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A. Proof of Theorems

To establish the asymptotic results given in Theorems 1-2, we need to assume some reg-
ularity conditions. Recall that a working logistic model (3) is assumed for the propensity
scores with parameters θ for the IPSWKME and a working proportional hazards model (5)
is further assumed for the survival time T for the AIPSWKME with parameters β and Λ0.
Let νAi = (XT

i , Ai, AiX
T
i )T and νηi = (XT

i , gη(Xi), gη(Xi)X
T
i )T . Define

KI
1 (X, A, T̃ , δ;η) =

∫ t

0

(2A− 1)dN(u)

π∗E{w∗ηY (u)}
,

KI
2 (X, A, T̃ , δ;η) =

∫ t

0

(2A− 1)Y (u)E[{(2A− 1)gη(X) + (1−A)}dN(u)]

[π∗E{w∗ηY (u)}]2
,

where w∗η = [Agη(X)+(1−A){1−gη(X)}]/π∗ and π∗ = π(X;θ∗)A+{1−π(X;θ∗)}(1−A).
In addition, define

KA
1 (X, A, T̃ , δ;η) =

∫ t

0

JA1 (u)− JA0 (u)

E
[
{LA1 (u)− LA0 (u)}gη(X) + LA0 (u)

] ,
KA

2 (X, A, T̃ , δ;η) =

∫ t

0

{LA1 (u)− LA0 (u)}E
[
{JA1 (u)− JA0 (u)}gη(X) + JA0 (u)

](
E
[
{LA1 (u)− LA0 (u)} gη(X) + LA0 (u)

])2 ,

where JAk (u) = 1−k−(−1)kA
π∗ dN(u)+ek

(
1− 1−k−(−1)kA

π∗

)
exp {−Λ∗0(u)ek}SC(u)dΛ∗0(u), LAk (u) =

1−k−(−1)kA
π∗ Y (u)+

(
1− 1−k−(−1)kA

π∗

)
exp {−Λ∗0(u)ek}SC(u), ek = exp

{
β∗

T
(XT , k, kXT )T

}
,

k = 0, 1. We assume the following conditions.

A1. The covariates X are bounded.
A2. The propensity score π(X) is bounded away from 0 and 1 for all possible values of

X.
A3. The equation E

[{
A− exp(θT X̃)

1+exp(θT X̃)

}
X̃
]

= 0 has a unique solution θ∗.

A4. The equation

E

∫ τ

0

νAi − E
{
Yi(s) exp(βTνAi)νAi

}
E
{
Yi(s) exp(βTνAi)

}
× dNi(s)

 = 0.
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has a unique solution β∗, where τ > t is a prespecified time point satisfying P (T̃i ≥
τ) > 0. Let Λ∗0(u) = E[

∫ u
0
dNi(s)/E{Yi(s) exp(β∗

T
νAi)}] and it satisfies Λ∗0(τ) <∞.

A5. sup||η||=1E[{KI
j (X, A, T̃ , δ;η)}2] < ∞ and sup||η||=1E[{KA

j (X, A, T̃ , δ;η)}2] < ∞,
j = 1, 2.

A6. nh→∞ and nh4 → 0 as n→∞.

Under assumed regularity conditions A1 - A4, we have the following asymptotic repre-
sentations:

√
n(θ̂ − θ∗) =

1√
n

n∑
i=1

φ1i + op(1),
√
n(β̂ − β∗) =

1√
n

n∑
i=1

φ2i + op(1),

√
n{Λ̂0(u)−Λ∗0(u)} =

1√
n

n∑
i=1

φ3i(u)+op(1),
√
n{ŜC(u)−SC(u)} =

1√
n

n∑
i=1

φ4i(u)+op(1),

where φ1i’s and φ2i’s are independently and identically distributed mean-zero vectors, and
φ3i(u) and φ4i(u) are independent mean-zero processes. Moreover, consistent estimators

φ̂1i, φ̂2i, φ̂3i(u) and φ̂4i(u) of φ1i, φ2i, φ3i(u) and φ4i(u) can be easily obtained.

A.1. Proof of Theorem 1

For any given regime gη, we first derive the asymptotic properties for the corresponding
inverse propensity score weighted (IPSW) Nelson-Aalen estimator. Specifically,

Λ̂I(u;η) ≡ Λ̂I(u;η, θ̂) =

∫ u

0

∑n
i=1 ŵηidNi(s)∑n
i=1 ŵηiYi(s)

. (A.1)

It is easy to show that ŜI(u;η) and exp{−Λ̂I(u;η)} are asymptotically equivalent for any

given η. Therefore, the asymptotic properties of ŜI(u;η) easily follows those of Λ̂I(u;η).

When the propensity score model is correctly specified, we have θ∗ = θ and w∗ηi = wηi.

Then n−1
∑n
i=1 ŵηiYi(s) →p E{wηiYi(s)} = E[Y ∗{gη(X); s}] uniformly for s ∈ [0, τ ] as

n → ∞. Similarly, we have n−1
∑n
i=1 ŵηidNi(s) →p E{wηidNi(s)} = E[dN∗{gη(X); s}]

uniformly for s ∈ [0, τ ] as n→∞. Therefore,

Λ̂I(u;η)→p

∫ u

0

E[dN∗{gη(X); s}]
E[Y ∗{gη(X); s}]

=

∫ u

0

SC(s)dP [T ∗{gη(X)} ≤ s]
SC(s)P [T ∗{gη(X)} ≥ s]

= − log{S∗(u;η)} ≡ Λ∗(u;η),

which establish the consistency given in (i) of Theorem 1.

Next, we derive the asymptotic distribution of Λ̂I(u;η). By applying the first-order

Taylor expansion of Λ̂I(u;η) with respect to parameter θ, we have

√
n{Λ̂I(u;η)− Λ∗(u;η)} =

√
n{Λ̂I(u;η,θ)− Λ∗(u;η)}+D1(u)T

√
n(θ̂ − θ) + op(1),
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where D1(u) = limn→∞ ∂Λ̂I(u;η,θ)/∂θ. In addition,

√
n{Λ̂I(u;η,θ)− Λ∗(u;η)} =

√
n

∫ u

0

∑n
i=1 wηi{dNi(s)− Yi(s)dΛ∗(s;η)}∑n

i=1 wηiYi(s)

= n−1/2
n∑
i=1

∫ u

0

wηi[dN
∗
i {gη(X); s} − Y ∗i {gη(X); s}dΛ∗(s;η)]

E[Y ∗{gη(X); s}]
+ op(1)

= n−1/2
n∑
i=1

∫ u

0

wηidM
∗
i {gη(X); s}

E[Y ∗{gη(X); s}]
+ op(1),

where M∗i {gη(X); s} = N∗i {gη(X); s} −
∫ s
0
Y ∗i {gη(X); v}dΛ∗(v;η) is a mean-zero martin-

gale process. Therefore,

√
n{Λ̂I(u;η)− Λ∗(u;η)} = n−1/2

n∑
i=1

(∫ u

0

wηidM
∗
i {gη(X); s}

E[Y ∗{gη(X); s}]
+D1(u)Tφ1i

)
+ op(1)

≡ n−1/2
n∑
i=1

ζi(u;η) + op(1),

where ζi(u;η)’s are independent mean-zero processes. By delta method, we have
√
n{ŜI(u;η)−

S∗(u;η)} = −S∗(u;η)n−1/2
∑n
i=1 ζi(u;η) + op(1), which converges weakly to a mean-zero

Gaussian process by applying the empirical process theory. This proves (ii) of Theorem 1.

Since η̂opt
I is the maximizer of ŜI(t;η) and ηopt is the maximizer of S∗(t;η), following

the similar arguments in Zhang et al. (2012), we have

√
n{ŜI(t; η̂opt

I )− S∗(t;ηopt)} −
√
n{ŜI(t;ηopt)− S∗(t;ηopt)} = op(1).

It follows that
√
n{ŜI(t; η̂opt

I ) − S∗(t;ηopt)} →d N(0,ΣI(t;η
opt)), where ΣI(t;η

opt) =
{S∗(t;ηopt)}2E{ζ2i (t;ηopt)}. This proves (iii) of Theorem 1. In addition, ΣI(t;η

opt) can

be consistently estimated by {ŜI(t; η̂opt
I )}2n−1

∑n
i=1 ζ̂

2
i (t; η̂opt

I ), where

ζ̂i(t; η̂
opt
I ) =

∫ t

0

ŵηi{dNi(s)− Yi(s)dΛ̂I(s; η̂
opt
I )}

n−1
∑n
i=1 ŵηiYi(s)

+ D̂1(t)T φ̂1i,

and D̂1(t) = ∂Λ̂I(t; η̂
opt
I ,θ)/∂θ|θ=θ̂.

Finally, we show that ŜI(t; η̂
opt
I ) and S̃I(t; η̃

opt
I ) are asymptotically equivalent. For any

given η, we have

√
n
{

Λ̃I(t;η)− Λ̂I(t;η)
}

=
√
n× 1

n

n∑
i=1

{
Φ

(
ηTXi

h

)
− I

(
ηTXi ≥ 0

)}
×KI

1 (Xi, Ai, T̃i, δ;η) (A.2)

+
√
n× 1

n

n∑
i=1

{
Φ

(
ηTXi

h

)
− I

(
ηTXi ≥ 0

)}
×KI

2 (Xi, Ai, T̃i, δ;η) (A.3)

+ op(1).
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For simplicity, define q = (Xi, Ai, T̃i, δ) and rη = ηTX. Following the similar arguments
in Heller (2007), we have

|(A.2)| ≤M
√
n sup||η||=1

∣∣∣∣∫
q

∫
rη

{
Φ

(
rη

h

)
− I(rη ≥ 0)

}
KI

1 (q;η)dF̂ (rη|q;η)dĜ(q;η)

∣∣∣∣ ,
where M is a finite constant, Ĝ(q;η) and F̂ (rη|q;η) are the marginal empirical cumu-
lative distribution functions for q and the conditional empirical cumulative distribution
function for rη, respectively. For simplicity, we omit the superscript η in rη, the con-
dition η in KI

1 (q;η), F̂ (r|q;η) and Ĝ(q;η). Thus, the equation (A.2) is bounded by
M
√
n sup||η||=1 |Υ|, where

Υ =

∫
q

∫
r

{
Φ
( r
h

)
− I(r ≥ 0)

}
KI

1 (q)dF̂ (r|q)dĜ(q).

Write Υ = Υ1 + Υ2, where

Υ1 =

∫
q

∫
r

{
Φ
( r
h

)
− I(r ≥ 0)

}
KI

1 (q)
{
dF̂ (r|q)− dF (r|q)

}
dĜ(q)

Υ2 =

∫
q

∫
r

{
Φ
( r
h

)
− I(r ≥ 0)

}
KI

1 (q)dF (r|q)dĜ(q)

with F (r|q) = limn→+∞ F̂ (r|q). By variable transformation z = r/h and integration by
parts, we have

Υ1 =

∫
q

∫
z

KI
1 (q)ϕ(z)

{[
F̂ (zh|q)− F (zh|q)

]
−
[
F̂ (0|q)− F (0|q))

]}
dzdĜ(q), (A.4)

where ϕ(z) is the probability density function of standard normal distribution. Under
regularity condition A5, we apply the results on oscillations of empirical process (Shorack
and Wellner, 2009, Theorem 1, p. 542) to equation (A.4) and have

√
n|Υ1| = Op

(√
h log n log

(
1

h log n

))
.

In addition, by similar arguments and applying second order Taylor expansion of Υ2 with
respect to h around 0, we have

Υ2 = −h
2

2

∫
q

∫
z

KI
1 (q)ϕ(z)f ′(zh∗|q)z2dzdĜ(q),

where f ′(u|q) = ∂2F (u|q)/∂u2 and h∗ lies between h and 0. Thus, we have
√
n|Υ2| =

Op(
√
nh2). Combine the above results, we have

|(A.2)| ≤
√
n|Υ1|+

√
n|Υ2| = Op

(√
h log n log

(
1

h log n

)
+
√
nh2

)
.

By condition A6, we have sup||η||=1 |(A.2)| = op(1). Similarly, we have sup||η||=1 |(A.3)| =
op(1). Therefore, we have

√
n{Λ̃I(t;η) − Λ̂I(t;η)} = op(1) uniformly in η, which im-

plies
√
n{S̃I(t;η) − ŜI(t;η)} = op(1) uniformly in η. In addition, it is easy to show that√

n{S̃I(t; η̃opt
I )− S̃I(t;ηopt)} = op(1) and

√
n{ŜI(t; η̂opt

I )− ŜI(t;ηopt)} = op(1). It follows

that
√
n{S̃I(t; η̃opt

I )− ŜI(t; η̂opt
I )} = op(1), which proves (iv) of Theorem 1.
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A.2. Proof of Theorem 2
For any given regime gη, we similarly introduce the augmented IPSW Nelson-Aalen esti-
mator

Λ̂A(u;η) =

∫ u

0

∑n
i=1 ŵηidNi(s) + (1− ŵηi)ŜT (s|gη(Xi),Xi)ŜC(s)dΛ̂T (s|gη(Xi),Xi)∑n

i=1 ŵηiYi(s) + (1− ŵηi)ŜT (s|gη(Xi),Xi)ŜC(s)
.

(A.5)

We will show that Λ̂A(u;η) is consistent when either the propensity score model is correctly
specified or the survival model for T is correctly specified, i.e. having the doubly robustness
property. First, assume that the propensity score model is correctly specified. Then, we
have θ∗ = θ and w∗ηi = wηi. In addition, the denominator of equation (A.5) converges in

probability to E{wηiYi(s)} + E
[
(1− wηi) exp{−Λ∗0(s) exp(β∗

T
νηi)}SC(s)

]
uniformly for

s ∈ [0, τ ]. Note that the second term is zero since E(wηi|Xi) = 0. Similarly, the numerator
of equation (A.5) converges in probability to

E{wηidNi(u)}+ E
[
(1− wηi) exp{−Λ∗0(u) exp(β∗

T
νηi)}SC(u) exp(β∗

T
νηi)dΛ∗0(u)

]
uniformly for s ∈ [0, τ ], where the second term is also zero. The proof of consistency then
follows that for the IPSW Nelson-Aalen estimator.

On the other hand, when the survival model for T is correctly specified, we have β∗ = β
and Λ∗0(s) = Λ0(s). We can show that the denominator of equation (A.5) converges in
probability to

E
[
exp{−Λ0(s) exp(βT νηi)}SC(s)

]
+ E

(
w∗ηi[Yi(s)− exp{−Λ0(s) exp(βT νηi)}SC(s)]

)
uniformly for s ∈ [0, τ ], where the first term equals to S∗(s;η)SC(s) and the second term is
zero since E[Yi(s)−exp{−Λ0(s) exp(βT νηi)}SC(s)|Ai,Xi] = 0. In addition, the numerator
of equation (A.5) converges in probability to

E
[
exp{−Λ0(s) exp(βT νηi)}SC(s) exp(βT νηi)dΛ0(s)

]
+E

(
w∗ηi[dNi(u)− exp{−Λ0(s) exp(βT νgi)}SC(s) exp(βT νηi)dΛ0(u)]

)
uniformly for s ∈ [0, τ ], where the first term equals to −SC(s)dS∗(s;η) and the second
term is zero since E[dNi(u)−exp{−Λ0(s) exp(βT νgi)}SC(s) exp(βT νηi)dΛ0(u)|Ai,Xi] = 0.
Therefore, the remaining proof follows that for the IPSW Nelson-Aalen estimator.

Next, we derive the asymptotic distribution for ŜA(u;η), assuming that either the
propensity score model or the survival model for T is correctly specified. Note that
Λ̂A(u;η) = Λ̂A(u;η, θ̂, β̂, Λ̂0, ŜC). By Taylor expansion of Λ̂A(u;η, θ̂, β̂, Λ̂0, ŜC) with re-

spect to the estimators θ̂, β̂, Λ̂0 and ŜC around their population values, we have

√
n{Λ̂A(u;η)−Λ∗(u;η)} =

√
n{Λ̂A(u;η,θ∗,β∗,Λ∗0, SC)−Λ∗(u;η)}+n−1/2

n∑
i=1

ψ2i(u;η)+op(1),

where ψ2i(u;η)’s are independent mean-zero processes due to the asymptotic expansions of

the estimators θ̂, β̂, Λ̂0 and ŜC , and are functions of φ1i, φ2i, φ3i(u) and φ4i(u). As in the
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proof of Theorem 1, ψ2i(u;η) can be consistently estimated by the usual plug-in method,

and its estimator is denoted as ψ̂2i(u;η). By simple algebra, we have

√
n{Λ̂A(u;η,θ∗,β∗,Λ∗0, SC)− Λ∗(u;η)} = n−1/2

n∑
i=1

∫ u

0

dhi(s)

E[Y ∗{gη(X); s}]
+ op(1),

where

dhi(s) =w∗ηi{dNi(s)− Yi(s)dΛ∗(s;η)}
+ (1− w∗ηi)S∗T (s|gη(Xi),Xi)SC(s)d{Λ∗T (s|gη(Xi),Xi)− Λ∗(s;η)}.

Note that the first term in dhi(s) equals to w∗ηidM
∗
i {gη(X); s} and the second term is

zero if the propensity score model is correctly specified. If the survival model for T is
correctly specified, we have E{Λ∗T (s|gη(Xi),Xi)} − Λ∗(s;η) = 0. Define ψ1i(u;η) =∫ u
0

dhi(s)
E[Y ∗{gη(X);s}] . Then, ψ1i(u;η)’s are independent mean-zero processes. In addition,

ψ1i(u;η) can be consistently estimated by

ψ̂1i(u;η) =

∫ u

0

ŵηi{dNi(s)− Yi(s)dΛ̂A(s;η)}
n−1

∑n
i=1{ŵηiYi(s) + (1− ŵηi)ŜT (s|gη(Xi),Xi)ŜC(s)}

+

∫ u

0

(1− ŵηi)ŜT (s|gη(Xi),Xi)ŜC(s)d{Λ̂T (s|gη(Xi),Xi)− Λ̂A(s;η)}
n−1

∑n
i=1{ŵηiYi(s) + (1− ŵηi)ŜT (s|gη(Xi),Xi)ŜC(s)}

.

Let ψi(u;η) = ψ1i(u;η)+ψ2i(u;η). We have
√
n{Λ̂A(u;η)−Λ∗(u;η)} = n−1/2

∑n
i=1 ψi(u;η)+

op(1), which converges weakly to a mean-zero Gaussian process. By Delta method,
√
n{ŜA(u;η)−

S∗(u;η)} also converges weakly to a mean-zero Gaussian process. Following the proof for
Theorem 1, we have

√
n{ŜA(t; η̂opt

A )− S∗(t;ηopt)} −
√
n{ŜA(t;ηopt)− S∗(t;ηopt)} = op(1).

It follows that
√
n{ŜA(t; η̂opt

A ) − S∗(t;ηopt)} →d N(0,ΣA(t;ηopt)), where ΣA(t;ηopt) =
{S∗(t;ηopt)}2E{ψ2

i (t;ηopt)}. Moreover, ΣA(t;ηopt) can be consistently estimated by

{ŜA(t; η̂opt
A )}2n−1

n∑
i=1

{ψ̂1i(t; η̂
opt
A ) + ψ̂2i(t; η̂

opt
A )}2.

Finally, for any given η, we have

√
n
{

Λ̃A(t;η)− Λ̂A(t;η)
}

=
√
n× 1

n

n∑
i=1

{
Φ

(
ηTXi

h

)
− I

(
ηTXi ≥ 0

)}
×KA

1 (Xi, Ai, T̃i, δ;η) (A.6)

+
√
n× 1

n

n∑
i=1

{
Φ

(
ηTXi

h

)
− I

(
ηTXi ≥ 0

)}
×KA

2 (Xi, Ai, T̃i, δ;η) (A.7)

+ op(1).

Under conditions A5 and A6, following the similar arguments in the proof for (iv) of

Theorem 1, (A.6) and (A.7) can be bounded uniformly in η. Therefore,
√
n{S̃A(t;η) −

ŜA(t;η)} = op(1) uniformly in η. Since
√
n{S̃A(t; η̃opt

A )−S̃A(t;ηopt)} = op(1) and
√
n{ŜA(t; η̂opt

A )−
ŜA(t;ηopt)} = op(1), it follows that

√
n{S̃A(t; η̃opt

A )− ŜA(t; η̂opt
A )} = op(1).
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A.3. Proof of Theorem 3
To establish the asymptotic results given in Theorem 3, the regularity conditions A1-A3
and A5-A6 need to be modified accordingly to incorporate the two-stage treatment regimes,
and condition A4 is not needed. However, the proof of Theorem 3 can follow similar steps
as for the proof of Theorem 1, and is omitted here.
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