.6% vs. 9.6%).

Pathways from eating-with-others to survival

For men but not women, pathway analyses indicate that dietary quality, assessed as dietary diversity, provides a potential connection between the social aspect of eating-with-others and survival (Figure 1). This underscores the likely basic importance of nutritional factors in life-long health, but draws attention to the social as well as the biomedical role of food in health. For men, on pathway analysis, eating-with-others is associated with better mental health. Since pathway analysis requires that all independent variables are continuous, this may

have resulted in an absence of a significant direct association of eating-with-others with mortality due to its frequency not being linearly related to mortality; this contrasts with the survival analyses by Cox regression (Table 4). In addition, by pathway analysis, each of physical functioning and general health are themselves important in the prediction of mortality risk in men. It remains conceivable that the dietary quality that men achieve, irrespective of eating-with-others, plays a role in each of physical functioning and general health, which is evident in this population.⁷¹⁷

In the case of women, dietary quality directly and favourably predicts survival, but this connection is not found to be dependent on eating-with-others. Perhaps women can achieve the biomedical benefit of survival through diet without the need for its social function. In addition, women have a more favourable survival with better physical functioning. Somewhat surprisingly, better mental health is unfavourably associated with survival, although this is weakly significant. It is possible that confounders that have not been considered in this pathway analysis might account for this mental health association with mortality in older women. For example, in devoting themselves to the care of others, or in dealing successfully with a relative socio-economic disadvantage in widowhood, a sense of wellbeing may obtain, while health adversity supervenes.

Limitations

There are some limitations to this study. First, the association may be affected by the duration of time spent eating alone or eating-with-others, which was not considered. Second, in Taiwanese society, older people are more likely to live with and depend on their families, so the culturally specific nature of this study may limit its applicability elsewhere. The study should be considered within a Taiwanese (of perhaps a broader Asian) context. As with cohort studies in general, there may have been confounders not considered which might have explained the

associations presented. The study itself, however, has sought to consider the circumstances of eating which are usually neglected in the exploration of food and nutrient health relationships. The pathway analyses are an attempt to encompass more of the explanatory models for these relationships by way of inclusion of physical, mental and general health. The gender differences which are now recognised here and in other reports for the respective health roles of dietary quality on the one hand, and with whom the food is consumed on the other, are a challenge to more gender comprehensive public health policy.

Conclusions

Eating socially may benefit survival in elderly men through the adjunct of dietary quality; it is also positively associated with men's mental health. For women, dietary quality is associated with survival advantage which is not apparently dependent on eating-with-others. The relative gender advantage in longevity that women have in this population is not adequately explained in the present study, except that they are likely to be the ones who eat with men who benefit from this social role of food. Thus, for men and women, the provision of a healthy social environment which increases social interactions should improve health outcomes.

ACKNOWLEDGMENT

The Elderly Nutrition and Health Survey (NAHSIT Elderly) in Taiwan 1997–2002 project was conducted by the Institute of Biomedical Sciences of Academia Sinica and the Research Center for the Humanities and Social Sciences, Center for Survey Research, Academia Sinica, directed by Wen-Harn Pan and Su-Hao Tu, and sponsored by the Taiwan Department of Health.

This study is based in part on data from Department of Health and managed by the National Health Research Institutes. The interpretation and conclusions contained herein do not represent those of Department of Health, or National Health Research Institutes. None of the authors has any conflicts of interest to declare.

AUTHOR'S CONTRIBUTION

YCH, HLC, MLW and MSL designed the study; YCH, HLC and YTCL performed statistical analysis; YCH, MLW, YTCL, and MSL wrote the paper; MSL had primary responsibility for the final content.

COMPETING INTERESTS

No author has any conflict of interest in regard to this paper.

FOUNDING

This work was supported by the Ministry of Science and Technology grant number

MOST-103-2320-B-016-015-MY2.

DATA SHARING STATEMENT

No additional data are available.

ETHICS

This project was approved by the Ethics Committees of the National Health Research Institute and Academia Sinica, Taiwan.

COPYRIGHT/LICENSE FOR PUBLISH

"I Meei-Shyuan Lee The Corresponding Author of this article contained within the original manuscript which includes any diagrams & photographs and any related or stand alone film

BMJ Open

submitted (the Contribution") has the right to grant on behalf of all authors and does grant on behalf of all authors, a licence to the "BMJ Publishing Group Ltd" ("BMJ") and its licensees, to permit this Contribution (if accepted) to be published in any BMJ products and to exploit all subsidiary rights, as set out in our licence set out at:

http://group.bmj.com/products/journals/instructions-forauthors/wholly owned licence.pdf

REFERENCES

- 1. Rowe JW, Kahn RL. Successful aging. Gerontologist 1997;37:433-40.
- Meiselman HL. Dimensions of the meal. Journal of Foodservice 2008;19:13–21. doi: 10.1111/j.1745-4506.2008.00076.x.
- Administration for Community Living., US Department of Health and Human Services. Nutrition Services (OAA Title IIIC) - Congregate Nutrition Services Washington, DC: Administration for Community Living, US Department of Health and Human Services; 2016 [cited 2016 18th April]. Available from: http://www.aoa.gov/AoA_programs/HPW/Nutrition_Services/index.aspx#congregate accessed 18th April 2016.
- Kuroda A, Tanaka T, Hirano H, et al. Eating alone as social disengagement is strongly associated with depressive symptoms in Japanese community-dwelling older adults. J Am Med Dir Assoc 2015;16:578–85. doi: 10.1016/j.jamda.2015.01.078.
- Tani Y, Sasaki Y, Haseda M, et al. Eating alone and depression in older men and women by cohabitation status: The JAGES longitudinal survey. Age Ageing 2015;44:1019–26. doi: 10.1093/ageing/afv145.
- Wang X, Shen W, Wang C, et al. Association between eating alone and depressive symptom in elders: a cross-sectional study. BMC Geriatr 2016;16:19. doi: 10.1186/s12877-016-0197-2.
- Lee MS, Huang YC, Su HH, et al. A simple food quality index predicts mortality in elderly Taiwanese. J Nutr Health Aging 2011;15:815–21.
- Schoevers RA, Geerlings MI, Beekman AT, *et al.* Association of depression and gender with mortality in old age. Results from the Amsterdam Study of the Elderly (AMSTEL). *Br J Psychiatry* 2000;177:336–42.
- 9. Clausen T, Wilson AO, Molebatsi RM, et al. Diminished mental- and physical function and

BMJ Open

lack of social support are associated with shorter survival in community dwelling older persons of Botswana. *BMC Public Health* 2007;7:144. doi: 10.1186/1471-2458-7-144.

- Sahyoun NR, Jacques PF, Dallal GE, et al. Nutrition Screening Initiative Checklist may be a better awareness/educational tool than a screening one. J Am Diet Assoc 1997;97:760–4. doi: 10.1016/s0002-8223(97)00188-0.
- Ek S. Gender differences in health information behaviour: a Finnish population-based survey. *Health Promot Int* 2015;30:736–45. doi: 10.1093/heapro/dat063.
- Redondo-Sendino A, Guallar-Castillon P, Banegas JR, et al. Gender differences in the utilization of health-care services among the older adult population of Spain. BMC Public Health 2006;6:155. doi: 10.1186/1471-2458-6-155.
- Umberson D, Wortman CB, Kessler RC. Widowhood and depression: explaining long-term gender differences in vulnerability. *J Health Soc Behav* 1992;33:10–24.
- 14. Wu SJ, Chang YH, Wei IL, *et al.* Intake levels and major food sources of energy and nutrients in the Taiwanese elderly. *Asia Pac J Clin Nutr* 2005;14:211–20.
- 15. Cheng SL. Eating-with-others and the health of older people. School of Public Health. National Defense Medical Center, 2014.
- 16. Huang YC, Lee MS, Pan WH, *et al.* Validation of a simplified food frequency questionnaire as used in the Nutrition and Health Survey in Taiwan (NAHSIT) for the elderly. *Asia Pac J Clin Nutr* 2011;20:134–40.
- Lee MS, Chen RCY, Chang YH, et al. Physical function mitigates the adverse effects of being thin on mortality in a freeliving older Taiwanese cohort. J Nutr Health Aging 2012;16:766–83.
- Gamborg M, Jensen GB, Sorensen TI, et al. Dynamic path analysis in life-course epidemiology. Am J Epidemiol 2011;173:1131–9. doi: 10.1093/aje/kwq502.
- 19. Nijs KA, de Graaf C, Siebelink E, et al. Effect of family-style meals on energy intake and

risk of malnutrition in dutch nursing home residents: a randomized controlled trial. J Gerontol A Biol Sci Med Sci 2006;61:935–42.

- 20. Locher JL, Robinson CO, Roth DL, *et al.* The effect of the presence of others on caloric intake in homebound older adults. *J Gerontol A Biol Sci Med Sci* 2005;60:1475–8.
- 21. Tani Y, Kondo N, Takagi D, et al. Combined effects of eating alone and living alone on unhealthy dietary behaviors, obesity and underweight in older Japanese adults: Results of the JAGES. Appetite 2015;95:1–8. doi: 10.1016/j.appet.2015.06.005.
- 22. Trichopoulou A, Kouris-Blazos A, Wahlqvist ML, *et al.* Diet and overall survival in elderly people. *BMJ* 1995;311:1457–60.
- 23. Davis MA, Randall E, Forthofer RN, *et al.* Living arrangements and dietary patterns of older adults in the United States. *J Gerontol* 1985;40:434–42.

LEGENDS

Figure 1. Pathway analysis for the associations of eating-with-others and all-cause mortality.

All values are presented as β coefficients with their p values.

** * * * *					ally free	luency for	r eating-wit	h-others		** 7		
Variables		0	1	Men	2		T-4-1	0	1	Women	2	
N	Total	0	57	$\frac{2}{126}$	3	p value	Total	0	1	2	3	p value
N		142		126	630			174	79	140	546	
$\frac{0}{0}$		14.3 8.17	6.96	15.6	63.1 8.67			17.8	10.2	15.7 8.75	56.4 8.74	
Median of follow-up (yrs)	72 0 10 22		8.28	8.76		1 0 0 4 2	72 410 44	8.55	8.89 6 72.9±0.65			9 0.020
Age at baseline (yrs)	/2.9±0.33	74.9±0.65 7	1.8±0.7472	2.4±0.737.	2./±0.44		/3.4±0.44	/3.3±0./0	5/2.9±0.03	/2.9±0.88	/3.0±0.3	
Education Illiterate	18.8	24.2	16.7	8.8	20.3	< 0.0001	56.0	57.5	55.6	52.3	56.6	0.963
				8.8 48.4			30.0	37.3 32.5		32.3 33.8		
Some up to primary school	46.6	52.3	43.5		45.2				32.0		31.9	
High school and above	34.7	23.5	39.9	42.8	34.5	<0.0001	11.7	10.0	12.4	13.8	11.5	<0.0001
Marital status	70 (261	40.0	75.0	05.5	< 0.0001		155	10 (27.0	(0,0	< 0.0001
Married	78.6	36.1	48.2	75.0	95.5		49.48	15.5	19.6	37.8	68.8	
Bereaved	14.3	37.8	38.8	17.5	5.43		48.12	80.6	71.1	60.7	30.3	
Others	7.15	26.1	13.0	7.55	2.11	<0.0001	2.40	3.87	9.32	1.56	0.95	<0.0001
Live alone	13.7	60.4	0.00	9.67	1.47	< 0.0001	10.3	49.4	6.43	2.91	0.42	< 0.000
Whether enough money	70.4	71.0	70.0	05.0	77.0	0.030		(1 1	(2,1)	70.2	7 0 5	0.001
More than enough	78.4	71.8	79.9	85.8	77.8		75.0	64.1	63.1	78.3	79.5	
Just enough	19.2	21.7	20.2	13.0	20.1		21.0	28.7	28.8	21.0	17.2	
Not enough	2.46	6.52	0.00	1.26	2.14	0.070	4.01	7.23	8.13	0.70	3.25	0 1 7 1
Smoker	65.7	70.5	82.0	63.9	63.2	0.078	4.92	2.44	2.55	5.34	6.01	0.171
Appetite status						0.232						0.112
Good	38.5	33.0	45.0	36.6	39.4		30.4	24.9	42.9	31.7	29.5	
Fair	55.5	62.5	41.5	59.4	54.5		59.4	57.2	48.8	61.5	61.4	
Poor	6.07	4.54	13.5	4.09	6.08		10.2	17.9	8.34	6.87	9.14	
Body mass index (kg/m ²)		22.9±0.46 2				0.738			625.1±0.43			8 0.0002
< 18.5	7.07	11.2	10.4	7.53	5.66		7.01	8.07	0.00	3.83	8.72	
18.5–23.9	52.5	54.1	53.4	50.6	52.6		44.0	51.0	39.6	40.9	43.6	
												20
	For	peer review	only - http	://bmjoper	n.bmj.co	m/site/ab	out/guideli	nes.xhtm	I			
		-			-		-					

1													
2													
3													
4													
5													
6	24.0-26.9	28.0	19.0	19.9	34.0	29.2		27.8	24.7	34.1	25.3	28.1	
7		28.0 12.5	19.0 15.7							26.3	23.5 30.0		
8	≥ 27.0	12.3	13.7	16.3	7.91	12.6	0 172	21.3	16.3	20.3	30.0	19.6	0.017
9	Physical activity (MET/day)	51 (15 2	44.0	51.0	54.0	0.173	(1.1	(0.5	51.0	52.0	(5.4	0.017
10 11	<1.5	51.6	45.3	44.0	51.2	54.0		61.1	60.5	51.0	52.9	65.4	
12	1.5-2.9	11.3	14.3	17.9	14.2	9.17		11.8	14.3	6.16	14.0	11.4	
13	≥ 3 .	37.1	40.4	38.1	34.7	36.8	0.000	27.1	25.2	42.8	33.1	23.2	0.027
14	Shopping	42.0	24.2	44.5	45.0	45.5	0.239	54.0	(5.2		50.0	54.2	0.037
15	<1/wk	43.8	34.2	44.5	45.9	45.5		54.9	65.3	46.6	50.9	54.3	
16	1/wk	12.7	13.5	15.2	13.0	12.2		13.6	10.2	14.8	18.4	13.1	
17	1–2/wk	23.3	24.7	21.0	19.6	24.2		19.8	14.9	24.7	22.0	19.8	
18	Everyday	20.2	27.6	19.3	21.6	18.3		11.7	9.63	13.9	8.74	12.9	
19	Current cooking activity						< 0.0001						0.004
20	Never	58.4	33.2	44.1	58.1	65.8		26.8	24.1	12.1	31.5	29.1	
21	Sometimes	20.3	13.1	19.2	24.8	20.8		13.2	5.10	9.1	16.0	15.8	
22	Often	6.83	6.63	11.4	9.63	5.66		10.5	6.94	20.0	12.6	9.23	
23 24	Usually	14.5	47.0	25.2	7.46	7.69		49.5	63.9	58.8	39.9	45.9	
24 25	Activities of daily living	0.33±0.05							1.18±0.34				
26	All data weighted for unequal	probability o	of sampling	g design b	y SUDAA	N. Categ	orical varia	ables are	presented a	as n (%),	and contin	uous vari	ables are
27	presented as mean±SE.												
28	ANOVA and chi-square were u	sed for continu	ious and ca	ategories v	ariables to	test differ	ence betwe	en the gro	ups by gen	der.			
29													
30													
31													
32													
33													
34 35													
35 36													
37													
38													
39													
40													
41													21
42													
43													
44													
45		_											
46													
47		For _I	peer review	w only - ht	tp://bmjop	en.bmj.co	om/site/abo	out/guideli	nes.xhtml				

				Daily fre	equency for e	eating-with				
			Men					Women		
	0	1	2	3	p value	0	1	2	3	p value
Food preparation, %										
Skipping meals	11.2	16.5	5.75	2.96	0.008	6.54	8.45	4.76	4.27	0.370
Who prepared breakfast?					< 0.0001					0.003
Self	57.6	45.7	37.0	12.7		74.0	76.2	61.3	57.2	
Others	28.6	36.4	56.1	85.8		23.9	20.7	36.1	41.5	
Eating out	13.8	17.9	6.96	1.52		2.14	3.12	2.62	1.35	
Who prepared lunch?					< 0.0001					0.0001
Self	59.0	40.8	11.3	9.07		68.1	74.2	48.0	53.1	
Others	31.3	34.9	85.0	89.0		26.3	18.1	50.0	45.2	
Eating out	9.72	24.3	3.66	1.90		5.59	7.73	1.96	1.63	
Who prepared dinner?					<0.0001					0.009
Self	60.0	25.0	6.20	8.52		67.7	60.1	44.6	51.4	
Others	32.9	74.0	92.1	90.7		30.2	39.9	55.4	48.1	
Eating out	7.05	1.03	1.73	0.76		2.11	0.00	0.00	0.51	
If you need to prepare meals for					< 0.0001					0.118
yourself, who gets the food?					<0.0001					0.110
Never prepare	6.21	15.8	9.38	9.32		8.37	1.67	5.24	6.60	
Self	61.2	23.4	21.2	18.6		60.2	67.4	48.2	48.4	
Others	32.6	60.8	69.5	72.1		31.4	31.0	46.6	45.0	
Dietary diversity score, %					0.010					0.001
<u>≤</u> 3	24.1	22.1	12.2	12.1		30.2	20.7	8.05	17.5	
4	30.0	41.4	30.2	32.4		24.1	31.2	31.5	31.3	
5	35.4	28.4	39.6	35.8		25.1	31.7	42.8	34.8	

 BMJ Open

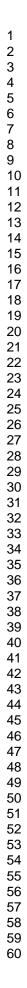

6	10.8	8.13	18.0	19.7		20.7	16.4	17.6	16.4
Food intake other than cereal (times/d)	,								
mean±SE									
Dairy	0.57 ± 0.07	0.40 ± 0.09	0.65 ± 0.08	0.62 ± 0.05	0.116	$0.80{\pm}0.08$	0.89 ± 0.14	$0.74{\pm}0.09$	0.72 ± 0.05
Meat			1.59±0.19		0.001				1.13±0.08
Seafood	0.86±0.18	0.93±0.12	1.08 ± 0.12	0.99 ± 0.08	0.524	0.70 ± 0.10	$0.92{\pm}0.12$	$0.91{\pm}0.09$	0.99 ± 0.07
Egg	0.44±0.08	0.39 ± 0.05	0.46 ± 0.05	0.46 ± 0.03	0.687	0.23 ± 0.03	0.36 ± 0.04	0.36 ± 0.03	0.38 ± 0.03
Soy	0.48±0.09	0.43±0.06	0.47 ± 0.06	0.45 ± 0.04	0.824	0.39 ± 0.06	0.50 ± 0.10	0.61 ± 0.07	0.51 ± 0.05
Vegetable	1.90 ± 0.18	1.84±0.13	2.57 ± 0.13	2.47 ± 0.12	0.004	2.09 ± 0.14	2.28 ± 0.13	2.35 ± 0.14	2.52±0.14
Fruit			1.21 ± 0.09		0.073	0.91 ± 0.10	0.90 ± 0.07	1.21 ± 0.10	1.07 ± 0.06
Total energy intake (kcal), mean±SE		1849±123	1871±118	1815±77.4	0.940	1327±92.6	1518±126	1500±58.7	1521±84.3
Nutrient density (/1,000 kcal), mean±S									
Carbohydrate (g)			139±2.58		0.438			144±3.31	
Dietary fiber (g)			12.4±0.75		0.653				12.7±0.57
Fat (g)			30.2±1.28		0.377				28.9±0.85
Protein (g)			41.5±1.34		0.690				41.8±1.27
Vitamin B-1 (mg)			0.69 ± 0.04		0.645				0.66 ± 0.03
Vitamin B-2 (mg)				0.81±0.04	0.801				0.85 ± 0.04
Vitamin B-6 (mg)			0.75 ± 0.05		0.586				0.71±0.03
Vitamin C (mg)			87.5±8.69		0.984			131 ± 20.0	
Calcium (mg)			336±21.0		0.353			483±41.7	
Magnesium (mg)			143±6.63		0.907	167 ± 9.06	157±7.87	159±9.59	147±4.55
All data weighted for unequal probabil									
ANOVA and chi-square were used for	continuous a	nd categori	es variables	s to test diffe	erence b	etween the g	roups by g	ender.	

Table 3. Health-related quality of life (SF-36) according to daily frequency eating-with-others by gender

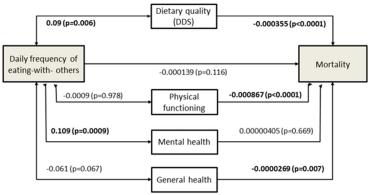

				Daily fre	equency e	eating-with-	others			
			Men					Women		
	0	1	2	3	p value	0	1	2	3	p value
General health	52.8 1.1	8 52.0±1.4	49 52.9±1.10	51.5±0.50	0.538	47.1±0.99	48.6±1.23	49.7±1.24	49.0 ± 0.84	0.211
Mental health	51.4±0.91	49.3±1.	88 52.3±1.13	52.5±0.50	0.222	47.8 ± 1.30	47.3±1.45	48.8±1.27	$49.2{\pm}1.02$	0.542
Physical functioning	51.1±1.16	50.4±1.1	26 53.3±0.68	51.5±0.65	0.044	45.2±0.96	50.7±0.97	48.2 ± 1.03	47.0 ± 0.64	0.002
Body pain	51.2±1.20) 51.5±1.	63 52.8±1.04	51.9±0.68	0.529	46.5 ± 1.08	47.4±1.20	49.5±1.00	$48.0{\pm}0.69$	0.112
Role limitations due to emotional problems	50.0±1.19	0 47.7±1.	69 51.5±0.93	51.2±0.63	0.160	47.5±1.16	50.8±1.51	49.6±1.13	49.3 ± 0.86	0.354
Role limitations due to physical problems	50.2±1.36	5 49.5±1.	31 52.1±1.01	51.4±0.67	0.254	46.1±1.03	51.4±1.28	48.7±1.55	49.7 ± 0.87	0.005
Social function	50.0±1.22	2 49.4±1.1	71 51.9±0.99	50.9±0.67	0.262	48.2±1.17	48.6±1.31	50.0±1.31	49.0 ± 0.71	0.698
Vitality	51.0±1.32	2 49.4±1.	76 51.7±1.02	51.8±0.68	0.591	47.1±0.95	49.2±1.72	48.1±1.45	48.1±0.75	0.553

Table 4. Gender-specific hazard ratios (95% CI) of association between eating-with- others and risk of mortality on older adults
Daily frequency of eating-with-others

				Daily frequency of	of eating	-with-others		
			Men				Women	
	0	1	2	3	0	1	2	3
Deceased/survival, n	75/67	26/31	37/89	248/382	60/114	20/59	36/104	196/350
Crude model		0.90 (0.60–1.35)			1.00		0.68 (0.42–1.11)	
Model 1	1.00	1.12 (0.71–1.78)	0.48 (0.31–0.74)	0.76 (0.57–1.03)	1.00	0.54 (0.24–1.23)	0.89 (0.53–1.49)	1.07 (0.77–1.49
Model 2 [†]	1.00	0.76 (0.37–1.56)	0.43 (0.25-0.73)	0.63 (0.41-0.98)	1.00	0.56 (0.29–1.07)	0.68 (0.35–1.30)	0.69 (0.39-1.21
Model 3 [†]	1.00	0.78 (0.39–1.55)	0.46 (0.28–0.77)	0.66 (0.43–1.02)	1.00	0.54 (0.27–1.06)	0.70 (0.36–1.36)	0.72 (0.40-1.27
Model 2: adjusted fo living and body mass Model 3: model 5 ph [†] Women were not ad	s index us adju	sted self-rate finar	ncial status	1	8)			

B. Women

190x275mm (96 x 96 DPI)

BMJ Open

Gender differences in longevity in free-living older adults who eat-with-others: a prospective study in Taiwan

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016575.R1
Article Type:	Research
Date Submitted by the Author:	02-Jun-2017
Complete List of Authors:	Huang, Yi-Chen; National Defense Medical Center, Graduate Institute of Life Sciences; National Defense Medical Center, School of Public Health Cheng, Hsing-Ling; Tri-Service General Hospital, The Department of Food and Nutrition Wahlqvist, Mark; National Defense Medical Center, School of Public Health; National Health Research Institutes, Institute of Population Health Sciences Lo, Yuan-Ting; National Defense Medical Center, School of Public Health Lee, Meei-Shyuan; National Defense Medical Center, School of Public Health; National Defense Medical Center, School of Public Health; National Defense Medical Center, Graduate Institute of Life Sciences
Primary Subject Heading :	Public health
Secondary Subject Heading:	Nutrition and metabolism, Epidemiology, Geriatric medicine, Health policy
Keywords:	elderly, diet, mortality, social activities

SCHOLARONE[™] Manuscripts

TITLE PAGE

BMJ Open

2	Gender differences in longevity in free-living older adults who
3	eat-with-others: a prospective study in Taiwan
4	
5	Yi-Chen Huang ^{1,2} , Hsing-Ling Cheng ³ , Mark L Wahlqvist ^{2,4,5} , Yuan-Ting C Lo ² , Meei-Shyuan
6	Lee ^{1,2,5*}
7	
8	¹ Graduate Institute of Life Sciences, National Defense Medical Center, 161 Minchuan East
9	Road, Sec. 6, Taipei, Taiwan 11490, Yi-Chen Huang Postdoctoral fellow, Meei-Shyuan Lee
10	Professor
11	² School of Public Health, National Defense Medical Center, 161 Minchuan East Road, Sec. 6,
12	Taipei, Taiwan 11490, Mark L Wahlqvist Professor, Yuan-Ting C Lo Postdoctoral fellow,
13	Yi-Chen Huang Postdoctoral fellow, Meei-Shyuan Lee Professor
14	³ The Department of Food and Nutrition, Tri-Service General Hospital, No. 325, Sec. 2,
15	Chenggong Road, Neihu District, Taipei, Taiwan 11490, Taiwan, Hsing-Ling Cheng Dietitian
16	⁴ Institute of Population Health Sciences, National Health Research Institutes, No. 5 Keyan
17	Road, Miaoli County, Taiwan 350, Mark L Wahlqvist Professor
18	⁵ Monash Asia Institute, Monash University, Caulfield, VIC 3800, Australia, Mark L Wahlqvist
19	Professor, Meei-Shyuan Lee Professor
20	
21	*Correspondence to: Prof Meei-Shyuan Lee, School of Public Health, National Defense
22	Medical Center, 161 Minchuan East Road, Sec. 6, Taipei, Taiwan 11490.
23	Email: mmsl@ndmctsgh.edu.tw; meeishyuan@gmail.com
24	Phone and fax number: +886-2-87910704
25	
26	Word count: 3189 words (excluding title page, licence statement, abstract, references, figures
27	and tables)

28 ABSTRACT

Objectives: Social activities such as 'eating-with-others' can positively affect the ageing process. We investigated the gender-specific association between eating arrangements and risk of all-cause mortality among free-living older adults.

32 Setting: A representative sample from the elderly Nutrition and Health Survey in Taiwan33 during 1999-2000.

Participants: Some 1,894 participants (955 men and 939 women) who aged ≥65 and
completed eating arrangement question as well as confirmed survivorship information.

36 Primary and secondary outcome measures: Eating arrangements, health condition, and 37 24-hour dietary recall information were collected at baseline. We classified eating 38 arrangements as the daily frequency of eating-with-others (0–3). Survivorship was determined 39 by the National Death Registry until the end of 2008. Cox proportional-hazards regression was 40 used to assess the association between eating-with-others and mortality risk.

Results: Overall, 63.1% of men and 56.4% of women ate with others 3 times a day. Both men and women who ate with others were more likely to have higher meat and vegetable intakes, and greater dietary quality than those who ate alone. The hazard ratios (HRs) (95% CI) for all-cause mortality when eating-with-others 2 and 3 times daily were 0.46 (0.28-0.61), 0.67(0.52-0.88) in men and 0.68 (0.42-1.11), 0.86 (0.64-1.16) in women, compared with those who ate alone. Multivariable HRs (95% CI) were 0.43 (0.25–0.73), 0.63 (0.41–0.98) in men and 0.68 (0.35–1.30), 0.69 (0.39–1.21) in women. With further adjustment for financial status, HR was reduced by 54% in men who ate with others twice a day. Pathway analysis shows this to be dependent on improved dietary quality by eating-with-others.

Conclusions: Eating-with-others is an independent survival factor in older men. To providing 51 a social environment which encourages eating-with-others may benefit survival of older 52 people, especially for men.

BMJ Open

2 3 4 5	53	Key words: elderly, diet, mortality, social activities
6 7	54	
8 9	55	STRENGTHS AND LIMITATIONS OF THIS STUDY
10 11	56	• Use of a representative free-living Taiwanese cohort with 10 years' follow-up for
12 13 14	57	survival.
14 15 16	58	• Study design provided an understanding of eating arrangements for older adults in a
17 18	59	community setting.
19 20	60	• A comprehensive assessment of the gender-specific associations between
21 22	61	eating-with-others and mortality for older adults.
23 24 25	62	• The frequency, but not duration of time spent eating alone or eating-with-others was
26 27	63	considered.
28 29	64	• Participants were mainly of Chinese ethnicity from Taiwan so that the generalisability of
30 31	65	findings may be limited.
32 33 34	66	
35 36		
37 38		
39 40		
41 42		
43 44		
44 45		
46		
47 48		
40		
50		
51		
52		
53		
54		
55 56		
50 57		
58		
59		3
60		

67 INTRODUCTION

Social engagement, such as interpersonal relations (e.g., contact and transactions with friends),
exchange of information, and receiving and providing emotional support, is a key component
of healthy ageing, besides avoiding disease and maintaining physical and cognitive functions.¹
However, opportunities to interact are frequently reduced after retirement because of factors
such as loss of physical capacity, loss of mobility, and solitary living.

The word "Meal" means the event of eating and what is eaten. For this reason, social interaction is considered one of the criteria for a meal.² Numerous countries offer nutritional programs, such as congregate meals or meals-on-wheels programs, to encourage eating in a social setting.³ The inverse correlation between eating-with-others and risk of depression has been studied extensively.⁴⁻⁷ Additionally, eating alone can be analyzed as a separate risk factor from living alone with regard to depression or depressive symptoms.⁵⁶ Eating-with-others can potentially improve dietary quality, variety, and energy intake through social facilitation.⁸⁹ Depression and poor dietary quality increase the risk of chronic disease and mortality in older adults.^{10 11} Solitary eating has been associated with a higher risk of mortality among small cohorts of elders in Botswana and the United States.^{12 13} But, it is unclear whether the daily frequency of eating-with-others is associated with survivorship.

Gender is also a factor in the quality of older people's lives; for example, women frequently exhibit more health-seeking behavior.^{14 15} Yet men face higher risks of depression after widowhood than do women.¹⁶ Exploring the gender-specific associations between solitary eating and mortality among older adults is potentially of public health value.

Providing simple, achievable steps for healthy ageing can prolong life, maintain quality of life over an extended duration, and limit physical deterioration, all of which are beneficial to public health. The purpose of this study was, therefore, to evaluate whether the daily frequency of eating-with-others is associated with all-cause mortality in a representative, free-living,

BMJ Open

_	
3	
4	
-	
5	
6	
-	
7	
8	
2	
9	
1	0
ż	
1	1
1	2
ż	2
1	3
1	4
ż	4 5 6 7
I	ວ
1	6
1	7
I	1
1	×
4	9
1	J
2	0
5	0 1 2
2	1
2	2
S	2
2	ა
2	4
S	F
2	5
2	6
ი	7
2	1
2	8
ი	0
2	9
3	3 4 5 6 7 8 9 0
3 3 3 3 3 3 3 3 3 3	1
2	
3	2
ຊ	3
2	5
3	4
ર	5
2	5
3	6
ຊ	7
2	-
3	8
ຊ	a
2	3
4	9 0
4	1
4	
4	3
4	
4	5
4	
4	7
ź	
4	g
4	9
ŕ	õ
5	U
5	1
5	
5	3
5	4
5	5
5	
5	7
	1
5 5	8

92 Taiwanese cohort of older men and women.

94 SUBJECTS AND METHODS

95 **Participants**

93

96 Participants aged 65 and over were recruited from the Elderly Nutrition and Health Survey in 97 Taiwan during 1999–2000. The details of the survey design and sampling method have been published elsewhere.¹⁷ In total, 1,937 older people completed face-to-face interviews with 98 99 trained interviewers. We excluded 40 participants with incorrect identification or incorrect 100 identity numbers and those who did not provide relevant or required information. After which 101 1,894 participants (955 men and 939 women) remained in the study. Trained interviewers 102 collected data on sociodemographics, dietary habits and intake, and disease history. All 103 participants signed informed consent forms prior to being interviewed. This project was 104 approved by the Ethics Committees of the National Health Research Institute and Academia 105 Sinica, Taiwan.

106

107 **Eating arrangement**

Eating arrangements were assessed by asking participants whether they usually ate breakfast, lunch, and dinner with others. Their responses were recorded as one of the following four options: eat alone, eat with spouse, eat with children or relative(s), and eat with friend(s) or neighbor(s). We then classified the eating arrangements as eating-with-others 0 (eat alone), 1, 2, 3 times a day.¹⁸ Information was also obtained about the person responsible for meal preparation.

114

60

115 **Dietary assessment**

116 Information on frequency of dietary intake was collected using a validated simplified food

117 frequency questionnaire.¹⁹ Dietary quality and nutritional intake were measured through 118 one-day 24-hour dietary recall. The dietary quality was evaluated using the dietary diversity 119 score (DDS), which is based on the consumption of a half serving of the following six food 120 groups daily: grains; meat, fish, or eggs; dairy; vegetables; fruits; and oil or fat. The DDS 121 score ranges from 0 to 6, with a higher score representing higher dietary quality. The method 122 of nutrient intake calculation is described elsewhere.¹⁰

Other variables

Participants were also asked how frequently they cooked or aided with cooking (excluding ready-to-eat meals), and their responses were recorded as never, sometimes, often, or usually. Participants were then asked how many people they lived with. The response "0" was defined as living alone.

Health-related quality of life was measured by a 36 item Short Form (SF-36) in a validated traditional Chinese version. A total of 8 dimensions of health, included physical functioning, role limitations due to physical problems, mental health, role limitations due to emotional problems, social function, bodily pain, vitality and general health. The score was calculated by the norm-based scoring system (μ =50, σ =10) and standardised. Higher scores indicated a better quality of life.²⁰

Disability was evaluated by activities of daily living (ADL) which included 9 questions about self-care task difficulty in an older adult's daily life. We used bioelectrical impedance analysis to measure muscle mass. The skeletal muscle mass index was used to determine sarcopenia status, calculated with the following equation:²¹

 $[0.401 \times (\text{height}^2/\text{resistance}) + (3.825 \times \text{gender}) - (0.071 \times \text{age}) + 5.102]/\text{height}^2$

where height is measured in metres, resistance in Ohms, and age in years; men = 1 andwomen = 0.

BMJ Open

2			
3			
4			
5			
6			
7			
8			
n			
3	~		
1	0 1 2		
1	1		
1	2		
1	3		
1	4		
1	5		
	6		
	7		
1	8		
1	9		
2	0		
2	1		
2	901234567890123456789		
2	3		
2	4		
2	5		
2 2	6		
2 2	7		
2	1		
2	8		
2	9		
3	0		
3	1		
3	2		
3	3		
3	4		
2 2	5		
2	6 6		
ე ი	7		
3	1		
3	8		
3	9		
4	0		
4	1		
4	2		
4	3		
4	4		
۵	5		
1	6		
+	0 7		
4	7		
4	8		
4	9		
5	0		
5	1		
5	2		
5	3		
5	4		
5	5		
ט ד	ວ ເ		
о г	6 7		
2	1		
	8		
5	9		

60

The Charlson comorbidity index was used to assess multi-morbidity.²² Cognitive function was assessed by a validated Short Portable Mental Status Questionnaire (SPMSQ) in Chinese which included 10 questions about orientation in time and place, personal history, long-term and short-term memory and calculation. More than or equal to three erroneous responses was regarded as cognitive impairment.²³

147

148 Outcome ascertainment

National Death Registry data were obtained from Taiwan's Ministry of Health and Welfare.
We linked the NAHSIT dataset to the National Death Registry dataset using the participant ID
to determine survival rates. Follow-up time was calculated from date of interview to date of
death or until December 31, 2008.

153

154 Statistical analysis

155 Categorical variables and continuous variables were presented as n (%) or mean ± standard 156 errors (SE). Chi-square and ANOVA were used to determine the association between eating 157 arrangements and baseline characteristics for categorical or continuous variables, respectively. 158 The Cox proportional-hazards regression model was used to evaluate the association between 159 daily frequency eating-with-others and risk of all-cause mortality. Since the interaction 160 between eating arrangements and gender was significant (p=0.0093), we used gender-specific 161 analyses. Additional factors were age, education level (illiterate, primary school, high school 162 and above), marital status (married, bereaved, other), region (Hakka, mountains, Eastern 163 Taiwan, Penghu, Northern Taiwan 1–3, Central Taiwan 1–3, Southern Taiwan 1–3), living 164 arrangement (live alone, live with others), BMI (<18.5, 18.5–23.9, 24.0–26.9, ≥27), DDS (≤3, 165 4, 5, 6), cooking frequency (never, sometimes, often, frequently), appetite status (good, fair, 166 poor), ADL and self-rate financial statue (more than enough, just enough, not enough). All

167 data analyses were performed using SAS 9.2 and SUDAAN 9.0 to adjust for the design effect of168 sampling.

To explore the pathways which might connect eating-with-others to survival, we have considered the intermediates of dietary quality (DDS), physical functioning, mental health, and general health. The first linkage, using continuous variables, has been assessed by Pearson's partial correlation coefficients. The second linkage to risk of mortality, as coefficients, has been assessed by the Aalen additive hazards model.²⁴

RESULTS

In total, 63.1% of men and 56.4% of women ate with others 3 times a day. For both genders, those who ate with others were more likely to be younger, married, better financial status, living with others, and less cooking than were those who ate alone. Men who ate alone had significantly higher ADLs (p=0.004) and cognitive impairment (p=0.005) than those who ate with others. (Table 1)

Table 2 presents the dietary quality and food intakes for daily frequency of eating-with-others by gender. Those who ate alone had a poor dietary quality (DDS \leq 3), compared to those who ate with others 3 times daily. Men who ate alone ate less meat (1.02 vs. 1.30 times/d) and vegetables (1.90 vs. 2.47 times/d) than did those who ate with others 3 times a day (p < 0.05). Women who ate with others 3 times a day tended to eat more meat (1.13) vs 0.81 times/d), seafood (0.99 vs. 0.70 times/d), eggs (0.38 vs. 0.23 times/d), and vegetable (2.52 vs. 2.09 times/d) intake than did those who ate alone (p<0.05). Further, women who ate alone had lower fat (24.7 vs. 28.9 g/1000 kcal/d) intakes, but higher carbohydrate (155 vs. 144 g/1000 kcal/d) intakes compared with those who ate with others (p<0.05). Regarding meals, around 58% to 60% of men and 68% to 74% of women prepared meals by themselves when eating alone. Men were more likely to eat out when eating-with-others once a day compared

192 with women.

Men who ate with others twice per day have significantly high physical functioning compared with other groups (p=0.044). For women, who ate with others once per day have higher physical functioning (50.7 vs. 45.2) and role limitations due to physical problem (51.4 vs. 46.1) compared with those who ate alone. (Table 3)

Table 4 presents the association between daily frequency eating-with-others and risk of all-cause mortality by gender. In the crude model, the HRs (95% CI) of risk of all-cause mortality for who ate with others 2 or 3 times a day were 0.42 (0.28–0.61), 0.67 (0.52–0.88) in men and 0.68 (0.42-1.11), 0.86 (0.64-1.16) in women compared with those who at alone, respectively. When adjusted for age, education, marital status, region, living arrangement, cooking, appetite status, ADL, DDS, BMI, the HRs (95% CI) were 0.43 (0.25–0.73), 0.63 (0.41-0.98) for men and 0.68 (0.35-1.30), 0.69 (0.39-1.21) for women who ate with others 2 or 3 times a day. With further adjustment for financial status, the risk of mortality is reduced by 54% (HR: 0.46, 95% CI: 0.28–0.77) and 44% (HR: 0.66, 95% CI: 0.43–1.02) for men who ate with others 2 or 3 times a day.

The pathway analyses are shown in Figure 1. For men, there are significant positive associations between eating-with-others frequency and dietary quality (DDS) (p=0.006) as well as mental health (p=0.0009). In turn, better dietary quality (p<0.0001) is associated with less mortality risk, as are physical functioning (p<0.0001) and general health (p=0.007). For women, eating-with-others is not associated with any of dietary quality, physical functioning, mental health or general health; however, dietary quality (p=0.0004) and physical functioning (p < 0.0001) are inversely associated with mortality risk, while mental health (p = 0.043) is positively associated.

DISCUSSION

This study explored the gender-specific associations between eating arrangement and risk of mortality by observing a population-representative older adult cohort with a 10-year follow-up in an Asian country. Eating-with-others was inversely associated with risk of mortality, more evident in men than in women.

222 Food intake when eating-with-others

Eating-with-others has numerous beneficial effects on health. A randomized controlled trial at a Dutch nursing home found that family-style meals that included the presence of others increased the energy intake and reduced the prevalence of malnutrition. Those who ate with others ate more than those who ate alone. Social eating may stimulate intake through extension of meal duration and improved ambiance.⁸ The presence of others in the household did not affect energy intake, but the presence of others during mealtime did, with an average of 114 calories more per meal than those who ate alone.²⁵ Eating socially also improved dietary quality and diversity.⁷⁹ However, the present study shows that after control for dietary quality in the model, eating-with-others and mortality remains associated. A possible reason for this is that solitary eating is often associated with depression,⁴⁻⁶ in turn associated with mortality. However, there may be value in solitude itself which would be an alternative interpretation of the difference we have found in mortality risk reduction between eating twice and three times a day with others by men.

- 237 Eating-with-others and mortality

Our findings are consistent with several studies from Western countries. The Nutrition Screening Initiative (NSI) checklist, a tool for malnutrition screening and awareness in older adults in the US, asks questions regarding solitary eating. In a cohort study with 581 community-dwelling older adults, who ate more than 17 meals alone per week, exhibited a

BMJ Open

2		
2 3		
3		
4		
5 6		
ĥ		
2		
7 8		
8		
9		
3	~	
1	0	
1	1	
1		
1	2	
1	3 4 5 6	
1	4	
1	5	
1	5	
1	6	
1	7	
1	8 9	
4	~	
1	9	
2	0	
2	1	
~		
2	2	
2	3	
2	012345678901234567890	
5	E	
2	S	
2	6	
2	7	
~	ი	
2	Ø	
2	9	
3	0	
2	4	
3	T	
3	2	
3	3	
2	4	
3	4	
3	5	
3	6	
2	-	
3	1	
3	8	
3	9	
ر ۸	~	
4	υ	
4	1	
4	2	
4		
4		
4	5	
4		
4		
4	8	
4		
5		
5	1	
5		
5		
5		
5		
5	0	
5	7	
5		
5		
n	Ч	

60

242 2.07-fold higher risk of mortality (RR=2.07, 95% CI=1.49–2.86) over an 8–12-year period.¹³
243 Another study in Bostwana found that older adults who ate alone had a higher risk of death
244 (OR=6.7, 95% CI=2.2–20.0).¹² But, gender effect was unknown in these studies.

245

246 Eating alone and gender

247 In the present study, men who ate with others had a lower risk of mortality than did those who 248 ate alone, for several probable reasons. Men who ate with others had better dietary quality and a 249 higher vegetable intake than those eating alone. We also found that men who ate alone were 250 more likely to eat out, not prepare meals by themselves, and frequently skip meals than did 251 women. A Japanese cohort study discovered that men who ate alone were more likely to be underweight and skip meals and less likely to eat fruits and vegetables.⁹ Underweight older 252 adults with poor dietary quality and low fruit and vegetable intakes have been associated with a 253 higher risk of mortality.^{10 26} Furthermore, in our study, eating out is often associated with 254 255 high-fat foods with poor quality. Men who were solitary eaters had low carbohydrate, protein, 256 dietary fiber, and other nutrient intakes, but a higher fat intake than those who ate with others, 257 although the differences were non-significant.

Compared with Japan,⁹ in our study men have a higher rate of solitary eating, but women 258 have a lower rate. Taiwanese men who eat alone are more likely to be unmarried or live 259 260 separately from their spouse. We found that the eating companionship of men who ate with 261 others was usually their spouse or children rather than friends or neighbours (data not shown). 262 Davis et al. found that dietary patterns of older men had stronger associations with living arrangements than did those of older women.²⁷ Cooking itself is a physical activity and a 263 cognitive function.²⁸ and in Taiwanese culture women are more likely to prepare meals. Men 264 265 eat out or buy ready-to-eat food more than they cook. In this study, men (47.0%) cooked less 266 than did women (63.9%) when eating alone (Table 1). Men who ate alone shopped more than

did women who ate alone (27.6% vs. 9.6%).

It is also possible that what has been observed as a link between eating-with-others by men and survival is part of a bigger picture of the role of marriage and men living with a partner in their health outcomes and survival. It is well-documented that men who live with a female partner live longer than those who do not.^{29 30} This could be for any one or more of several reasons which include having a carer, companionship or sharing of duties. A correlation matrix (Supplementary table 1) shows that the greatest correlations with eating-with-others are for marital status (positive), living alone (negative), and cooking frequency (negative). In all three, the magnitude of the relationships is stronger for men. These covariates are included in our models. We have identified marital status and cooking as potential explanators for the difference in HRs between eating-with-others twice or three times a day by men.

280 Pathways from eating-with-others to survival

For men but not women, pathway analyses indicate that dietary quality, assessed as dietary diversity, provides a potential connection between the social aspect of eating-with-others and survival (Figure 1). This underscores the likely basic importance of nutritional factors in life-long health, but draws attention to the social as well as the biomedical role of food in health. For men, on pathway analysis, eating-with-others is associated with better mental health. Since pathway analysis requires that all independent variables are continuous, this may have resulted in an absence of a significant direct association of eating-with-others with mortality due to its frequency not being linearly related to mortality; this contrasts with the survival analyses by Cox regression (Table 4). In addition, by pathway analysis, each of physical functioning and general health are themselves important in the prediction of mortality risk in men. It remains conceivable that the dietary quality that men achieve,

irrespective of eating-with-others, plays a role in each of physical functioning and general
health, which is evident in this population.^{10 20}

In the case of women, dietary quality directly and favourably predicts survival, but this connection is not found to be dependent on eating-with-others. Perhaps women can achieve the biomedical benefit of survival through diet without the need for its social function. In addition, women have a more favourable survival with better physical functioning. Somewhat surprisingly, better mental health is unfavourably associated with survival, although this is weakly significant. It is possible that confounders that have not been considered in this pathway analysis might account for this mental health association with mortality in older women. For example, in devoting themselves to the care of others, or in dealing successfully with a relative socio-economic disadvantage in widowhood, a sense of wellbeing may obtain, while health adversity supervenes.

305 Limitations

There are some limitations to this study. First, since the study participants were elderly, it can be expected that a change in their eating arrangements would take place through time as family and health circumstances change. Given that this is a single point survey (1999-2000). varied follow-up times may alter the findings. However, we have performed analyses with several follow-up times (<2, <4, <6 and ≥6 years) or the exclusion of events in the first and second years (data not shown). For men, the point estimates for HRs eating-with-others twice a day are consistently <1.00. But for women, low HRs of 0.15 are seen for eating-with-others once a day in the first two years of observation, although not beyond. This does not change our conclusions with the 10-year survival analysis. Second, the association may be affected by the duration of time spent eating alone or eating-with-others, which was not considered. Third, in Taiwanese society, older people are more likely to live with and depend on their families, so

the culturally specific nature of this study may limit its applicability elsewhere. The study should be considered within a Taiwanese (of perhaps a broader Asian) context. As with cohort studies in general, there may have been confounders not considered which might have explained the associations presented. The study itself, however, has sought to consider the circumstances of eating which are usually neglected in the exploration of food and nutrient health relationships. The pathway analyses are an attempt to encompass more of the explanatory models for these relationships by way of inclusion of physical, mental and general health. The gender differences which are now recognised here and in other reports for the respective health roles of dietary quality on the one hand, and with whom the food is consumed on the other, are a challenge to more gender comprehensive public health policy.

328 Conclusions

Eating socially may benefit survival in elderly men through the adjunct of dietary quality; it is also positively associated with men's mental health. For women, dietary quality is associated with survival advantage which is not apparently dependent on eating-with-others. The relative gender advantage in longevity that women have in this population is not adequately explained in the present study, except that they are likely to be the ones who eat with men who benefit from this social role of food. Thus, for men and women, the provision of a healthy social environment which increases social interactions should improve health outcomes.

337 ACKNOWLEDGMENT

The Elderly Nutrition and Health Survey (NAHSIT Elderly) in Taiwan 1997–2002 project
was conducted by the Institute of Biomedical Sciences of Academia Sinica and the Research
Center for the Humanities and Social Sciences, Center for Survey Research, Academia Sinica,
directed by Wen-Harn Pan and Su-Hao Tu, and sponsored by the Taiwan Department of Health.

BMJ Open

3		
3 4 5	342	This study is based in part on data from Department of Health and managed by the National
6 7	343	Health Research Institutes. The interpretation and conclusions contained herein do not
8 9	344	represent those of Department of Health, or National Health Research Institutes.
10 11	345	None of the authors has any conflicts of interest to declare.
12 13	346	
14 15 16	347	AUTHOR'S CONTRIBUTION
17 18	348	YCH, HLC, MLW and MSL designed the study; YCH, HLC and YTCL performed statistical
19 20	349	analysis; YCH, MLW, YTCL, and MSL wrote the paper; MSL had primary responsibility for
21 22 23	350	the final content.
24 25	351	
26 27	352	COMPETING INTERESTS
28 29 30	353	No author has any conflict of interest in regard to this paper.
31 32	354	
33 34	355	FOUNDING
35 36	356	This work was supported by the Ministry of Science and Technology grant number
37 38 39	357	MOST-103-2320-B-016-015-MY2, MOST105-2320-B-016 -008 and International Life
40 41	358	Sciences Institute (ILSI) Taiwan.
42 43	359	DATA SHARING STATEMENT
44 45 46	360	DATA SHARING STATEMENT
40 47 48	361	No additional data are available.
49 50	362	
51 52	363	ETHICS
53 54 55	364	This project was approved by the Ethics Committees of the National Health Research Institute
56 57	365	and Academia Sinica, Taiwan.
58 59		15
60		

366	
367	COPYRIGHT/LICENSE FOR PUBLISH
368	"I Meei-Shyuan Lee The Corresponding Author of this article contained within the original
369	manuscript which includes any diagrams & photographs and any related or stand alone film
370	submitted (the Contribution") has the right to grant on behalf of all authors and does grant on
371	behalf of all authors, a licence to the "BMJ Publishing Group Ltd" ("BMJ") and its licensees,
372	to permit this Contribution (if accepted) to be published in any BMJ products and to exploit
373	all subsidiary rights, as set out in our licence set out at:
374	http://group.bmj.com/products/journals/instructions-forauthors/wholly_owned_licence.pdf
375	
376	REFERENCES
377	1. Rowe JW, Kahn RL. Successful aging. Gerontologist 1997;37:433-40.
378	2. Meiselman HL. Dimensions of the meal. Journal of Foodservice 2008;19:13-21. doi:
379	10.1111/j.1745-4506.2008.00076.x.
380	3. Administration for Community Living, US Department of Health and Human Services.
381	Nutrition Services (OAA Title IIIC) - Congregate Nutrition Services Washington, DC:
382	Administration for Community Living, US Department of Health and Human Services;
383	2016 [cited 2016 18th April]. Available from:
384	http://www.aoa.gov/AoA_programs/HPW/Nutrition_Services/index.aspx#congregate
385	accessed 18th April 2016.
386	4. Kuroda A, Tanaka T, Hirano H, et al. Eating alone as social disengagement is strongly
387	associated with depressive symptoms in Japanese community-dwelling older adults. J
388	Am Med Dir Assoc 2015;16:578-85. doi: 10.1016/j.jamda.2015.01.078.
389	5. Tani Y, Sasaki Y, Haseda M, et al. Eating alone and depression in older men and women
390	by cohabitation status: The JAGES longitudinal survey. Age Ageing 2015;44:1019-26.
	16

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 30

BMJ Open

391	doi: 10.1093/ageing/afv145.
392	6. Wang X, Shen W, Wang C, et al. Association between eating alone and depressive
393	symptom in elders: a cross-sectional study. BMC Geriatr 2016;16:19. doi:
394	10.1186/s12877-016-0197-2.
395	7. Kimura Y, Wada T, Okumiya K, et al. Eating alone among community-dwelling Japanese
396	elderly: association with depression and food diversity. J Nutr Health Aging
397	2012;16:728-31. doi: 10.1007/s12603-012-0067-3.
398	8. Nijs KA, de Graaf C, Siebelink E, et al. Effect of family-style meals on energy intake and
399	risk of malnutrition in dutch nursing home residents: a randomized controlled trial. J
400	Gerontol A Biol Sci Med Sci 2006;61:935–42.
401	9. Tani Y, Kondo N, Takagi D, et al. Combined effects of eating alone and living alone on
402	unhealthy dietary behaviors, obesity and underweight in older Japanese adults: Results
403	of the JAGES. Appetite 2015;95:1-8. doi: 10.1016/j.appet.2015.06.005.
404	10. Lee MS, Huang YC, Su HH, et al. A simple food quality index predicts mortality in
405	elderly Taiwanese. J Nutr Health Aging 2011;15:815–21.
406	11. Schoevers RA, Geerlings MI, Beekman AT, et al. Association of depression and gender
407	with mortality in old age. Results from the Amsterdam Study of the Elderly (AMSTEL).
408	<i>Br J Psychiatry</i> 2000;177:336–42.
409	12. Clausen T, Wilson AO, Molebatsi RM, et al. Diminished mental- and physical function
410	and lack of social support are associated with shorter survival in community dwelling
411	older persons of Botswana. BMC Public Health 2007;7:144. doi:
412	10.1186/1471-2458-7-144.
413	13. Sahyoun NR, Jacques PF, Dallal GE, et al. Nutrition Screening Initiative Checklist may
414	be a better awareness/educational tool than a screening one. J Am Diet Assoc
415	1997;97:760-4. doi: 10.1016/s0002-8223(97)00188-0.

2
3
4
5
4 5 6
0
7
0
9
9 10 11
11
12
12 13 14 15
13
14
15
16
17
18
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22
20
20 24
∠ I 00
22
23
24
25
26
27
20
20
29
30
31
32
33 34 35 36 37 38 39
34
35
26
30
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
-
53
54
55
56
57 58
59
60

1

416 14. Ek S. Gender differences in health information behaviour: a Finnish population-based
417 survey. *Health Promot Int* 2015;30:736–45. doi: 10.1093/heapro/dat063.

- 418 15. Redondo-Sendino A, Guallar-Castillon P, Banegas JR, *et al.* Gender differences in the
 419 utilization of health-care services among the older adult population of Spain. *BMC*420 *Public Health* 2006;6:155. doi: 10.1186/1471-2458-6-155.
- 421 16. Umberson D, Wortman CB, Kessler RC. Widowhood and depression: explaining
 422 long-term gender differences in vulnerability. *J Health Soc Behav* 1992;33:10–24.
- 423 17. Wu SJ, Chang YH, Wei IL, *et al.* Intake levels and major food sources of energy and
 424 nutrients in the Taiwanese elderly. *Asia Pac J Clin Nutr* 2005;14:211–20.
- 425 18. Cheng SL. Eating-with-others and the health of older people. School of Public Health.
 426 National Defense Medical Center, 2014.
- 427 19. Huang YC, Lee MS, Pan WH, *et al.* Validation of a simplified food frequency
 428 questionnaire as used in the Nutrition and Health Survey in Taiwan (NAHSIT) for the
 429 elderly. *Asia Pac J Clin Nutr* 2011;20:134–40.
- 430 20. Lee MS, Chen RCY, Chang YH, *et al.* Physical function mitigates the adverse effects of
 431 being thin on mortality in a freeliving older Taiwanese cohort. *J Nutr Health Aging*432 2012;16:766–83.
- 433 21. Chuang S, Chang H, Lee M, *et al.* Skeletal muscle mass and risk of death in an elderly
 434 population. *Nutr, Metab Cardiovasc Di* 2014;24:784–91.
- 435 22. Charlson ME, Pompei P, Ales KL, *et al.* A new method of classifying prognostic
 436 comorbidity in longitudinal studies. Development and validation. *J Chronic Dis*437 1987;40:373–83.
- 438 23. Chen RC, Chang YH, Lee MS, *et al.* Dietary quality may enhance survival related to
 439 cognitive impairment in Taiwanese elderly. *Food Nutr Res* 2011;55 doi:
 440 10.3402/fnr.v55i0.7387.

Page	19 of 30	BMJ Open
1		
2 3 4	441	24. Gamborg M, Jensen GB, Sorensen TI, et al. Dynamic path analysis in life-course
4 5 6	442	epidemiology. Am J Epidemiol 2011;173:1131-9. doi: 10.1093/aje/kwq502.
7 8	443	25. Locher JL, Robinson CO, Roth DL, et al. The effect of the presence of others on caloric
9 10	444	intake in homebound older adults. J Gerontol A Biol Sci Med Sci 2005;60:1475-8.
11 12	445	26. Trichopoulou A, Kouris-Blazos A, Wahlqvist ML, et al. Diet and overall survival in
13 14 15	446	elderly people. <i>BMJ</i> 1995;311:1457–60.
16 17	447	27. Davis MA, Randall E, Forthofer RN, et al. Living arrangements and dietary patterns of
18 19	448	older adults in the United States. J Gerontol 1985;40:434-42.
20 21	449	28. Chen RC, Lee MS, Chang YH, et al. Cooking frequency may enhance survival in
22 23 24	450	Taiwanese elderly. <i>Public Health Nutr</i> 2012;15:1142–9. doi:
24 25 26	451	10.1017/s136898001200136x.
27 28	452	29. Ng TP, Jin A, Feng L, et al. Mortality of older persons living alone: Singapore
29 30	453	Longitudinal Ageing Studies. BMC Geriatr 2015;15:126. doi:
31 32	454	10.1186/s12877-015-0128-7.
33 34 35	455	30. Bowling A. Mortality after bereavement: a review of the literature on survival periods and
36 37	456	factors affecting survival. Soc Sci Med 1987;24:117-24.
38 39	457	
40 41	458	
42 43 44		
45 46		
47 48		
49 50		
51 52 53		
54 55		
56 57		
58 59		19
60		

459 LEGENDS

- 460 Figure 1. Pathway analysis for the associations of eating-with-others and all-cause mortality.
- 461 All values are presented as β coefficients with their p values.

Table 1. The baseline characteristics by daily frequency for eating-with-others

					Daily free	juency for	eating-wit	h-others				
Variables		<u>^</u>		Men				<u>^</u>		Women		
	Total	0	1	2	3	p value	Total	0	1	2	3	p value
N		142	57	126	630			174	79	140	546	
%		14.3	6.96	15.6	63.1			17.8	10.2	15.7	56.4	
Median of follow-up (yrs)		8.17	8.28	8.76	8.67			8.55	8.89	8.75	8.74	
Age at baseline (yrs)	72.9±0.33	74.9±0.65	71.8±0.74	72.4±0.73	72.7±0.44		73.4±0.44	75.3±0.7	6 72.9±0.65	72.9±0.88	373.0±0.39	
Education						< 0.0001						0.963
Illiterate	18.8	24.2	16.7	8.8	20.3		56.0	57.5	55.6	52.3	56.6	
Some up to primary school	46.6	52.3	43.5	48.4	45.2		32.3	32.5	32.0	33.8	31.9	
High school and above	34.7	23.5	39.9	42.8	34.5		11.7	10.0	12.4	13.8	11.5	
Marital status						< 0.0001						< 0.0001
Married	78.6	36.1	48.2	75.0	92.5		49.48	15.5	19.6	37.8	68.8	
Bereaved	14.3	37.8	38.8	17.5	5.43		48.12	80.6	71.1	60.7	30.3	
Others	7.15	26.1	13.0	7.55	2.11		2.40	3.87	9.32	1.56	0.95	
Live alone	13.7	60.4	0.00	9.67	1.47	< 0.0001	10.3	49.4	6.43	2.91	0.42	< 0.000
Whether enough money						0.030						0.001
More than enough	78.4	71.8	79.9	85.8	77.8		75.0	64.1	63.1	78.3	79.5	
Just enough	19.2	21.7	20.2	13.0	20.1		21.0	28.7	28.8	21.0	17.2	
Not enough	2.46	6.52	0.00	1.26	2.14		4.01	7.23	8.13	0.70	3.25	
Smoker	65.7	70.5	82.0	63.9	63.2	0.078	4.92	2.44	2.55	5.34	6.01	0.171
Appetite status						0.232						0.112
Good	38.5	33.0	45.0	36.6	39.4		30.4	24.9	42.9	31.7	29.5	
Fair	55.5	62.5	41.5	59.4	54.5		59.4	57.2	48.8	61.5	61.4	
Poor	6.07	4.54	13.5	4.09	6.08		10.2	17.9	8.34	6.87	9.14	
Body mass index (kg/m ²)	23.3±0.15	22.9±0.46	23.2 ± 0.64	23.2±0.33	23.3±0.17	0.738	23.9±0.25	23.3±0.5	6 25.1±0.43	24.5±0.50) 23.8±0.28	8 0.0002
< 18.5	7.07	11.2	10.4	7.53	5.66		7.01	8.07	0.00	3.83	8.72	
18.5–23.9	52.5	54.1	53.4	50.6	52.6		44.0	51.0	39.6	40.9	43.6	
												21
	_											

1													
2													
3													
4													
5													
6 7	24.0-26.9	28.0	19.0	19.9	34.0	29.2		27.8	24.7	34.1	25.3	28.1	
8	≥ 27.0	12.5	15.7	16.3	7.91	12.6		21.3	16.3	26.3	30.0	19.6	
9	Physical activity (MET/day)						0.173						0.017
10	<1.5	51.6	45.3	44.0	51.2	54.0		61.1	60.5	51.0	52.9	65.4	
11	1.5–2.9	11.3	14.3	17.9	14.2	9.17		11.8	14.3	6.16	14.0	11.4	
12	<u>>3</u>	37.1	40.4	38.1	34.7	36.8		27.1	25.2	42.8	33.1	23.2	
13	Shopping				,		0.239						0.037
14	<1/wk	43.8	34.2	44.5	45.9	45.5		54.9	65.3	46.6	50.9	54.3	
15	1/wk	12.7	13.5	15.2	13.0	12.2		13.6	10.2	14.8	18.4	13.1	
16 17	1-2/wk	23.3	24.7	21.0	19.6	24.2		19.8	14.9	24.7	22.0	19.8	
17	Everyday	20.2	27.6	19.3	21.6	18.3		11.7	9.63	13.9	8.74	12.9	
19	Current cooking activity						< 0.0001						0.004
20	Never	58.4	33.2	44.1	58.1	65.8		26.8	24.1	12.1	31.5	29.1	
21	Sometimes	20.3	13.1	19.2	24.8	20.8		13.2	5.10	9.1	16.0	15.8	
22	Often	6.83	6.63	11.4	9.63	5.66		10.5	6.94	20.0	12.6	9.23	
23	Usually	14.5	47.0	25.2	7.46	7.69		49.5	63.9	58.8	39.9	45.9	
24	Activities of daily living					0.36±0.07	0.004		31.18±0.34				0.088
25	Skeletal muscle mass index (kg/						0.149		29.14±0.22				
26 27	m ²)												
28	Charlson comorbidity index	4.71±0.20	5.20±0.48	4.22±0.39	4.85±0.61	4.62±0.20	0.365	4.77±0.21	5.06±0.51	4.74±0.59	4.21±0.29	4.84±0.24	0.142
29	Self-perceived health status			,			0.400						< 0.0001
30	Excellent	4.55	7.12	7.46	1.23	4.47		2.58	2.88	0	3.14	2.80	
31	Very good	19.9	16.5	13.8	29.9	18.9		15.7	10.7	24.3	14.1	16.0	
32	Good	21.4	25.8	19.0	17.3	21.8		16.1	11.8	9.85	17.7	18.2	
33	Fair	41.1	38.2	40.3	40.7	41.9		48.3	47.9	56.7	50.4	46.2	
34	Poor	13.1	12.4	19.5	10.9	13.1		17.4	26.7	9.25	14.7	16.8	
35	Cognitive impairment	8.81	12.6	1.82	3.10	10.2	0.005	27.4	30.9	25.9	30.4	25.8	0.751
36 37	All data weighted for unequal p												
38	presented as mean±SE.	j	P	8	,				F	(, , ,),			
39	ANOVA and chi-square were used	d for contin	uous and c	ategories v	ariables to	test differe	nce betw	veen the gro	oups by gen	der.			
40													
41													22
42												4	- 2
43													
44													
45		-			(. /						
46 47		For	peer revie	w only - ht	qo[ma/l:qı	en.bmj.con	n/site/at	pout/guidel	ines.xhtml				
47													

Table 2 Food nutriant intolves and	daily fraguency of acting with others by conder
Table 2. Food, numerit makes and	d daily frequency of eating-with-others by gender

	Daily frequency for eating-with-others										
	Men Women										
	0	1	2	3	p value	0	1	2	3	p value	
Food preparation, %											
Skipping meals	11.2	16.5	5.75	2.96	0.008	6.54	8.45	4.76	4.27	0.370	
Who prepared breakfast?					< 0.0001					0.003	
Self	57.6	45.7	37.0	12.7		74.0	76.2	61.3	57.2		
Others	28.6	36.4	56.1	85.8		23.9	20.7	36.1	41.5		
Eating out	13.8	17.9	6.96	1.52		2.14	3.12	2.62	1.35		
Who prepared lunch?					< 0.0001					0.0001	
Self	59.0	40.8	11.3	9.07		68.1	74.2	48.0	53.1		
Others	31.3	34.9	85.0	89.0		26.3	18.1	50.0	45.2		
Eating out	9.72	24.3	3.66	1.90		5.59	7.73	1.96	1.63		
Who prepared dinner?					< 0.0001					0.009	
Self	60.0	25.0	6.20	8.52		67.7	60.1	44.6	51.4		
Others	32.9	74.0	92.1	90.7		30.2	39.9	55.4	48.1		
Eating out	7.05	1.03	1.73	0.76		2.11	0.00	0.00	0.51		
If you need to prepare meals for					<0.0001					0 1 1 0	
yourself, who gets the food?					< 0.0001					0.118	
Never prepare	6.21	15.8	9.38	9.32		8.37	1.67	5.24	6.60		
Self	61.2	23.4	21.2	18.6		60.2	67.4	48.2	48.4		
Others	32.6	60.8	69.5	72.1		31.4	31.0	46.6	45.0		
Dietary diversity score, mean±SE	4.27±0.11	4.13±0.17	4.57±0.11	4.61±0.00	6 0.003	4.28±0.13	4.32±0.14	4.69±0.10	4.46±0.06	6 0.009	
≤3 (%)	24.1	22.1	12.2	12.1	0.010	30.2	20.7	8.05	17.5	0.001	
4 (%)	30.0	41.4	30.2	32.4		24.1	31.2	31.5	31.3		
5 (%)	35.4	28.4	39.6	35.8		25.1	31.7	42.8	34.8		

	8.13	18.0	19.7		20.7	16.4	17.6	16.4
mes/d),								
0.57±0.07	0.40 ± 0.09	0.65 ± 0.08	0.62 ± 0.05	0.116	$0.80{\pm}0.08$	$0.89{\pm}0.14$	$0.74{\pm}0.09$	0.72 ± 0.05
1.02±0.09	1.98 ± 0.08	1.59 ± 0.19	1.30 ± 0.07	0.001	0.81±0.15	$0.86{\pm}0.16$	$1.20{\pm}0.16$	1.13±0.08
0.86±0.18	0.93±0.12	1.08 ± 0.12	0.99 ± 0.08	0.524	0.70 ± 0.10	$0.92{\pm}0.12$	$0.91{\pm}0.09$	0.99 ± 0.07
0.44±0.08	0.39 ± 0.05	0.46 ± 0.05	0.46 ± 0.03	0.687	0.23 ± 0.03	$0.36{\pm}0.04$	$0.36{\pm}0.03$	0.38 ± 0.03
0.48±0.09	0.43 ± 0.06	0.47 ± 0.06	0.45 ± 0.04	0.824	0.39±0.06	$0.50{\pm}0.10$	$0.61{\pm}0.07$	0.51±0.05
1.90 ± 0.18	1.84±0.13	2.57±0.13	2.47±0.12	0.004	2.09 ± 0.14	2.28 ± 0.13	$2.35{\pm}0.14$	2.52±0.14
0.99±0.11	0.93±0.13	1.21 ± 0.09	1.19 ± 0.04	0.073	0.91±0.10	$0.90{\pm}0.07$	1.21 ± 0.10	1.07 ± 0.06
±SE 1833±100	1849±123	1871±118	1815 ± 77.4	0.940	1327±92.6	1518 ± 126	1500 ± 58.7	1521±84.3
ean±SE								
132±4.79	137±5.21	139±2.58	139 ± 2.71	0.438	155 ± 3.55	143±5.63	144±3.31	144±1.82
11.2±0.79	11.7±0.87	12.4±0.75	11.7±0.45	0.653	15.5 ± 2.05	14.1 ± 1.44	$14.0{\pm}1.02$	12.7±0.57
32.1±1.42	30.5±2.15	30.2±1.28	29.5±0.82	0.377				
41.9±1.80	43.3±2.52	41.5 ± 1.34	43.2±1.16	0.690	41.6±1.77	42.1±2.06	42.8 ± 1.32	41.8±1.27
0.63 ± 0.06	0.78 ± 0.07	0.69 ± 0.04	0.70 ± 0.03	0.645	0.71 ± 0.08	$0.69{\pm}0.05$	$0.76{\pm}0.07$	0.66 ± 0.03
0.84 ± 0.06	0.88±0.12	0.78 ± 0.06	0.81 ± 0.04	0.801	1.02 ± 0.07	1.11 ± 0.14	1.05 ± 0.09	0.85 ± 0.04
0.73 ± 0.07	0.82 ± 0.09	0.75 ± 0.05	0.72 ± 0.03	0.586	0.65±0.05	$0.81{\pm}0.08$	$0.73{\pm}0.03$	0.71±0.03
92.5±12.2	88.4±12.8	87.5±8.69	90.6±6.18	0.984	110±9.32	103±11.5	131 ± 20.0	105 ± 7.72
382±26.2	338±41.7	336±21.0	365±16.3	0.353	536±43.0	455±42.4	483±41.7	432±19.8
				0.907	167 ± 9.06	157±7.87	159±9.59	147±4.55
ed for continuous ar	nd categori	ies variables	s to test diffe	erence be	etween the g	roups by go	ender.	
	$\begin{array}{c} 0.57\pm0.07\\ 1.02\pm0.09\\ 0.86\pm0.18\\ 0.44\pm0.08\\ 0.48\pm0.09\\ 1.90\pm0.18\\ 0.99\pm0.11\\ \pm SE\\ 132\pm4.79\\ 11.2\pm0.79\\ 32.1\pm1.42\\ 41.9\pm1.80\\ 0.63\pm0.06\\ 0.84\pm0.06\\ 0.73\pm0.07\\ 92.5\pm12.2\\ 382\pm26.2\\ 139\pm7.34\\ \end{array}$	$\begin{array}{c} 0.57{\pm}0.07 \ 0.40{\pm}0.09\\ 1.02{\pm}0.09 \ 1.98{\pm}0.08\\ 0.86{\pm}0.18 \ 0.93{\pm}0.12\\ 0.44{\pm}0.08 \ 0.39{\pm}0.05\\ 0.48{\pm}0.09 \ 0.43{\pm}0.06\\ 1.90{\pm}0.18 \ 1.84{\pm}0.13\\ 0.99{\pm}0.11 \ 0.93{\pm}0.13\\ \pm SE \ 132{\pm}4.79 \ 137{\pm}5.21\\ 11.2{\pm}0.79 \ 11.7{\pm}0.87\\ 32.1{\pm}1.42 \ 30.5{\pm}2.15\\ 41.9{\pm}1.80 \ 43.3{\pm}2.52\\ 0.63{\pm}0.06 \ 0.78{\pm}0.07\\ 0.84{\pm}0.06 \ 0.88{\pm}0.12\\ 0.73{\pm}0.07 \ 0.82{\pm}0.09\\ 92.5{\pm}12.2 \ 88.4{\pm}12.8\\ 382{\pm}26.2 \ 338{\pm}41.7\\ 139{\pm}7.34 \ 141{\pm}12.1\\ 0bability of sampling design b$	$\begin{array}{c} 0.57{\pm}0.07 \ 0.40{\pm}0.09 \ 0.65{\pm}0.08 \\ 1.02{\pm}0.09 \ 1.98{\pm}0.08 \ 1.59{\pm}0.19 \\ 0.86{\pm}0.18 \ 0.93{\pm}0.12 \ 1.08{\pm}0.12 \\ 0.44{\pm}0.08 \ 0.39{\pm}0.05 \ 0.46{\pm}0.05 \\ 0.48{\pm}0.09 \ 0.43{\pm}0.06 \ 0.47{\pm}0.06 \\ 1.90{\pm}0.18 \ 1.84{\pm}0.13 \ 2.57{\pm}0.13 \\ 0.99{\pm}0.11 \ 0.93{\pm}0.13 \ 1.21{\pm}0.09 \\ 1833{\pm}100 \ 1849{\pm}123 \ 1871{\pm}118 \\ ean{\pm}SE \\ 132{\pm}4.79 \ 137{\pm}5.21 \ 139{\pm}2.58 \\ 11.2{\pm}0.79 \ 11.7{\pm}0.87 \ 12.4{\pm}0.75 \\ 32.1{\pm}1.42 \ 30.5{\pm}2.15 \ 30.2{\pm}1.28 \\ 41.9{\pm}1.80 \ 43.3{\pm}2.52 \ 41.5{\pm}1.34 \\ 0.63{\pm}0.06 \ 0.78{\pm}0.07 \ 0.69{\pm}0.04 \\ 0.84{\pm}0.06 \ 0.88{\pm}0.12 \ 0.78{\pm}0.05 \\ 92.5{\pm}12.2 \ 88.4{\pm}12.8 \ 87.5{\pm}8.69 \\ 382{\pm}26.2 \ 338{\pm}41.7 \ 336{\pm}21.0 \\ 139{\pm}7.34 \ 141{\pm}12.1 \ 143{\pm}6.63 \\ \hline \end{array}$	0.57±0.07 0.40±0.09 0.65±0.08 0.62±0.05 1.02±0.09 1.98±0.08 1.59±0.19 1.30±0.07 0.86±0.18 0.93±0.12 1.08±0.12 0.99±0.08 0.44±0.08 0.39±0.05 0.46±0.05 0.46±0.03 0.48±0.09 0.43±0.06 0.47±0.06 0.45±0.04 1.90±0.18 1.84±0.13 2.57±0.13 2.47±0.12 0.99±0.11 0.93±0.13 1.21±0.09 1.19±0.04 1833±100 1849±123 1871±118 1815±77.4 ean±SE 132±4.79 137±5.21 139±2.58 139±2.71 11.2±0.79 11.7±0.87 12.4±0.75 11.7±0.45 32.1±1.42 30.5±2.15 30.2±1.28 29.5±0.82 41.9±1.80 43.3±2.52 41.5±1.34 43.2±1.16 0.63±0.06 0.78±0.07 0.69±0.04 0.70±0.03 0.84±0.06 0.88±0.12 0.78±0.06 0.81±0.04 0.73±0.07 0.82±0.09 0.75±0.05 0.72±0.03 92.5±12.2 88.4±12.8 87.5±8.69 90.6±6.18 382±26.2 338±41.7 336±21.0 365±16.3 139±7.34 141±12.1 143±6.63 145±3.84 obability of sampling design by SUDAAN.	$\begin{array}{c} 0.57\pm0.07\ 0.40\pm0.09\ 0.65\pm0.08\ 0.62\pm0.05\ 0.116\\ 1.02\pm0.09\ 1.98\pm0.08\ 1.59\pm0.19\ 1.30\pm0.07\ 0.001\\ 0.86\pm0.18\ 0.93\pm0.12\ 1.08\pm0.12\ 0.99\pm0.08\ 0.524\\ 0.44\pm0.08\ 0.39\pm0.05\ 0.46\pm0.05\ 0.46\pm0.03\ 0.687\\ 0.48\pm0.09\ 0.43\pm0.06\ 0.47\pm0.06\ 0.45\pm0.04\ 0.824\\ 1.90\pm0.18\ 1.84\pm0.13\ 2.57\pm0.13\ 2.47\pm0.12\ 0.004\\ 0.99\pm0.11\ 0.93\pm0.13\ 1.21\pm0.09\ 1.19\pm0.04\ 0.073\\ 1833\pm100\ 1849\pm123\ 1871\pm118\ 1815\pm77.4\ 0.940\\ ean\pmSE\\ 132\pm4.79\ 137\pm5.21\ 139\pm2.58\ 139\pm2.71\ 0.438\\ 11.2\pm0.79\ 11.7\pm0.87\ 12.4\pm0.75\ 11.7\pm0.45\ 0.653\\ 32.1\pm1.42\ 30.5\pm2.15\ 30.2\pm1.28\ 29.5\pm0.82\ 0.377\\ 41.9\pm1.80\ 43.3\pm2.52\ 41.5\pm1.34\ 43.2\pm1.16\ 0.690\\ 0.63\pm0.06\ 0.78\pm0.07\ 0.69\pm0.04\ 0.70\pm0.03\ 0.645\\ 0.84\pm0.06\ 0.88\pm0.12\ 0.78\pm0.06\ 0.81\pm0.04\ 0.801\\ 0.73\pm0.07\ 0.82\pm0.09\ 0.75\pm0.05\ 0.72\pm0.03\ 0.586\\ 92.5\pm12.2\ 88.4\pm12.8\ 87.5\pm8.69\ 90.6\pm6.18\ 0.984\\ 382\pm26.2\ 338\pm41.7\ 336\pm21.0\ 365\pm16.3\ 0.353\\ 139\pm7.34\ 141\pm12.1\ 143\pm6.63\ 145\pm3.84\ 0.907\\ 0ability of sampling design by SUDAAN. $	$\begin{array}{c} 0.57\pm 0.07 \ 0.40\pm 0.09 \ 0.65\pm 0.08 \ 0.62\pm 0.05 \ 0.116 \ 0.80\pm 0.08 \\ 1.02\pm 0.09 \ 1.98\pm 0.08 \ 1.59\pm 0.19 \ 1.30\pm 0.07 \ 0.001 \ 0.81\pm 0.15 \\ 0.86\pm 0.18 \ 0.93\pm 0.12 \ 1.08\pm 0.12 \ 0.99\pm 0.08 \ 0.524 \ 0.70\pm 0.10 \\ 0.44\pm 0.08 \ 0.39\pm 0.05 \ 0.46\pm 0.05 \ 0.46\pm 0.03 \ 0.687 \ 0.23\pm 0.03 \\ 0.48\pm 0.09 \ 0.43\pm 0.06 \ 0.47\pm 0.06 \ 0.45\pm 0.04 \ 0.824 \ 0.39\pm 0.06 \\ 1.90\pm 0.18 \ 1.84\pm 0.13 \ 2.57\pm 0.13 \ 2.47\pm 0.12 \ 0.004 \ 2.09\pm 0.14 \\ 0.99\pm 0.11 \ 0.93\pm 0.13 \ 1.21\pm 0.09 \ 1.19\pm 0.04 \ 0.073 \ 0.91\pm 0.10 \\ \pm SE \ 1833\pm 100 \ 1849\pm 123 \ 1871\pm 118 \ 1815\pm 77.4 \ 0.940 \ 1327\pm 92.6 \\ ean\pm SE \\ 132\pm 4.79 \ 137\pm 5.21 \ 139\pm 2.58 \ 139\pm 2.71 \ 0.438 \ 155\pm 3.55 \\ 11.2\pm 0.79 \ 11.7\pm 0.87 \ 12.4\pm 0.75 \ 11.7\pm 0.45 \ 0.653 \ 15.5\pm 2.05 \\ 32.1\pm 1.42 \ 30.5\pm 2.15 \ 30.2\pm 1.28 \ 29.5\pm 0.82 \ 0.377 \ 24.7\pm 1.13 \\ 41.9\pm 1.80 \ 43.3\pm 2.52 \ 41.5\pm 1.34 \ 43.2\pm 1.16 \ 0.690 \ 41.6\pm 1.77 \\ 0.63\pm 0.06 \ 0.78\pm 0.07 \ 0.69\pm 0.04 \ 0.70\pm 0.03 \ 0.645 \ 0.71\pm 0.08 \\ 0.84\pm 0.06 \ 0.88\pm 0.12 \ 0.78\pm 0.06 \ 0.81\pm 0.04 \ 0.801 \ 1.02\pm 0.07 \\ 0.73\pm 0.07 \ 0.82\pm 0.09 \ 0.75\pm 0.05 \ 0.72\pm 0.03 \ 0.586 \ 0.65\pm 0.05 \\ 92.5\pm 12.2 \ 88.4\pm 12.8 \ 87.5\pm 8.69 \ 90.6\pm 6.18 \ 0.984 \ 110\pm 9.32 \\ 382\pm 26.2 \ 338\pm 41.7 \ 336\pm 21.0 \ 365\pm 16.3 \ 0.353 \ 536\pm 43.0 \\ 139\pm 7.34 \ 141\pm 12.1 \ 143\pm 6.63 \ 145\pm 3.84 \ 0.907 \ 167\pm 9.06 \\ 0ability of sampling design by SUDAAN.$	$ \begin{array}{c} 0.57\pm 0.07 \ 0.40\pm 0.09 \ 0.65\pm 0.08 \ 0.62\pm 0.05 \ 0.116 \\ 0.80\pm 0.08 \ 0.89\pm 0.14 \\ 1.02\pm 0.09 \ 1.98\pm 0.08 \ 1.59\pm 0.19 \ 1.30\pm 0.07 \ 0.001 \\ 0.81\pm 0.15 \ 0.86\pm 0.16 \\ 0.86\pm 0.18 \ 0.93\pm 0.12 \ 1.08\pm 0.12 \ 0.99\pm 0.08 \ 0.524 \\ 0.70\pm 0.10 \ 0.92\pm 0.12 \\ 0.44\pm 0.08 \ 0.39\pm 0.05 \ 0.46\pm 0.05 \ 0.46\pm 0.03 \ 0.687 \\ 0.23\pm 0.03 \ 0.36\pm 0.04 \\ 0.48\pm 0.09 \ 0.43\pm 0.06 \ 0.47\pm 0.06 \ 0.45\pm 0.04 \\ 0.48\pm 0.09 \ 0.43\pm 0.013 \ 2.57\pm 0.13 \ 2.47\pm 0.12 \\ 0.004 \ 2.09\pm 0.14 \ 2.28\pm 0.13 \\ 0.99\pm 0.11 \ 0.93\pm 0.13 \ 1.21\pm 0.09 \ 1.19\pm 0.04 \\ 0.073 \ 0.91\pm 0.10 \ 0.90\pm 0.07 \\ 1833\pm 100 \ 1849\pm 123 \ 1871\pm 118 \ 1815\pm 77.4 \\ 0.940 \ 1327\pm 92.6 \ 1518\pm 126 \\ ean\pm SE \\ 132\pm 4.79 \ 137\pm 5.21 \ 139\pm 2.58 \ 139\pm 2.71 \\ 0.438 \ 155\pm 3.55 \ 143\pm 5.63 \\ 11.2\pm 0.79 \ 11.7\pm 0.87 \ 12.4\pm 0.75 \ 11.7\pm 0.45 \\ 0.653 \ 15.5\pm 2.05 \ 14.1\pm 1.44 \\ 32.1\pm 1.42 \ 30.5\pm 2.15 \ 30.2\pm 1.28 \ 29.5\pm 0.82 \\ 0.377 \ 24.7\pm 1.13 \ 29.7\pm 2.30 \\ 41.9\pm 1.80 \ 43.3\pm 2.52 \ 41.5\pm 1.34 \ 43.2\pm 1.16 \\ 0.690 \ 41.6\pm 1.77 \ 42.1\pm 2.06 \\ 0.63\pm 0.06 \ 0.78\pm 0.07 \ 0.69\pm 0.04 \ 0.70\pm 0.03 \ 0.645 \ 0.71\pm 0.08 \ 0.69\pm 0.05 \\ 0.84\pm 0.06 \ 0.88\pm 0.12 \ 0.78\pm 0.06 \ 0.81\pm 0.04 \\ 0.801 \ 1.02\pm 0.07 \ 1.11\pm 0.14 \\ 0.73\pm 0.07 \ 0.82\pm 0.09 \ 0.75\pm 0.05 \ 0.72\pm 0.03 \ 0.586 \ 0.65\pm 0.05 \ 0.81\pm 0.08 \\ 92.5\pm 12.2 \ 88.4\pm 12.8 \ 87.5\pm 8.69 \ 90.6\pm 6.18 \ 0.984 \ 110\pm 9.32 \ 103\pm 11.5 \\ 382\pm 26.2 \ 338\pm 41.7 \ 336\pm 21.0 \ 365\pm 16.3 \ 0.353 \ 536\pm 43.0 \ 455\pm 42.4 \\ 139\pm 7.34 \ 141\pm 12.1 \ 143\pm 6.63 \ 145\pm 3.84 \ 0.907 \ 167\pm 9.06 \ 157\pm 7.87 \\ 0ability of sampling design by SUDAAN. $	$ \begin{array}{c} 0.57\pm 0.07 \ 0.40\pm 0.09 \ 0.65\pm 0.08 \ 0.62\pm 0.05 \ 0.116 \ 0.80\pm 0.08 \ 0.89\pm 0.14 \ 0.74\pm 0.09 \\ 1.02\pm 0.09 \ 1.98\pm 0.08 \ 1.59\pm 0.19 \ 1.30\pm 0.07 \ 0.001 \ 0.81\pm 0.15 \ 0.86\pm 0.16 \ 1.20\pm 0.16 \\ 0.86\pm 0.18 \ 0.93\pm 0.12 \ 1.08\pm 0.12 \ 0.99\pm 0.08 \ 0.524 \ 0.70\pm 0.10 \ 0.92\pm 0.12 \ 0.91\pm 0.09 \\ 0.44\pm 0.08 \ 0.39\pm 0.05 \ 0.46\pm 0.05 \ 0.46\pm 0.03 \ 0.687 \ 0.23\pm 0.03 \ 0.36\pm 0.04 \ 0.36\pm 0.03 \\ 0.48\pm 0.09 \ 0.43\pm 0.06 \ 0.47\pm 0.06 \ 0.45\pm 0.04 \ 0.824 \ 0.39\pm 0.06 \ 0.50\pm 0.10 \ 0.61\pm 0.07 \\ 1.90\pm 0.18 \ 1.84\pm 0.13 \ 2.57\pm 0.13 \ 2.47\pm 0.12 \ 0.004 \ 2.09\pm 0.14 \ 2.28\pm 0.13 \ 2.35\pm 0.14 \\ 0.99\pm 0.11 \ 0.93\pm 0.13 \ 1.21\pm 0.09 \ 1.19\pm 0.04 \ 0.073 \ 0.91\pm 0.10 \ 0.90\pm 0.07 \ 1.21\pm 0.10 \\ 1833\pm 100 \ 1849\pm 123 \ 1871\pm 118 \ 1815\pm 77.4 \ 0.940 \ 1327\pm 92.6 \ 1518\pm 126 \ 1500\pm 58.7 \\ ean\pm SE \\ 132\pm 4.79 \ 137\pm 5.21 \ 139\pm 2.58 \ 139\pm 2.71 \ 0.438 \ 155\pm 3.55 \ 143\pm 5.63 \ 144\pm 3.31 \\ 11.2\pm 0.79 \ 11.7\pm 0.87 \ 12.4\pm 0.75 \ 11.7\pm 0.45 \ 0.653 \ 15.5\pm 2.05 \ 14.1\pm 1.44 \ 14.0\pm 1.02 \\ 32.1\pm 1.42 \ 30.5\pm 2.15 \ 30.2\pm 1.28 \ 29.5\pm 0.82 \ 0.377 \ 24.7\pm 1.13 \ 29.7\pm 2.30 \ 29.2\pm 1.50 \\ 41.9\pm 1.80 \ 43.3\pm 2.52 \ 41.5\pm 1.34 \ 43.2\pm 1.16 \ 0.690 \ 41.6\pm 1.77 \ 42.1\pm 2.06 \ 42.8\pm 1.32 \\ 0.63\pm 0.06 \ 0.78\pm 0.07 \ 0.69\pm 0.04 \ 0.70\pm 0.03 \ 0.645 \ 0.71\pm 0.08 \ 0.69\pm 0.05 \ 0.76\pm 0.07 \\ 0.84\pm 0.06 \ 0.88\pm 0.12 \ 0.78\pm 0.06 \ 0.81\pm 0.04 \ 0.801 \ 1.02\pm 0.07 \ 1.11\pm 0.14 \ 1.05\pm 0.09 \\ 0.73\pm 0.07 \ 0.82\pm 0.09 \ 0.75\pm 0.05 \ 0.72\pm 0.03 \ 0.586 \ 0.65\pm 0.05 \ 0.81\pm 0.08 \ 0.73\pm 0.03 \\ 92.5\pm 12.2 \ 88.4\pm 12.8 \ 87.5\pm 8.69 \ 90.6\pm 6.18 \ 0.984 \ 110\pm 9.32 \ 103\pm 11.5 \ 131\pm 20.0 \\ 382\pm 26.2 \ 338\pm 41.7 \ 336\pm 21.0 \ 365\pm 16.3 \ 0.353 \ 536\pm 43.0 \ 455\pm 42.4 \ 483\pm 41.7 \\ 139\pm 7.34 \ 141\pm 12.1 \ 143\pm 6.63 \ 145\pm 3.84 \ 0.907 \ 167\pm 9.06 \ 157\pm 7.87 \ 159\pm 9.59 \\ \end{array}$

				Daily fro	equency e	eating-with-	others			
			Men					Women		
	0	1	2	3	p value	0	1	2	3	p value
General health	52.8±1.18	52.0±1.49 5	2.9 ± 1.10	51.5±0.50	0.538	47.1±0.99	48.6±1.23	3 49.7±1.24	49.0±0.84	0.211
Mental health	51.4±0.91	49.3±1.88 5	2.3±1.13	52.5 ± 0.50	0.222	47.8±1.30	47.3±1.45	548.8±1.27	49.2±1.02	0.542
Physical functioning	51.1±1.16	50.4±1.26 5	3.3±0.68	51.5 ± 0.65	0.044	45.2±0.96	50.7±0.97	7 48.2±1.03	47.0±0.64	0.002
Body pain	51.2±1.20	51.5±1.63 5	2.8 ± 1.04	51.9 ± 0.68	0.529	46.5±1.08	47.4±1.20) 49.5±1.00	48.0±0.69	0.112
Role limitations due to emotional problem		47.7±1.69 5	1.5±0.93	51.2 ± 0.63	0.160	47.5±1.16	50.8±1.51	l 49.6±1.13	49.3±0.86	0.354
Role limitations due to physical problems	50.2±1.36	49.5±1.31 5	2.1 ± 1.01	51.4 ± 0.67	0.254	46.1±1.03	51.4±1.28	8 48.7±1.55	49.7±0.87	0.005
Social function	50.0±1.22	49.4±1.71 5	1.9±0.99	50.9 ± 0.67	0.262	48.2±1.17	48.6±1.31	l 50.0±1.31	49.0±0.71	0.698
Vitality	51.0±1.32	49.4±1.76 5	1.7 ± 1.02	51.8 ± 0.68	0.591	47.1±0.95	49.2±1.72	2 48.1±1.45	48.1±0.75	0.553
All data weighted for unequal probability	of sampling de	sign by SUI	DAAN.							
ANOVA was used for continuous and cat	egories variable	es to test dif	ference b	etween the	groups by	y gender.				
65										
466										
700										

1 2 3 4 5 6 7 8	
9 10	
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 27\\ 28\\ 29\\ 30\\ 32\\ 23\\ 20\\ 31\\ 22\\ 23\\ 20\\ 31\\ 22\\ 23\\ 20\\ 31\\ 22\\ 31\\ 22\\ 31\\ 32\\ 31\\ 32\\ 32\\ 31\\ 32\\ 32\\ 31\\ 32\\ 32\\ 31\\ 32\\ 32\\ 32\\ 31\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32$	
23 24 25 26 27 28 29 30	
31 32 33 34 35 36 37 38	
39 40 41 42 43 44	
45 46 47 48 49	

				Daily frequency	of eating-	with-others		
	Men			Women				
	0	1	2	3	0	1	2	3
Deceased/survival, n	75/67	26/31	37/89	248/382	60/114	20/59	36/104	196/350
Crude model	1.00	0.90 (0.60–1.35)	0.42 ^{***} (0.28–0.61)	0.67^{**} (0.52–0.88)	1.00	0.53 (0.27–1.05)	0.68 (0.42–1.11)	0.86 (0.64–1.16
Model 1	1.00	1.12 (0.71–1.78)	0.48^{**} (0.31-0.74)	0.76 (0.57–1.03)	1.00	0.54 (0.24–1.23)	0.89 (0.53–1.49)	1.07 (0.77–1.49
Model 2 [†]	1.00	0.76 (0.37–1.56)	0.43^{**} (0.25-0.73)	0.63*	1.00	0.56 (0.29–1.07)	0.68 (0.35–1.30)	0.69 (0.39–1.21
Model 3 [†]	1.00	0.78 (0.39–1.55)	0.46^{**} (0.28–0.77)	0.66 (0.43–1.02)	1.00	0.54 (0.27–1.06)	0.70 (0.36–1.36)	0.72
model. Model 1: adjusted f Model 2: adjusted f living and body max Model 3: model 2 p [†] Women were not a [*] $n < 0.05$: ^{**} $n < 0.01$:	for age, e ss index lus adjus djusted f	ted self-rate finat	ncial status			elated with cooki	ng frequency.	activities of c
Model 1: adjusted f Model 2: adjusted f living and body mas Model 3: model 2 p	for age, e ss index lus adjus djusted f	ted self-rate finat	ncial status			elated with cooki	ng frequency.	activities of o
Model 1: adjusted f Model 2: adjusted f living and body mas Model 3: model 2 p [†] Women were not a	for age, e ss index lus adjus djusted f	ted self-rate finat	ncial status				ng frequency.	activities of o
Model 1: adjusted f Model 2: adjusted f living and body mas Model 3: model 2 p [†] Women were not a	for age, e ss index lus adjus djusted f	ted self-rate finat	ncial status			elated with cooki	ng frequency.	activities of o
Model 1: adjusted f Model 2: adjusted f living and body mas Model 3: model 2 p [†] Women were not a	for age, e ss index lus adjus djusted f	ted self-rate finat	ncial status			elated with cooki	ng frequency.	activities of
Model 1: adjusted f Model 2: adjusted f living and body mas Model 3: model 2 p [†] Women were not a	for age, e ss index lus adjus djusted f	ted self-rate finat	ncial status			elated with cooki	ng frequency.	activities of

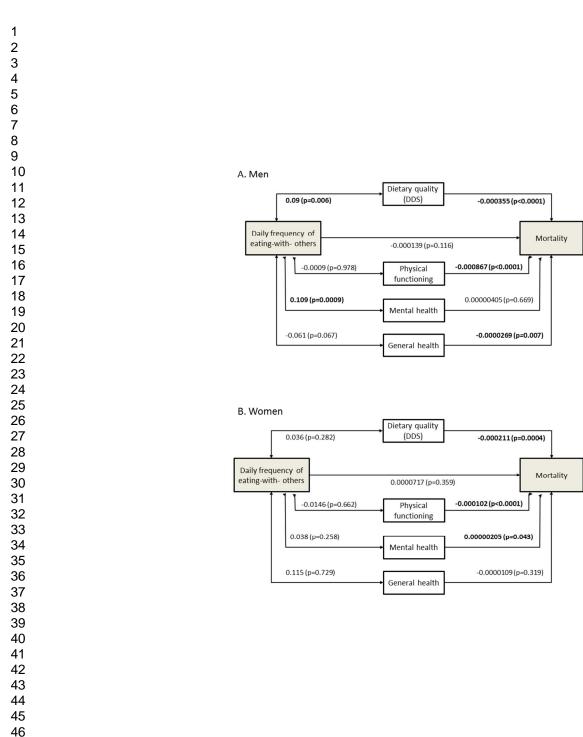


Figure 1. Pathway analysis for the associations of eating-with-others and all-cause mortality. All values are presented as β coefficients with their p values.

297x420mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2
3 4 5 6 7
4 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
22
23
24
25
26
27
28
29
30
31 32 33 34 35 36 37 38 39
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 53
53 54
54 55
55 56
50 57
58
59
00

1

Supplementary table 1. Spearman rank correlation coefficients between daily frequency of eating with others and co-variables

	Spearman rank corr	elation coefficients
	Men	Women
Education – higher	0.067^{*}	0.037
Marital status – married	0.522^{***}	0.460^{***}
Dietary diversity score – higher	0.092^{**}	0.033
Body mass index – higher	0.037	0.025
Age – older	-0.092**	-0.127**
Live alone	-0.648***	-0.592***
Cooking frequency – more	-0.407***	-0.157***
Appetite status – poor	-0.035	-0.01
Activities of daily living – more difficulties	-0.037	-0.087**
Self-rate financial status – not enough	-0.066*	-0.124**
*p<0.05; **p<0.001; ***p<0.0001		

sore di. 10001

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	4-5
Methods			
Study design	4	Present key elements of study design early in the paper	5-7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5-7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	5,7
-		of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	
		exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5-7
	,	effect modifiers. Give diagnostic criteria, if applicable	0,
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-7
measurement	Ũ	assessment (measurement). Describe comparability of assessment methods if	5 /
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	13
Study size	10	Explain how the study size was arrived at	N/A
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	5,
Qualificative variables		applicable, describe which groupings were chosen and why	6-7
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	7-8
Statistical methods	12	confounding	70
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	5
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	5
		<i>Case-control study</i> —If applicable, explain how not to ronow-up was addressed	5
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	10
		(<i>e</i>) Describe any sensitivity analyses	13

Continued on next page

1
2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
21
22
2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 8 9 10 11 2 13 14 15 16 7 8 9 10 11 2 13 14 15 16 7 8 9 10 11 2 2 3 2 4 5 2 6 7 8 9 3 13 2 3 3 4 3 5 3 6 3 7 8 3 9 10 10 10 10 10 10 10 10 10 10 10 10 10
20
24
25
26
27
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
44
45
46
47
47
40 49
50
51
52
53
54
55
56
57
57 58
59
60
00

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	5
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	5
		(c) Consider use of a flow diagram	N/A
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	8-9
data		information on exposures and potential confounders	(Table 1)
		(b) Indicate number of participants with missing data for each variable of interest	5
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	Table 1
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	Table 4
		Case-control study—Report numbers in each exposure category, or summary	
		measures of	
		exposure	
		Cross-sectional study-Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	9
		and their precision (eg, 95% confidence interval). Make clear which confounders	(Table 4)
		were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	N/A
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	7
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	13
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	14
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	15
-		applicable, for the original study on which the present article is based	
		apprecision, for the original study on which the present affects is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Gender differences in longevity in free-living older adults who eat-with-others: a prospective study in Taiwan

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016575.R2
Article Type:	Research
Date Submitted by the Author:	26-Jul-2017
Complete List of Authors:	Huang, Yi-Chen; National Defense Medical Center, Graduate Institute of Life Sciences; National Defense Medical Center, School of Public Health Cheng, Hsing-Ling; Tri-Service General Hospital, The Department of Food and Nutrition Wahlqvist, Mark; National Defense Medical Center, School of Public Health; National Health Research Institutes, Institute of Population Health Sciences Lo, Yuan-Ting; National Defense Medical Center, School of Public Health Lee, Meei-Shyuan; National Defense Medical Center, School of Public Health; National Defense Medical Center, School of Public Health; National Defense Medical Center, Graduate Institute of Life Sciences
Primary Subject Heading :	Public health
Secondary Subject Heading:	Nutrition and metabolism, Epidemiology, Geriatric medicine, Health policy
Keywords:	elderly, diet, mortality, social activities

SCHOLARONE[™] Manuscripts

TITLE PAGE

BMJ Open

2	Gender differences in longevity in free-living older adults who
3	eat-with-others: a prospective study in Taiwan
4	
5	Yi-Chen Huang ^{1,2} , Hsing-Ling Cheng ³ , Mark L Wahlqvist ^{2,4,5} , Yuan-Ting C Lo ² , Meei-Shyuan
6	Lee ^{1,2,5*}
7	
8	¹ Graduate Institute of Life Sciences, National Defense Medical Center, 161 Minchuan East
9	Road, Sec. 6, Taipei, Taiwan 11490, Yi-Chen Huang Postdoctoral fellow, Meei-Shyuan Lee
10	Professor
11	² School of Public Health, National Defense Medical Center, 161 Minchuan East Road, Sec. 6,
12	Taipei, Taiwan 11490, Mark L Wahlqvist Professor, Yuan-Ting C Lo Postdoctoral fellow,
13	Yi-Chen Huang Postdoctoral fellow, Meei-Shyuan Lee Professor
14	³ The Department of Food and Nutrition, Tri-Service General Hospital, No. 325, Sec. 2,
15	Chenggong Road, Neihu District, Taipei, Taiwan 11490, Taiwan, Hsing-Ling Cheng Dietitian
16	⁴ Institute of Population Health Sciences, National Health Research Institutes, No. 5 Keyan
17	Road, Miaoli County, Taiwan 350, Mark L Wahlqvist Professor
18	⁵ Monash Asia Institute, Monash University, Caulfield, VIC 3800, Australia, Mark L Wahlqvist
19	Professor, Meei-Shyuan Lee Professor
20	
21	*Correspondence to: Prof Meei-Shyuan Lee, School of Public Health, National Defense
22	Medical Center, 161 Minchuan East Road, Sec. 6, Taipei, Taiwan 11490.
23	Email: mmsl@ndmctsgh.edu.tw; meeishyuan@gmail.com
24	Phone and fax number: +886-2-87910704
25	
26	Word count: 3132 words (excluding title page, licence statement, abstract, references, figures
27	and tables)

28 ABSTRACT

Objectives: Social activities such as 'eating-with-others' can positively affect the ageing process. We investigated the gender-specific association between eating arrangements and risk of all-cause mortality among free-living older adults.

32 Setting: A representative sample from the elderly Nutrition and Health Survey in Taiwan33 during 1999-2000.

Participants: Some 1,894 participants (955 men and 939 women) who aged ≥65 and
completed eating arrangement question as well as confirmed survivorship information.

36 Primary and secondary outcome measures: Eating arrangements, health condition, and 37 24-hour dietary recall information were collected at baseline. We classified eating 38 arrangements as the daily frequency of eating-with-others (0–3). Survivorship was determined 39 by the National Death Registry until the end of 2008. Cox proportional-hazards regression was 40 used to assess the association between eating-with-others and mortality risk.

Results: Overall, 63.1% of men and 56.4% of women ate with others 3 times a day. Both men and women who ate with others were more likely to have higher meat and vegetable intakes, and greater dietary quality than those who ate alone. The hazard ratios (HRs) (95% CI) for all-cause mortality when eating-with-others 2 and 3 times daily were 0.46 (0.28-0.61), 0.67(0.52-0.88) in men and 0.68 (0.42-1.11), 0.86 (0.64-1.16) in women, compared with those who ate alone. Multivariable HRs (95% CI) adjusted for sociodemographic, nutritional and "activities of daily living" covariates were 0.43 (0.25–0.73), 0.63 (0.41–0.98) in men and 0.68 (0.35–1.30), 0.69 (0.39–1.21) in women. With further adjustment for financial status, HR was reduced by 54% in men who ate with others twice a day. Pathway analysis shows this to be dependent on improved dietary quality by eating-with-others.

51 Conclusions: Eating-with-others is an independent survival factor in older men. To providing
52 a social environment which encourages eating-with-others may benefit survival of older

Page 3 of 30		BMJ Open				
1 2						
3 4	53	people, especially for men.				
5 6 7	54	Key words: elderly, diet, mortality, social activities				
8 9	55					
10 11	56	STRENGTHS AND LIMITATIONS OF THIS STUDY				
12 13	57	• Use of a representative free-living Taiwanese cohort with 10 years' follow-up for				
14 15 16	58	survival.				
17 18	59	• Study design provided an understanding of eating arrangements for older adults in a				
19 20	60	community setting.				
21 22	61	• A comprehensive assessment of the gender-specific associations between				
23 24 25	62	eating-with-others and mortality for older adults.				
26 27	63	• The frequency, but not duration of time spent eating alone or eating-with-others was				
28 29	64	considered.				
30 31	65	• Participants were mainly of Chinese ethnicity from Taiwan so that the generalisability of				
32 33 34	66	findings may be limited.				
35 36	67					
37 38						
39 40						
41 42 43						
44 45						
46 47						
48 49						
50 51						
52 53 54						
55 56						
57 58						
59 60		3				
		For peer review only - http://bmiopen.hmi.com/site/about/guidelines.yhtml				

INTRODUCTION

Social engagement, such as interpersonal relations (e.g., contact and transactions with friends), exchange of information, and receiving and providing emotional support, is a key component of healthy ageing, besides avoiding disease and maintaining physical and cognitive functions.¹ However, opportunities to interact are frequently reduced after retirement because of factors such as loss of physical capacity, loss of mobility, and solitary living.

The word "Meal" means the event of eating and what is eaten. For this reason, social interaction is considered one of the criteria for a meal.² Numerous countries offer nutritional programs, such as congregate meals or meals-on-wheels programs, to encourage eating in a social setting.³ The inverse correlation between eating-with-others and risk of depression has been studied extensively.⁴⁻⁷ Additionally, eating alone can be analyzed as a separate risk factor from living alone with regard to depression or depressive symptoms.⁵⁶ Eating-with-others can potentially improve dietary quality, variety, and energy intake through social facilitation.⁸⁹ Depression and poor dietary quality increase the risk of chronic disease and mortality in older adults.^{10 11} Solitary eating has been associated with a higher risk of mortality among small cohorts of elders in Botswana and the United States.^{12 13} But, it is unclear whether the daily frequency of eating-with-others is associated with survivorship.

Gender is also a factor in the quality of older people's lives; for example, women frequently exhibit more health-seeking behavior.^{14 15} Yet men face higher risks of depression after widowhood than do women.¹⁶ Exploring the gender-specific associations between solitary eating and mortality among older adults is potentially of public health value.

Providing simple, achievable steps for healthy ageing can prolong life, maintain quality of life over an extended duration, and limit physical deterioration, all of which are beneficial to public health. The purpose of this study was, therefore, to evaluate whether the daily frequency of eating-with-others is associated with all-cause mortality in a representative, free-living,

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

60

1 2

BMJ Open

Participants aged 65 and over were recruited from the Elderly Nutrition and Health Survey in

Taiwan during 1999–2000. The details of the survey design and sampling method have been

published elsewhere.¹⁷ In total, 1,937 older people completed face-to-face interviews with

trained interviewers. We excluded 40 participants with incorrect identification or incorrect

identity numbers and those who did not provide relevant or required information. After which

1,894 participants (955 men and 939 women) remained in the study. Trained interviewers

collected data on sociodemographics, dietary habits and intake, and disease history. All

participants signed informed consent forms prior to being interviewed. This project was

approved by the Ethics Committees of the National Health Research Institute and Academia

Eating arrangements were assessed by asking participants whether they usually ate breakfast.

lunch, and dinner with others. Their responses were recorded as one of the following four

options: eat alone, eat with spouse, eat with children or relative(s), and eat with friend(s) or

neighbor(s). We then classified the eating arrangements as eating-with-others 0 (eat alone), 1,

2, 3 times a day.¹⁸ Information was also obtained about the person responsible for meal

3	
3 4	
4	
5	
ĉ	
6 7	
7	
÷	
8	
a	
3	_
1	0
1	1
1	1
1	2
4	S
I	ა
1	4
Å	- -
I	S
1	6
÷	<u> </u>
1	1
1	3 4 5 6 7 8
1	0
1	9
ი	Λ
2	U
2	1
<u>م</u>	S
2	2
2	3
~	1
2	4
2	5
~	č
2	6
2	7
-	
2	8
\mathbf{a}	0
~	9
3	0
ĥ	4
3	
3	2
Š	-
3	3
3	4
2	-
3	5
ຊ	6
2	0
3	7
Q	Q
J	0
З	9
л	2345678901234567890.
4	0
4	1
4	
4	3
4	
Λ	5
4	0
4	6
4	6
4 4	6 7
4 4 4	6 7 8
4 4 4	6 7 8
4 4 4 4	6 7 8 9
4 4 4 5	6 7 8 9 0
4 4 4 5	6 7 8 9 0
4 4 4 5 5	6 7 8 9 0 1
4444555	6 7 8 9 0 1 2
4444555	6 7 8 9 0 1 2
4445555	6 7 8 9 0 1 2 3
444555555	6 7 8 9 0 1 2 3 4
444555555	6 7 8 9 0 1 2 3 4
44445555555	6 7 8 9 0 1 2 3 4 5
4444555555555	67890123456
4444555555555	67890123456
444455555555555	6 7 8 9 0 1 2 3 4 5 6 7
444455555555555	6 7 8 9 0 1 2 3 4 5 6 7
4444555555555	6 7 8 9 0 1 2 3 4 5 6 7 8

93 Taiwanese cohort of older men and women.

SUBJECTS AND METHODS

Participants

Sinica, Taiwan.

preparation.

Dietary assessment

Eating arrangement

Information on frequency of dietary intake was collected using a validated simplified food

frequency questionnaire.¹⁹ Dietary quality and nutritional intake were measured through one-day 24-hour dietary recall. The dietary quality was evaluated using the dietary diversity score (DDS), which is based on the consumption of a half serving of the following six food groups daily: grains; meat, fish, or eggs; dairy; vegetables; fruits; and oil or fat. The DDS score ranges from 0 to 6, with a higher score representing higher dietary quality. The method of nutrient intake calculation is described elsewhere.¹⁰

Other variables

Participants were also asked how frequently they cooked or aided with cooking (excluding
ready-to-eat meals), and their responses were recorded as never, sometimes, often, or usually.
Participants were then asked how many people they lived with. The response "0" was defined
as living alone.

Health-related quality of life was measured by a 36 item Short Form (SF-36) in a validated traditional Chinese version. A total of 8 dimensions of health, included physical functioning, role limitations due to physical problems, mental health, role limitations due to emotional problems, social function, bodily pain, vitality and general health. The score was calculated by the norm-based scoring system (μ =50, σ =10) and standardised. Higher scores indicated a better quality of life.²⁰

Disability was evaluated by activities of daily living (ADL) which included 9 questions about self-care task difficulty in an older adult's daily life. We used bioelectrical impedance analysis to measure muscle mass. The skeletal muscle mass index was used to determine sarcopenia status, calculated with the following equation:²¹

 $[0.401 \times (\text{height}^2/\text{resistance}) + (3.825 \times \text{gender}) - (0.071 \times \text{age}) + 5.102]/\text{height}^2$

where height is measured in metres, resistance in Ohms, and age in years; men = 1 andwomen = 0.

BMJ Open

2	
3	
3 4 5 6 7	
4	
5	
6	
7	
o	
0	
9	
10	
11	
10	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
2U	
8 9 10 11 2 13 14 15 16 17 18 20 21 22 23 24 25 26	
22	
23	
24	
24	
25	
26	
27	
20	
20	
29	
25 26 27 28 29 30 31 32 33 34 35	
31	
22	
32	
33	
34	
35	
36	
36 37 38 39	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53	
54	
55	
56	
57	
58	
59	

60

The Charlson comorbidity index was used to assess multi-morbidity.²² Cognitive function was assessed by a validated Short Portable Mental Status Questionnaire (SPMSQ) in Chinese which included 10 questions about orientation in time and place, personal history, long-term and short-term memory and calculation. More than or equal to three erroneous responses was regarded as cognitive impairment.²³

148

149 Outcome ascertainment

National Death Registry data were obtained from Taiwan's Ministry of Health and Welfare.
We linked the NAHSIT dataset to the National Death Registry dataset using the participant ID
to determine survival rates. Follow-up time was calculated from date of interview to date of
death or until December 31, 2008.

154

155 Statistical analysis

156 Categorical variables and continuous variables were presented as n (%) or mean \pm standard 157 errors (SE). Chi-square and ANOVA were used to determine the association between eating 158 arrangements and baseline characteristics for categorical or continuous variables, respectively. 159 The Cox proportional-hazards regression model was used to evaluate the association between 160 daily frequency eating-with-others and risk of all-cause mortality. Since the interaction 161 between eating arrangements and gender was significant (p=0.0093), we used gender-specific 162 analyses. Additional factors were age, education level, marital status, region, living 163 arrangement, BMI, DDS, cooking frequency, appetite status, ADL and self-rate financial 164 status. All data analyses were performed using SAS 9.2 and SUDAAN 9.0 to adjust for the 165 design effect of sampling.

166 To explore the pathways which might connect eating-with-others to survival, we have 167 considered the intermediates of dietary quality (DDS), physical functioning, mental health,

and general health. The first linkage, using continuous variables, has been assessed by
 Pearson's partial correlation coefficients. The second linkage to risk of mortality, as
 coefficients, has been assessed by the Aalen additive hazards model.²⁴

RESULTS

In total, 63.1% of men and 56.4% of women ate with others 3 times a day. For both genders, those who ate with others were more likely to be younger, married, better financial status, living with others, and less cooking than were those who ate alone. Men who ate alone had significantly higher ADLs (p=0.004) and cognitive impairment (p=0.005) than those who ate with others. (Table 1)

Table 2 presents the dietary quality and food intakes for daily frequency of eating-with-others by gender. Those who ate alone had a poor dietary quality (DDS \leq 3), compared to those who ate with others 3 times daily. Men who ate alone ate less meat (1.02 vs. 1.30 times/d) and vegetables (1.90 vs. 2.47 times/d) than did those who ate with others 3 times a day (p < 0.05). Women who ate with others 3 times a day tended to eat more meat (1.13) vs 0.81 times/d), seafood (0.99 vs. 0.70 times/d), eggs (0.38 vs. 0.23 times/d), and vegetable (2.52 vs. 2.09 times/d) intake than did those who ate alone (p<0.05). Further, women who ate alone had lower fat (24.7 vs. 28.9 g/1000 kcal/d) intakes, but higher carbohydrate (155 vs. 144 g/1000 kcal/d) intakes compared with those who ate with others (p<0.05). Regarding meals, around 58% to 60% of men and 68% to 74% of women prepared meals by themselves when eating alone. Men were more likely to eat out when eating-with-others once a day compared with women.

Men who ate with others twice per day have significantly high physical functioning compared with other groups (p=0.044). For women, who ate with others once per day have higher physical functioning (50.7 vs. 45.2) and role limitations due to physical problem (51.4

193 vs. 46.1) compared with those who ate alone. (Table 3)

Table 4 presents the association between daily frequency eating-with-others and risk of all-cause mortality by gender. In the crude model, the HRs (95% CI) of risk of all-cause mortality for who ate with others 2 or 3 times a day were 0.42 (0.28–0.61), 0.67 (0.52–0.88) in men and 0.68 (0.42-1.11), 0.86 (0.64-1.16) in women compared with those who at alone, respectively. When adjusted for age, education, marital status, region, living arrangement, cooking, appetite status, ADL, DDS, BMI, the HRs (95% CI) were 0.43 (0.25-0.73), 0.63 (0.41–0.98) for men and 0.68 (0.35–1.30), 0.69 (0.39–1.21) for women who ate with others 2 or 3 times a day. With further adjustment for financial status, the risk of mortality is reduced by 54% (HR: 0.46, 95% CI: 0.28–0.77) and 34% (HR: 0.66, 95% CI: 0.43–1.02) for men who ate with others 2 or 3 times a day.

The pathway analyses are shown in Figure 1. For men, there are significant positive associations between eating-with-others frequency and dietary quality (DDS) (p=0.006) as well as mental health (p=0.0009). In turn, better dietary quality (p<0.0001) is associated with less mortality risk, as are physical functioning (p<0.0001) and general health (p=0.007). For women, eating-with-others is not associated with any of dietary quality, physical functioning, mental health or general health; however, dietary quality (p=0.0004) and physical functioning (p<0.0001) are inversely associated with mortality risk, while mental health (p=0.043) is positively associated.

DISCUSSION

This study explored the gender-specific associations between eating arrangement and risk of mortality by observing a population-representative older adult cohort with a 10-year follow-up in an Asian country. Eating-with-others was inversely associated with risk of mortality, more evident in men than in women.

219 Food intake when eating-with-others

Eating-with-others has numerous beneficial effects on health. A randomized controlled trial at a Dutch nursing home found that family-style meals that included the presence of others increased the energy intake and reduced the prevalence of malnutrition. Those who ate with others ate more than those who ate alone. Social eating may stimulate intake through extension of meal duration and improved ambiance.⁸ The presence of others in the household did not affect energy intake, but the presence of others during mealtime did, with an average of 114 calories more per meal than those who ate alone.²⁵ Eating socially also improved dietary quality and diversity.⁷⁹ However, the present study shows that after control for dietary quality in the model, eating-with-others and mortality remains associated. A possible reason for this is that solitary eating is often associated with depression,⁴⁻⁶ in turn associated with mortality. However, there may be value in solitude itself which would be an alternative interpretation of the difference we have found in mortality risk reduction between eating twice and three times a day with others by men.

234 Eating-with-others and mortality

Our findings are consistent with several studies from Western countries. The Nutrition Screening Initiative (NSI) checklist, a tool for malnutrition screening and awareness in older adults in the US, asks questions regarding solitary eating. In a cohort study with 581 community-dwelling older adults, who ate more than 17 meals alone per week, exhibited a 2.07-fold higher risk of mortality (RR=2.07, 95% CI=1.49–2.86) over an 8–12-year period.¹³ Another study in Bostwana found that older adults who ate alone had a higher risk of death (OR=6.7, 95% CI=2.2-20.0).¹² But, gender effect was unknown in these studies.

Page 11 of 30

BMJ Open

243 Eating alone and gender

In the present study, men who ate with others had a lower risk of mortality than did those who ate alone, for several probable reasons. Men who ate with others had better dietary quality and a higher vegetable intake than those eating alone. We also found that men who ate alone were more likely to eat out, not prepare meals by themselves, and frequently skip meals than did women. A Japanese cohort study discovered that men who ate alone were more likely to be underweight and skip meals and less likely to eat fruits and vegetables.⁹ Underweight older adults with poor dietary quality and low fruit and vegetable intakes have been associated with a higher risk of mortality.¹⁰²⁶ Furthermore, in our study, eating out is often associated with high-fat foods with poor quality. Men who were solitary eaters had low carbohydrate, protein, dietary fiber, and other nutrient intakes, but a higher fat intake than those who ate with others, although the differences were non-significant.

Compared with Japan.⁹ in our study men have a higher rate of solitary eating, but women have a lower rate. Taiwanese men who eat alone are more likely to be unmarried or live separately from their spouse. We found that the eating companionship of men who ate with others was usually their spouse or children rather than friends or neighbours (data not shown). Davis et al. found that dietary patterns of older men had stronger associations with living arrangements than did those of older women.²⁷ Cooking itself is a physical activity and a cognitive function,²⁸ and in Taiwanese culture women are more likely to prepare meals. Men eat out or buy ready-to-eat food more than they cook. In this study, men (47.0%) cooked less than did women (63.9%) when eating alone (Table 1). Men who ate alone shopped more than did women who ate alone (27.6% vs. 9.6%).

It is also possible that what has been observed as a link between eating-with-others by men and survival is part of a bigger picture of the role of marriage and men living with a partner in their health outcomes and survival. It is well-documented that men who live with a

female partner live longer than those who do not.^{29 30} This could be for any one or more of several reasons which include having a carer, companionship or sharing of duties. A correlation matrix (Supplementary table 1) shows that the greatest correlations with eating-with-others are for marital status (positive), living alone (negative), and cooking frequency (negative). In all three, the magnitude of the relationships is stronger for men. These covariates are included in our models. We have identified marital status and cooking as potential explanators for the difference in HRs between eating-with-others twice or three times a day by men.

277 Pathways from eating-with-others to survival

For men but not women, pathway analyses indicate that dietary quality, assessed as dietary diversity, provides a potential connection between the social aspect of eating-with-others and survival (Figure 1). This underscores the likely basic importance of nutritional factors in life-long health, but draws attention to the social as well as the biomedical role of food in health. For men, on pathway analysis, eating-with-others is associated with better mental health. Since pathway analysis requires that all independent variables are continuous, this may have resulted in an absence of a significant direct association of eating-with-others with mortality due to its frequency not being linearly related to mortality; this contrasts with the survival analyses by Cox regression (Table 4). In addition, by pathway analysis, each of physical functioning and general health are themselves important in the prediction of mortality risk in men. It remains conceivable that the dietary quality that men achieve, irrespective of eating-with-others, plays a role in each of physical functioning and general health, which is evident in this population.^{10 20}

In the case of women, dietary quality directly and favourably predicts survival, but thisconnection is not found to be dependent on eating-with-others. Perhaps women can achieve

BMJ Open

the biomedical benefit of survival through diet without the need for its social function. In addition, women have a more favourable survival with better physical functioning. Somewhat surprisingly, better mental health is unfavourably associated with survival, although this is weakly significant. It is possible that confounders that have not been considered in this pathway analysis might account for this mental health association with mortality in older women. For example, in devoting themselves to the care of others, or in dealing successfully with a relative socio-economic disadvantage in widowhood, a sense of wellbeing may obtain, while health adversity supervenes.

302 Limitations

There are some limitations to this study. First, since the study participants were elderly, it can be expected that a change in their eating arrangements would take place through time as family and health circumstances change. Given that this is a single point survey (1999-2000), varied follow-up times may alter the findings. However, we have performed analyses with several follow-up times (<2, <4, <6 and ≥6 years) or the exclusion of events in the first and second years (data not shown). For men, the point estimates for HRs eating-with-others twice a day are consistently <1.00. But for women, low HRs of 0.15 are seen for eating-with-others once a day in the first two years of observation, although not beyond. This does not change our conclusions with the 10-year survival analysis. Second, the association may be affected by the duration of time spent eating alone or eating-with-others, which was not considered. Third, in Taiwanese society, older people are more likely to live with and depend on their families, so the culturally specific nature of this study may limit its applicability elsewhere. The study should be considered within a Taiwanese (of perhaps a broader Asian) context. As with cohort studies in general, there may have been confounders not considered which might have explained the associations presented. The study itself, however, has sought to consider the

circumstances of eating which are usually neglected in the exploration of food and nutrient health relationships. The pathway analyses are an attempt to encompass more of the explanatory models for these relationships by way of inclusion of physical, mental and general health. The gender differences which are now recognised here and in other reports for the respective health roles of dietary quality on the one hand, and with whom the food is consumed on the other, are a challenge to more gender comprehensive public health policy.

325 Conclusions

Eating socially may benefit survival in elderly men through the adjunct of dietary quality; it is also positively associated with men's mental health. For women, dietary quality is associated with survival advantage which is not apparently dependent on eating-with-others. The relative gender advantage in longevity that women have in this population is not adequately explained in the present study, except that they are likely to be the ones who eat with men who benefit from this social role of food. Thus, for men and women, the provision of a healthy social environment which increases social interactions should improve health outcomes.

334 ACKNOWLEDGMENT

The Elderly Nutrition and Health Survey (NAHSIT Elderly) in Taiwan 1997–2002 project was conducted by the Institute of Biomedical Sciences of Academia Sinica and the Research Center for the Humanities and Social Sciences, Center for Survey Research, Academia Sinica, directed by Wen-Harn Pan and Su-Hao Tu, and sponsored by the Taiwan Department of Health. This study is based in part on data from Department of Health and managed by the National Health Research Institutes. The interpretation and conclusions contained herein do not represent those of Department of Health, or National Health Research Institutes.

342 None of the authors has any conflicts of interest to declare.

Page 15	5 of 30	BMJ Open
1		
2 3		
4 5 6	343	
6 7	344	AUTHOR'S CONTRIBUTION
8 9 10	345	YCH, HLC, MLW and MSL designed the study; YCH, HLC and YTCL performed statistical
10 11 12	346	analysis; YCH, MLW, YTCL, and MSL wrote the paper; MSL had primary responsibility for
13 14	347	the final content.
15 16	348	
17 18 19	349	COMPETING INTERESTS
20 21	350	No author has any conflict of interest in regard to this paper.
22 23	351	
24 25	352	FOUNDING
26 27 28	353	This work was supported by the Ministry of Science and Technology grant number
29 30	354	MOST-103-2320-B-016-015-MY2, MOST105-2320-B-016 -008 and International Life
31 32	355	Sciences Institute (ILSI) Taiwan.
33 34	356	
35 36 37	357	DATA SHARING STATEMENT
38 39	358	No additional data are available.
40 41	359	
42 43	360	ETHICS
44 45	361	This project was approved by the Ethics Committees of the National Health Research Institute
46 47 48	362	and Academia Sinica, Taiwan.
49 50	363	
51 52	364	COPYRIGHT/LICENSE FOR PUBLISH
53 54	365	"I Meei-Shyuan Lee The Corresponding Author of this article contained within the original
55 56 57	366	manuscript which includes any diagrams & photographs and any related or stand alone film
58 59		15
60		

2											
3 4 5	367	submitted (the Contribution") has the right to grant on behalf of all authors and does grant on									
6 7	368	behalf of all authors, a licence to the "BMJ Publishing Group Ltd" ("BMJ") and its licensees,									
8 9	369	to permit this Contribution (if accepted) to be published in any BMJ products and to exploit									
10 11	370	all subsidiary rights, as set out in our licence set out at:									
12 13 14	371	http://group.bmj.com/products/journals/instructions-forauthors/wholly_owned_licence.pdf									
14 15 16	372										
17 18	373	REFERENCES									
19 20	374	1. Rowe JW, Kahn RL. Successful aging. Gerontologist 1997;37:433-40.									
21 22	375	2. Meiselman HL. Dimensions of the meal. Journal of Foodservice 2008;19:13-21. doi:									
23 24 25	376	10.1111/j.1745-4506.2008.00076.x.									
26 27	377	3. Administration for Community Living, US Department of Health and Human Services.									
28 29	378	Nutrition Services (OAA Title IIIC) - Congregate Nutrition Services Washington, DC:									
30 31	379	Administration for Community Living, US Department of Health and Human Services;									
32 33	380	2016 [cited 2016 18th April]. Available from:									
34 35 36	381	http://www.aoa.gov/AoA_programs/HPW/Nutrition_Services/index.aspx#congregate									
37 38	382	accessed 18th April 2016.									
39 40	383	4. Kuroda A, Tanaka T, Hirano H, et al. Eating alone as social disengagement is strongly									
41 42	384	associated with depressive symptoms in Japanese community-dwelling older adults. J									
43 44 45	385	Am Med Dir Assoc 2015;16:578–85. doi: 10.1016/j.jamda.2015.01.078.									
45 46 47	386	5. Tani Y, Sasaki Y, Haseda M, et al. Eating alone and depression in older men and women									
48 49	387	by cohabitation status: The JAGES longitudinal survey. Age Ageing 2015;44:1019-26.									
50 51	388	doi: 10.1093/ageing/afv145.									
52 53	389	6. Wang X, Shen W, Wang C, et al. Association between eating alone and depressive									
54 55 56	390	symptom in elders: a cross-sectional study. BMC Geriatr 2016;16:19. doi:									
56 57 58	391	10.1186/s12877-016-0197-2.									
59 60		16									

1

BMJ Open

_		
3		
4		
4		
5		
2		
6 7 8		
7		
'		
8		
9		
1	Λ	
1	U	
1	1	
1	-	
1	2	
1	2	
1 1 1	S	
1	4	
÷	÷	
1	5	
1	6	
•	0	
1	7	
÷		
1	8	
1	a	
I	3	
2	0	
~	~	
2	1	
ი	ົ	
2	2	
2	3	
_	ž	
2	4	
2	8901234567890123450	
2	5	
2	6	
-	<u> </u>	
2	7	
~	0	
2	Ø	
2	a	
_	5	
з	0	
<u> </u>	4	
3	1	
ર	2	
2	~	
з	3	
<u> </u>	4	
S	4	
ર	5	
2	0	
3	6	
\sim	7	
S	1	
3	8	
2	~	
З	9	
л	7 8 9 0	
4	U	
4	1	
Ĵ		
4	2	
4	2	
4	4	
4	э	
4	6	
4	0	
4	7	
4	Ø	
4	a	
5	0	
5		
5	2	
5	3	
5	4	
5	5	
5	6	
5		
J	1	
5	8	
5	ч	

60

392 7. Kimura Y, Wada T, Okumiya K, *et al.* Eating alone among community-dwelling Japanese
393 elderly: association with depression and food diversity. *J Nutr Health Aging*394 2012;16:728–31. doi: 10.1007/s12603-012-0067-3.

- 8. Nijs KA, de Graaf C, Siebelink E, *et al.* Effect of family-style meals on energy intake and
 risk of malnutrition in dutch nursing home residents: a randomized controlled trial. *J Gerontol A Biol Sci Med Sci* 2006;61:935–42.
- 398 9. Tani Y, Kondo N, Takagi D, *et al.* Combined effects of eating alone and living alone on
 399 unhealthy dietary behaviors, obesity and underweight in older Japanese adults: Results
 400 of the JAGES. *Appetite* 2015;95:1–8. doi: 10.1016/j.appet.2015.06.005.
 - 401 10. Lee MS, Huang YC, Su HH, et al. A simple food quality index predicts mortality in
 402 elderly Taiwanese. J Nutr Health Aging 2011;15:815–21.
- 403 11. Schoevers RA, Geerlings MI, Beekman AT, *et al.* Association of depression and gender
 404 with mortality in old age. Results from the Amsterdam Study of the Elderly (AMSTEL).

405 Br J Psychiatry 2000;177:336–42.

- 406 12. Clausen T, Wilson AO, Molebatsi RM, et al. Diminished mental- and physical function 407 and lack of social support are associated with shorter survival in community dwelling 408 older persons of Botswana. BMC Public Health 2007;7:144. doi: 409 10.1186/1471-2458-7-144.
- 410 13. Sahyoun NR, Jacques PF, Dallal GE, *et al.* Nutrition Screening Initiative Checklist may
 411 be a better awareness/educational tool than a screening one. *J Am Diet Assoc*412 1997;97:760–4. doi: 10.1016/s0002-8223(97)00188-0.
- 413 14. Ek S. Gender differences in health information behaviour: a Finnish population-based
 414 survey. *Health Promot Int* 2015;30:736–45. doi: 10.1093/heapro/dat063.
- 415 15. Redondo-Sendino A, Guallar-Castillon P, Banegas JR, *et al.* Gender differences in the
 416 utilization of health-care services among the older adult population of Spain. *BMC*

2 3	417	Public Health 2006;6:155. doi: 10.1186/1471-2458-6-155.
4 5 6	418	16. Umberson D, Wortman CB, Kessler RC. Widowhood and depression: explaining
7 8	419	long-term gender differences in vulnerability. J Health Soc Behav 1992;33:10-24.
9 10	420	17. Wu SJ, Chang YH, Wei IL, et al. Intake levels and major food sources of energy and
11 12	421	nutrients in the Taiwanese elderly. Asia Pac J Clin Nutr 2005;14:211-20.
13 14	422	18. Cheng SL. Eating-with-others and the health of older people. School of Public Health.
15 16 17	423	National Defense Medical Center, 2014.
18 19	424	19. Huang YC, Lee MS, Pan WH, et al. Validation of a simplified food frequency
20 21	425	questionnaire as used in the Nutrition and Health Survey in Taiwan (NAHSIT) for the
22 23	426	elderly. Asia Pac J Clin Nutr 2011;20:134–40.
24 25	427	20. Lee MS, Chen RCY, Chang YH, et al. Physical function mitigates the adverse effects of
26 27 28	428	being thin on mortality in a freeliving older Taiwanese cohort. J Nutr Health Aging
29 30	429	2012;16:766–83.
31 32	430	21. Chuang S, Chang H, Lee M, et al. Skeletal muscle mass and risk of death in an elderly
33 34	431	population. Nutr, Metab Cardiovasc Di 2014;24:784–91.
35 36	432	22. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic
37 38 39	433	comorbidity in longitudinal studies. Development and validation. J Chronic Dis
40 41	434	1987;40:373–83.
42 43	435	23. Chen RC, Chang YH, Lee MS, et al. Dietary quality may enhance survival related to
44 45	436	cognitive impairment in Taiwanese elderly. Food Nutr Res 2011;55 doi:
46 47	437	10.3402/fnr.v55i0.7387.
48 49 50	438	24. Gamborg M, Jensen GB, Sorensen TI, et al. Dynamic path analysis in life-course
51 52	439	epidemiology. Am J Epidemiol 2011;173:1131–9. doi: 10.1093/aje/kwq502.
53 54	440	25. Locher JL, Robinson CO, Roth DL, et al. The effect of the presence of others on caloric
55 56	441	intake in homebound older adults. J Gerontol A Biol Sci Med Sci 2005;60:1475-8.
57 58		
59 60		18

1

BMJ Open

442	26. Trichopoulou A, Kouris-Blazos A, Wahlqvist ML, et al. Diet and overall survival in
443	elderly people. BMJ 1995;311:1457–60.
444	27. Davis MA, Randall E, Forthofer RN, et al. Living arrangements and dietary patterns of
445	older adults in the United States. J Gerontol 1985;40:434-42.
446	28. Chen RC, Lee MS, Chang YH, et al. Cooking frequency may enhance survival in
447	Taiwanese elderly. Public Health Nutr 2012;15:1142–9. doi:
448	10.1017/s136898001200136x.
449	29. Ng TP, Jin A, Feng L, et al. Mortality of older persons living alone: Singapore
450	Longitudinal Ageing Studies. BMC Geriatr 2015;15:126. doi:
451	10.1186/s12877-015-0128-7.
452	30. Bowling A. Mortality after bereavement: a review of the literature on survival periods and
453	factors affecting survival. Soc Sci Med 1987;24:117-24.
454	
455	

LEGEND

Figure 1. Gender-specific pathway analysis for the associations of eating-with-others and

all-cause mortality. All values are presented as β coefficients with their p values. (A) men; (B)

to beer terrier only women.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1. The baseline characteristics by daily frequency for eating-with-others

					Daily free	juency for	eating-wit	h-others				
Variables		0	1	Men	2	1		0	1	Women	2	1
<u></u>	Total	0	1	2	3	p value	Total	0	1	2	3	p value
N		142	57	126	630			174	79	140	546	
%		14.3	6.96	15.6	63.1			17.8	10.2	15.7	56.4	
Median of follow-up (yrs)	72 0 10 22	8.17	8.28	8.76	8.67	4 0 0 4 0	72 4 0 44	8.55	8.89	8.75	8.74	0.000
Age at baseline (yrs)	/2.9±0.33	74.9±0.65	/1.8±0./4	/2.4±0./3	/2./±0.44		/3.4±0.44	/5.3±0./	6 72.9±0.65	/2.9±0.88	\$ /3.0±0.3	
Education	10.0	21.2	167	0.0	20.2	< 0.0001	56.0			50.0	544	0.963
Illiterate	18.8	24.2	16.7	8.8	20.3		56.0	57.5	55.6	52.3	56.6	
Some up to primary school	46.6	52.3	43.5	48.4	45.2		32.3	32.5	32.0	33.8	31.9	
High school and above	34.7	23.5	39.9	42.8	34.5	0.0001	11.7	10.0	12.4	13.8	11.5	
Marital status		0.6.1	40.0	0	0 0 -	< 0.0001	10.10	1	10.0	25 0	(0.0	< 0.0001
Married	78.6	36.1	48.2	75.0	92.5		49.48	15.5	19.6	37.8	68.8	
Bereaved	14.3	37.8	38.8	17.5	5.43		48.12	80.6	71.1	60.7	30.3	
Others	7.15	26.1	13.0	7.55	2.11		2.40	3.87	9.32	1.56	0.95	
Live alone	13.7	60.4	0.00	9.67	1.47	< 0.0001	10.3	49.4	6.43	2.91	0.42	< 0.0001
Whether enough money						0.030						0.001
More than enough	78.4	71.8	79.9	85.8	77.8		75.0	64.1	63.1	78.3	79.5	
Just enough	19.2	21.7	20.2	13.0	20.1		21.0	28.7	28.8	21.0	17.2	
Not enough	2.46	6.52	0.00	1.26	2.14		4.01	7.23	8.13	0.70	3.25	
Smoker	65.7	70.5	82.0	63.9	63.2	0.078	4.92	2.44	2.55	5.34	6.01	0.171
Appetite status						0.232						0.112
Good	38.5	33.0	45.0	36.6	39.4		30.4	24.9	42.9	31.7	29.5	
Fair	55.5	62.5	41.5	59.4	54.5		59.4	57.2	48.8	61.5	61.4	
Poor	6.07	4.54	13.5	4.09	6.08		10.2	17.9	8.34	6.87	9.14	
Body mass index (kg/m ²)		22.9±0.46				7 0.738			6 25.1±0.43			3 0.0002
< 18.5	7.07	11.2	10.4	7.53	5.66		7.01	8.07	0.00	3.83	8.72	
18.5–23.9	52.5	54.1	53.4	50.6	52.6		44.0	51.0	39.6	40.9	43.6	
												21
	_											

1													
2													
3													
4													
5													
6 7	24.0-26.9	28.0	19.0	19.9	34.0	29.2		27.8	24.7	34.1	25.3	28.1	
8	≥ 27.0	12.5	15.7	16.3	7.91	12.6		21.3	16.3	26.3	30.0	19.6	
9	Physical activity (MET/day)						0.173						0.017
10	<1.5	51.6	45.3	44.0	51.2	54.0		61.1	60.5	51.0	52.9	65.4	
11	1.5–2.9	11.3	14.3	17.9	14.2	9.17		11.8	14.3	6.16	14.0	11.4	
12	<u>>3</u>	37.1	40.4	38.1	34.7	36.8		27.1	25.2	42.8	33.1	23.2	
13	Shopping						0.239						0.037
14	<1/wk	43.8	34.2	44.5	45.9	45.5		54.9	65.3	46.6	50.9	54.3	
15	1/wk	12.7	13.5	15.2	13.0	12.2		13.6	10.2	14.8	18.4	13.1	
16 17	1-2/wk	23.3	24.7	21.0	19.6	24.2		19.8	14.9	24.7	22.0	19.8	
17	Everyday	20.2	27.6	19.3	21.6	18.3		11.7	9.63	13.9	8.74	12.9	
19	Current cooking activity		_,				< 0.0001						0.004
20	Never	58.4	33.2	44.1	58.1	65.8		26.8	24.1	12.1	31.5	29.1	
21	Sometimes	20.3	13.1	19.2	24.8	20.8		13.2	5.10	9.1	16.0	15.8	
22	Often	6.83	6.63	11.4	9.63	5.66		10.5	6.94	20.0	12.6	9.23	
23	Usually	14.5	47.0	25.2	7.46	7.69		49.5	63.9	58.8	39.9	45.9	
24	Activities of daily living					0.36±0.07	0.004		31.18±0.34				0.088
25	Skeletal muscle mass index (kg/						0.149		29.14±0.22				
26 27	m ²)												
28	Charlson comorbidity index	4.71±0.20	5.20±0.48	4.22±0.39	4.85±0.61	4.62±0.20	0.365	4.77±0.21	5.06±0.51	4.74±0.59	4.21±0.29	4.84±0.24	0.142
29	Self-perceived health status			,			0.400						< 0.0001
30	Excellent	4.55	7.12	7.46	1.23	4.47		2.58	2.88	0	3.14	2.80	
31	Very good	19.9	16.5	13.8	29.9	18.9		15.7	10.7	24.3	14.1	16.0	
32	Good	21.4	25.8	19.0	17.3	21.8		16.1	11.8	9.85	17.7	18.2	
33	Fair	41.1	38.2	40.3	40.7	41.9		48.3	47.9	56.7	50.4	46.2	
34	Poor	13.1	12.4	19.5	10.9	13.1		17.4	26.7	9.25	14.7	16.8	
35	Cognitive impairment	8.81	12.6	1.82	3.10	10.2	0.005	27.4	30.9	25.9	30.4	25.8	0.751
36 37	All data weighted for unequal p												
38	presented as mean±SE.	j	p	0	·) ~~				P				
39	ANOVA and chi-square were used	d for contin	uous and c	ategories v	ariables to	test differe	nce betw	veen the gro	oups by gen	der.			
40													
41												-	22
42												4	- 2
43													
44													
45		_	-										
46		For	peer revie	w only - ht	tp://bmjop	en.bmj.con	n/site/at	pout/guidel	ines.xhtml				
47													

Table 2. Food, nutrient intakes and daily frequency of eating-with-others by g	
Table 2 Food nutrient infakes and daily frequency of eating-with-others by g	ender

				Daily fre	quency for	eating-wit	h-others							
			Men				Women							
	0	1	2	3	p value	0	1	2	3	p value				
Food preparation, %														
Skipping meals	11.2	16.5	5.75	2.96	0.008	6.54	8.45	4.76	4.27	0.370				
Who prepared breakfast?					< 0.0001					0.003				
Self	57.6	45.7	37.0	12.7		74.0	76.2	61.3	57.2					
Others	28.6	36.4	56.1	85.8		23.9	20.7	36.1	41.5					
Eating out	13.8	17.9	6.96	1.52		2.14	3.12	2.62	1.35					
Who prepared lunch?					< 0.0001					0.0001				
Self	59.0	40.8	11.3	9.07		68.1	74.2	48.0	53.1					
Others	31.3	34.9	85.0	89.0		26.3	18.1	50.0	45.2					
Eating out	9.72	24.3	3.66	1.90		5.59	7.73	1.96	1.63					
Who prepared dinner?					< 0.0001					0.009				
Self	60.0	25.0	6.20	8.52		67.7	60.1	44.6	51.4					
Others	32.9	74.0	92.1	90.7		30.2	39.9	55.4	48.1					
Eating out	7.05	1.03	1.73	0.76		2.11	0.00	0.00	0.51					
If you need to prepare meals for					<0.0001					0 1 1 0				
yourself, who gets the food?					< 0.0001					0.118				
Never prepare	6.21	15.8	9.38	9.32		8.37	1.67	5.24	6.60					
Self	61.2	23.4	21.2	18.6		60.2	67.4	48.2	48.4					
Others	32.6	60.8	69.5	72.1		31.4	31.0	46.6	45.0					
Dietary diversity score, mean±SE	4.27±0.11	4.13±0.17	4.57±0.11	4.61±0.0	6 0.003	4.28±0.13	4.32±0.14	4.69±0.10	4.46±0.06	5 0.009				
≤3 (%)	24.1	22.1	12.2	12.1	0.010	30.2	20.7	8.05	17.5	0.001				
	30.0	41.4	30.2	32.4		24.1	31.2	31.5	31.3					
5 (%)	35.4	28.4	39.6	35.8		25.1	31.7	42.8	34.8					

6 (%)	10.8	8.13	18.0	19.7		20.7	16.4	17.6	16.4
Food intake other than cereal (times/d).	,								
mean±SE									
Dairy	0.57 ± 0.07	0.40 ± 0.09	0.65 ± 0.08	0.62 ± 0.05	0.116	0.80 ± 0.08	$0.89{\pm}0.14$	$0.74{\pm}0.09$	0.72 ± 0.05
Meat	1.02±0.09	1.98 ± 0.08	1.59±0.19	1.30 ± 0.07	0.001	0.81±0.15	0.86 ± 0.16	1.20±0.16	1.13±0.08
Seafood	0.86±0.18	0.93±0.12	1.08 ± 0.12	0.99 ± 0.08	0.524	0.70 ± 0.10	$0.92{\pm}0.12$	$0.91{\pm}0.09$	0.99 ± 0.07
Egg	0.44±0.08	0.39 ± 0.05	0.46 ± 0.05	0.46 ± 0.03	0.687	0.23±0.03	0.36 ± 0.04	$0.36{\pm}0.03$	0.38 ± 0.03
Soy	0.48±0.09	0.43±0.06	0.47 ± 0.06	0.45 ± 0.04	0.824	0.39 ± 0.06	0.50 ± 0.10	0.61 ± 0.07	0.51 ± 0.05
Vegetable	1.90 ± 0.18	1.84±0.13	2.57±0.13	2.47±0.12	0.004	2.09 ± 0.14	2.28±0.13	2.35±0.14	2.52±0.14
Fruit	0.99 ± 0.11	0.93±0.13	1.21 ± 0.09	1.19 ± 0.04	0.073	0.91 ± 0.10	$0.90{\pm}0.07$	1.21±0.10	1.07 ± 0.06
Total energy intake (kcal), mean±SE	1833±100	1849±123	1871±118	1815±77.4	0.940	1327±92.6	1518±126	1500±58.7	1521±84.3
Nutrient density (/1,000 kcal), mean±S	E								
Carbohydrate (g)	132±4.79	137±5.21	139±2.58	139 ± 2.71	0.438	155±3.55	143±5.63	144±3.31	144 ± 1.82
Dietary fiber (g)	11.2±0.79	11.7±0.87	12.4±0.75	11.7±0.45	0.653	15.5 ± 2.05	14.1±1.44	14.0 ± 1.02	12.7±0.57
Fat (g)	32.1±1.42	30.5±2.15	30.2±1.28	29.5±0.82	0.377	24.7±1.13	29.7±2.30	29.2±1.50	28.9±0.85
Protein (g)	41.9±1.80	43.3±2.52	41.5±1.34	43.2 ± 1.16	0.690	41.6±1.77	42.1±2.06	42.8 ± 1.32	41.8±1.27
Vitamin B-1 (mg)	0.63 ± 0.06	0.78 ± 0.07	0.69 ± 0.04	0.70 ± 0.03	0.645	0.71 ± 0.08	0.69 ± 0.05	0.76 ± 0.07	0.66 ± 0.03
Vitamin B-2 (mg)	$0.84{\pm}0.06$	0.88 ± 0.12	0.78 ± 0.06	0.81 ± 0.04	0.801	1.02 ± 0.07	1.11±0.14	1.05 ± 0.09	0.85 ± 0.04
Vitamin B-6 (mg)	0.73 ± 0.07	0.82 ± 0.09	0.75 ± 0.05	0.72 ± 0.03	0.586	0.65±0.05	0.81 ± 0.08	$0.73{\pm}0.03$	0.71 ± 0.03
Vitamin C (mg)	92.5±12.2	88.4±12.8	87.5±8.69	90.6±6.18	0.984	110±9.32	103±11.5	131 ± 20.0	105 ± 7.72
Calcium (mg)	382±26.2	338±41.7	336±21.0	365±16.3	0.353	536±43.0	455±42.4	483±41.7	432±19.8
Magnesium (mg)	139±7.34	141±12.1	143±6.63	145 ± 3.84	0.907	167 ± 9.06	157±7.87	159±9.59	147±4.55
All data weighted for unequal probability									
ANOVA and chi-square were used for	continuous a	nd categori	ies variables	s to test diffe	erence b	etween the g	roups by g	ender.	

Table 3. Health-related quality of life (SF-36) according to daily frequency eating-with-others by gender

General health Mental health Physical functioning 52.8 ± 1.18 52.8 ± 1.18 52.0 ± 1.49 52.9 ± 1.10 51.5 ± 0.50 0.538 0.538 47.1 ± 0.99 48.6 ± 1.23 47.3 ± 1.45 48.8 ± 1.27 49.2 ± 1.02 49.2 ± 1.02 0.558 47.8 ± 1.30 47.3 ± 1.45 48.8 ± 1.27 49.2 ± 1.02 45.2 ± 0.96 50.7 ± 0.97 48.2 ± 1.03 47.2 ± 1.00 48.2 ± 1.03 47.2 ± 1.00 48.2 ± 1.03 47.2 ± 1.00 48.2 ± 1.03 47.2 ± 1.00 48.2 ± 1.03 47.2 ± 1.00 48.2 ± 1.03 47.2 ± 1.00 48.2 ± 1.01 48	-							Daily fre	equency of	eating-w	ith-o	others				
General health Mental health Physical functioning Body pain $52.8\pm1.18\ 52.0\pm1.49\ 52.9\pm1.10\ 51.5\pm0.50\ 0.538\ 47.1\pm0.99\ 48.6\pm1.23\ 49.7\pm1.24\ 49.0\pm0.84\ 0.22\ 47.8\pm1.30\ 47.3\pm1.45\ 48.8\pm1.27\ 49.2\pm1.02\ 0.55\ 51.1\pm1.16\ 50.4\pm1.26\ 53.3\pm0.68\ 51.5\pm0.65\ 0.044\ 45.2\pm0.96\ 50.7\pm0.97\ 48.2\pm1.03\ 47.0\pm0.64\ 0.00\ 51.2\pm1.20\ 51.5\pm1.63\ 52.8\pm1.04\ 51.9\pm0.68\ 0.529\ 46.5\pm1.08\ 47.4\pm1.20\ 49.5\pm1.00\ 48.0\pm0.69\ 0.11\ 50.0\pm1.19\ 47.7\pm1.69\ 51.5\pm0.93\ 51.2\pm0.63\ 0.160\ 47.5\pm1.16\ 50.8\pm1.51\ 49.6\pm1.13\ 49.3\pm0.86\ 0.33\ 50.2\pm1.31\ 52.1\pm1.01\ 51.4\pm0.67\ 0.254\ 46.1\pm1.03\ 51.4\pm1.28\ 48.7\pm1.55\ 49.7\pm0.87\ 0.00\ 50.0\pm1.22\ 49.4\pm1.71\ 51.9\pm0.99\ 50.9\pm0.67\ 0.262\ 48.2\pm1.17\ 48.6\pm1.31\ 50.0\pm1.31\ 49.0\pm0.71\ 0.66\ 0.51\ 41.145\ 48.1\pm0.75\ 0.55\ All\ data$ weighted for unequal probability of sampling design by SUDAAN. ANOVA was used for continuous and categories variables to test difference between the groups by gender. $47.1\pm0.95\ 49.2\pm1.72\ 48.1\pm1.45\ 48.1\pm0.75\ 0.55\ 49.45\ 48.1\pm0.75\ 0.55\ 49.55\$	-					Mei	l							Women		
Mental health Physical functioning Body pain $51.4\pm0.91\ 49.3\pm1.88\ 52.3\pm1.13\ 52.5\pm0.50\ 0.222\ 47.8\pm1.30\ 47.3\pm1.45\ 48.8\pm1.27\ 49.2\pm1.02\ 0.55\ 51.1\pm1.16\ 50.4\pm1.26\ 53.3\pm0.68\ 51.5\pm0.65\ 0.044\ 45.2\pm0.96\ 50.7\pm0.97\ 48.2\pm1.03\ 47.0\pm0.64\ 0.00\ 51.2\pm1.20\ 51.5\pm1.63\ 52.8\pm1.04\ 51.9\pm0.68\ 0.529\ 46.5\pm1.08\ 47.4\pm1.20\ 49.5\pm1.00\ 48.0\pm0.69\ 0.1\ 50.0\pm1.19\ 47.7\pm1.69\ 51.5\pm0.93\ 51.2\pm0.63\ 0.160\ 47.5\pm1.16\ 50.8\pm1.51\ 49.6\pm1.13\ 49.3\pm0.86\ 0.33\ 50.2\pm1.36\ 49.5\pm1.31\ 52.1\pm1.01\ 51.4\pm0.67\ 0.254\ 46.1\pm1.03\ 51.4\pm1.28\ 48.7\pm1.55\ 49.7\pm0.87\ 0.00\ 50.0\pm1.22\ 49.4\pm1.71\ 51.9\pm0.99\ 50.9\pm0.67\ 0.262\ 48.2\pm1.17\ 48.6\pm1.31\ 50.0\pm1.31\ 49.0\pm0.71\ 0.66\ 51.0\pm1.32\ 49.4\pm1.76\ 51.7\pm1.02\ 51.8\pm0.68\ 0.591\ 47.1\pm0.95\ 49.2\pm1.72\ 48.1\pm1.45\ 48.1\pm0.75\ 0.57\ 40.11\ 40.45\ 48.1\pm0.75\ 0.57\ 40.1\pm0.45\ 48.1\pm0.75\ 48.1\pm0.75$			0		1	2		3	p value	0		1		2	3	p valu
Physical functioning Body pain $51.1\pm1.16\ 50.4\pm1.26\ 53.3\pm0.68\ 51.5\pm0.65\ 0.044\ 45.2\pm0.96\ 50.7\pm0.97\ 48.2\pm1.03\ 47.0\pm0.64\ 0.00\ 51.2\pm1.20\ 51.5\pm1.63\ 52.8\pm1.04\ 51.9\pm0.68\ 0.529\ 46.5\pm1.08\ 47.4\pm1.20\ 49.5\pm1.00\ 48.0\pm0.69\ 0.1\ 50.0\pm1.19\ 47.7\pm1.69\ 51.5\pm0.93\ 51.2\pm0.63\ 0.160\ 47.5\pm1.16\ 50.8\pm1.51\ 49.6\pm1.13\ 49.3\pm0.86\ 0.33\ 50.2\pm1.36\ 49.5\pm1.31\ 52.1\pm1.01\ 51.4\pm0.67\ 0.254\ 46.1\pm1.03\ 51.4\pm1.28\ 48.7\pm1.55\ 49.7\pm0.87\ 0.00\ 51.0\pm1.22\ 49.4\pm1.71\ 51.9\pm0.99\ 50.9\pm0.67\ 0.262\ 48.2\pm1.17\ 48.6\pm1.31\ 50.0\pm1.31\ 49.0\pm0.71\ 0.60\ 51.0\pm1.32\ 49.4\pm1.76\ 51.7\pm1.02\ 51.8\pm0.68\ 0.591\ 47.1\pm0.95\ 49.2\pm1.72\ 48.1\pm1.45\ 48.1\pm0.75\ 0.5\ 40.5\pm1.63\ 49.2\pm1.72\ 48.1\pm1.45\ 48.1\pm0.75\ 0.5\ 40.5\pm1.63\ 49.5\pm1.63\ 40.5\pm1.63\ 4$	-	General health	52.8±1.	.18 52	2.0±1.	49 52.9±	1.10	51.5 ± 0.50	0.538	47.1±0.	.99 4	48.6±1	.23	49.7±1.2	4 49.0±0.84	0.211
Body pain Role limitations due to emotional problems Role limitations due to physical problems Social function $51.2\pm1.20\ 51.5\pm1.63\ 52.8\pm1.04\ 51.9\pm0.68\ 0.529\ 46.5\pm1.08\ 47.4\pm1.20\ 49.5\pm1.00\ 48.0\pm0.69\ 0.1$ $50.0\pm1.19\ 47.7\pm1.69\ 51.5\pm0.93\ 51.2\pm0.63\ 0.160\ 47.5\pm1.16\ 50.8\pm1.51\ 49.6\pm1.13\ 49.3\pm0.86\ 0.33$ $50.2\pm1.36\ 49.5\pm1.31\ 52.1\pm1.01\ 51.4\pm0.67\ 0.254\ 46.1\pm1.03\ 51.4\pm1.28\ 48.7\pm1.55\ 49.7\pm0.87\ 0.00$ $50.0\pm1.22\ 49.4\pm1.71\ 51.9\pm0.99\ 50.9\pm0.67\ 0.262\ 48.2\pm1.17\ 48.6\pm1.31\ 50.0\pm1.31\ 49.0\pm0.71\ 0.60\ 51.0\pm1.32\ 49.4\pm1.76\ 51.7\pm1.02\ 51.8\pm0.68\ 0.591\ 47.1\pm0.95\ 49.2\pm1.72\ 48.1\pm1.45\ 48.1\pm0.75\ 0.55\ 41.04\ 51.9\pm0.48\ 1.20\ 51.9\pm0.48\ $		Mental health	51.4±0.	.91 49	9.3±1.	88 52.3±	1.13	$52.5{\pm}0.50$	0.222	47.8±1.	.30 4	47.3±1	.45	48.8±1.2	7 49.2±1.02	0.542
Role limitations due to emotional problems Role limitations due to physical problems Social function $50.0\pm1.19\ 47.7\pm1.69\ 51.5\pm0.93\ 51.2\pm0.63\ 0.160\ 47.5\pm1.16\ 50.8\pm1.51\ 49.6\pm1.13\ 49.3\pm0.86\ 0.33\ 50.2\pm1.36\ 49.5\pm1.31\ 52.1\pm1.01\ 51.4\pm0.67\ 0.254\ 46.1\pm1.03\ 51.4\pm1.28\ 48.7\pm1.55\ 49.7\pm0.87\ 0.00\ 50.0\pm1.22\ 49.4\pm1.71\ 51.9\pm0.99\ 50.9\pm0.67\ 0.262\ 48.2\pm1.17\ 48.6\pm1.31\ 50.0\pm1.31\ 49.0\pm0.71\ 0.66\ 51.0\pm1.32\ 49.4\pm1.76\ 51.7\pm1.02\ 51.8\pm0.68\ 0.591\ 47.1\pm0.95\ 49.2\pm1.72\ 48.1\pm1.45\ 48.1\pm0.75\ 0.57\ 40.91\ 40$		Physical functioning	51.1±1.	.16 50	0.4±1.	26 53.3±	0.68	51.5 ± 0.65	0.044	45.2±0.	.96 5	50.7±0	.97	48.2±1.0	3 47.0±0.64	0.002
Role limitations due to physical problems $50.2\pm1.36\ 49.5\pm1.31\ 52.1\pm1.01\ 51.4\pm0.67\ 0.254\ 46.1\pm1.03\ 51.4\pm1.28\ 48.7\pm1.55\ 49.7\pm0.87\ 0.00\ 50.0\pm1.22\ 49.4\pm1.71\ 51.9\pm0.99\ 50.9\pm0.67\ 0.262\ 48.2\pm1.17\ 48.6\pm1.31\ 50.0\pm1.31\ 49.0\pm0.71\ 0.66\ 51.0\pm1.32\ 49.4\pm1.76\ 51.7\pm1.02\ 51.8\pm0.68\ 0.591\ 47.1\pm0.95\ 49.2\pm1.72\ 48.1\pm1.45\ 48.1\pm0.75\ 0.57\ 48.1\pm0.75\ 0.57\ 48.1\pm0.75\ 0.57\ 48.1\pm1.45\ 48.1\pm0.75\ 48.1\pm1.45\ 48.1\pm0.75\ 48.1\pm1.45\ 48.1\pm0.75\ 48.1\pm1.45\ 48.1\pm1$		Body pain	51.2±1.	20 5	1.5±1.	63 52.8±	1.04	$51.9{\pm}0.68$	0.529	46.5±1.	.08 4	47.4±1	.20	49.5±1.0	048.0±0.69	0.112
Social function $50.0\pm1.22\ 49.4\pm1.71\ 51.9\pm0.99\ 50.9\pm0.67\ 0.262\ 48.2\pm1.17\ 48.6\pm1.31\ 50.0\pm1.31\ 49.0\pm0.71\ 0.60\ Vitality$ Social function $51.0\pm1.32\ 49.4\pm1.76\ 51.7\pm1.02\ 51.8\pm0.68\ 0.591\ 47.1\pm0.95\ 49.2\pm1.72\ 48.1\pm1.45\ 48.1\pm0.75\ 0.57\ 48.1\pm0.1\pm0.1\pm0.1\pm0.1\pm0.1\pm0.1\pm0.1\pm0.1\pm0.1\pm0$		Role limitations due to emotional problems	50.0±1.	.19 4′	7.7±1.	69 51.5±	0.93	51.2±0.63	0.160	47.5±1.	.16 5	50.8±1	.51	49.6±1.1	3 49.3±0.86	0.354
Vitality 51.0±1.32 49.4±1.76 51.7±1.02 51.8±0.68 0.591 47.1±0.95 49.2±1.72 48.1±1.45 48.1±0.75 0.5 All data weighted for unequal probability of sampling design by SUDAAN. ANOVA was used for continuous and categories variables to test difference between the groups by gender. 64		Role limitations due to physical problems	50.2±1.	.36 49	9.5±1.	31 52.1±	1.01	51.4 ± 0.67	0.254	46.1±1.	.03 5	51.4±1	.28	48.7±1.5	5 49.7±0.87	0.005
All data weighted for unequal probability of sampling design by SUDAAN. ANOVA was used for continuous and categories variables to test difference between the groups by gender.		Social function	50.0±1.	.22 49	9.4±1.	71 51.9±	0.99	50.9±0.67	0.262	48.2±1.	.17 4	48.6±1	.31	50.0±1.3	1 49.0±0.71	0.698
ANOVA was used for continuous and categories variables to test difference between the groups by gender.		Vitality	51.0±1.	.32 49	9.4±1.	76 51.7±	1.02	51.8±0.68	0.591	47.1±0.	.95 4	49.2±1	.72	48.1±1.4	5 48.1±0.75	0.553
ANOVA was used for continuous and categories variables to test difference between the groups by gender.	-	All data weighted for unequal probability of	sampling	g desi	ign by	SUDAA	N.									
53								etween the	groups b	v gender	r.					
54									•							
	53															
	4															

0
2
3
4
3 4 5 6 7 8 9 10 11
5
6
7
8
0
9
10
11
12
12
13
14
15
16
10
17
18
12 13 14 15 16 17 18 19
00
20
21
22
23
23
24
25
26
27
21
28
29
30
30
31
32
33
31
04
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
36
37
20
30 00
39
40
41
42
43
44
45
46
47
-

	Daily frequency of eating-with-others							
	Men				Women			
	0	1	2	3	0	1	2	3
Deceased/survival, n	75/67	26/31	37/89	248/382	60/114	20/59	36/104	196/350
Crude model	1.00	0.90 (0.60–1.35)	0.42^{***} (0.28–0.61)	0.67^{**} (0.52–0.88)	1.00	0.53 (0.27–1.05)	0.68 (0.42–1.11)	0.86 (0.64–1.16)
Model 1	1.00	1.12 (0.71–1.78)	0.48** (0.31-0.74)	0.76 (0.57–1.03)	1.00	0.54 (0.24–1.23)	0.89 (0.53–1.49)	1.07 (0.77–1.49
Model 2 [†]	1.00	0.76 (0.37–1.56)	0.43^{**} (0.25–0.73)	0.63*	1.00	0.56 (0.29–1.07)	0.68 (0.35–1.30)	0.69 (0.39–1.21
Model 3 [†]	1.00	0.78 (0.39–1.55)	0.46**	0.66 (0.43–1.02)	1.00	0.54 (0.27–1.06)	0.70 (0.36–1.36)	0.72 (0.40–1.27

Data were weighted for unequal probability of sampling design by SUDAAN and estimated HR (95% CI) by using the Cox proportional-hazard model.

Model 1: adjusted for age

Model 2: adjusted for age, education (illiterate, primary school, high school and above), region (Hakka, mountains, Eastern Taiwan, Penghu, Northern Taiwan 1–3, Central Taiwan 1–3, Southern Taiwan 1–3), live alone (live alone, live with others), cook frequency (never, sometimes, often, frequently), marital status (married, bereaved, other), appetite status (good, fair, poor), dietary diversity score (\leq 3, 4, 5, 6), activities of daily living and body mass index (<18.5, 18.5–23.9, 24.0–26.9, \geq 27 kg/m²)

Model 3: model 2 plus adjusted self-rate financial status (more than enough, just enough, not enough)

[†]Women were not adjusted for activities of daily living in the models since it is highly correlated with cooking frequency.

*p<0.05; **p<0.01; ***p<0.001

465

466

48 40

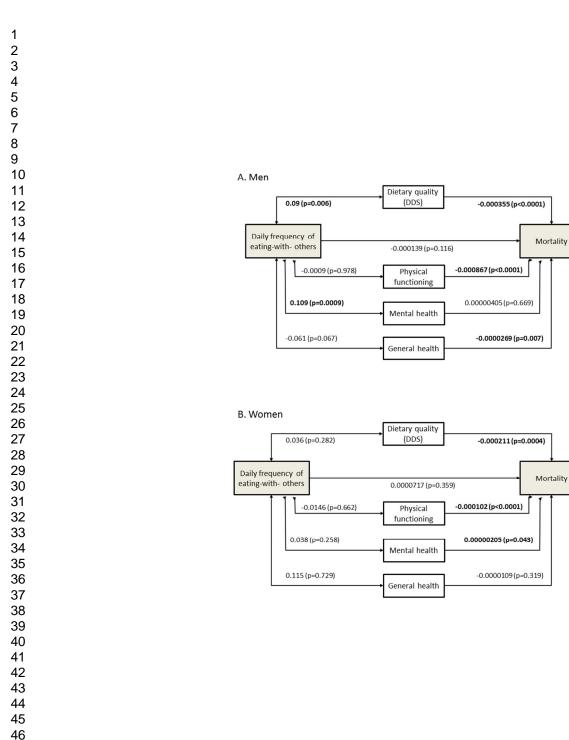


Figure 1. Gender-specific pathway analysis for the associations of eating-with-others and all-cause mortality. All values are presented as β coefficients with their p values. (A) men; (B) women.

297x420mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2
3 4 5 6 7
4 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20 27
21
20 20
29 30
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
31 32 33 34 35 36 37 38 39
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 50
50 51
51 52
5∠ 53
ევ 54
54 55
56
57
58
59
<u> </u>

1

Supplementary table 1. Spearman rank correlation coefficients between daily frequency of eating with others and co-variables

	Spearman rank correlation coefficients		
	Men	Women	
Education – higher	0.067^{*}	0.037	
Marital status – married	0.522^{***}	0.460^{***}	
Dietary diversity score – higher	0.092^{**}	0.033	
Body mass index – higher	0.037	0.025	
Age – older	-0.092**	-0.127**	
Live alone	-0.648***	-0.592***	
Cooking frequency – more	-0.407***	-0.157***	
Appetite status – poor	-0.035	-0.01	
Activities of daily living – more difficulties	-0.037	-0.087**	
Self-rate financial status – not enough	-0.066*	-0.124**	
*p<0.05; **p<0.001; ***p<0.0001			

sore di. 10001

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

Title and abstract Introduction Background/rationale Objectives	<u>No</u> 1	Recommendation (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was	Pag 1
Background/rationale		abstract(b) Provide in the abstract an informative and balanced summary of what was	
Background/rationale			-
Background/rationale			2
Background/rationale		done and what was found	
Background/rationale			
	2	Explain the scientific background and rationale for the investigation being	4
Objectives		reported	
•	3	State specific objectives, including any prespecified hypotheses	4-5
Methods			
Study design	4	Present key elements of study design early in the paper	5-7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5-7
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	5,7
		of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	
		exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5-7
,	,	effect modifiers. Give diagnostic criteria, if applicable	υ,
Data sources/	8*		
measurement	Ũ	assessment (measurement). Describe comparability of assessment methods if	5-7
mousurement		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	13
Study size	10	Explain how the study size was arrived at	N/A
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	5,
		applicable, describe which groupings were chosen and why	6-7
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	7-8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	5
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	5
		<i>Case-control study</i> —If applicable, explain how nass to ronow up was addressed	·
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	
		(e) Describe any sensitivity analyses	13
Continued on next page		(<u>c)</u> Describe any sensitivity analyses	13

Continued on next page

1
2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
21
22
23
2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17 8 9 10 11 2 13 14 15 6 17 8 9 10 11 2 13 14 15 6 17 8 19 20 12 22 3 24 5 26 27 28 29 30 13 23 33 34 35 36 37 8 39 10 10 10 10 10 10 10 10 10 10 10 10 10
25
20
20
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
40 49
49 50
51
52
53
54
55
56
57 58
58
59
60

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	5
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	5
		(c) Consider use of a flow diagram	N/A
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	8-9
data		information on exposures and potential confounders	(Table 1)
		(b) Indicate number of participants with missing data for each variable of interest	5
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	Table 1
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	Table 4
		Case-control study—Report numbers in each exposure category, or summary	
		measures of	
		exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	9
		and their precision (eg, 95% confidence interval). Make clear which confounders	(Table 4)
		were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	N/A
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	7
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	13
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	14
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other informatio	on		
			1.7
Funding	22	Give the source of funding and the role of the funders for the present study and, if	15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.