Supplementary Information

Superconductivity in Ti₄O₇ and γ-Ti₃O₅ films

K. Yoshimatsu^{1,*}, O. Sakata²³, and A. Ohtomo^{1,3,*}

^aDepartment of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan ^aSynchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), Sayo, Hyogo 679-5148, Japan ^aMaterials Research Centre for Element Strategy (MCES), Tokyo Institute of Technology, Yokohama 226-8503, Japan

PACS: 74.78.-w, 73.50.-h, 61.05.cp, 71.38.Mx

*Author to whom correspondence should be addressed; Electronic mail: k-yoshi@apc.titech.ac.jp

<u>Growth of TiO and Ti₂O₃ films using pulsed laser deposition under Ar</u> <u>atmosphere.</u>

In order to demonstrate the reductive effects of Ar gas, we have grown TiO and Ti₄O₅ films by using pulsed laser deposition under Ar atmosphere. Here, these films were grown at 1000°C and under Ar: 1×10^{-5} Torr and 1×10^{-5} Torr, respectively. Figure S1 shows out-of-plane XRD patterns for TiO and Ti₄O₅ films on α -Al₄O₅ (0001) substrates. The single peak was observed at $2\theta \approx 37.6^{\circ}$ and 39.2°, corresponding to d = 2.396 Å and 2.296 Å, respectively, except for α -Al₄O₅ 0006 reflections observed at $2\theta = 41.67^{\circ}$. The former peak was identified as TiO 111 reflection [S1] and the latter one was identified to Ti₄O₅ 0006 reflection [S2]. The XRD patterns suggest that the single-phase TiO and Ti₄O₅ films are successfully grown under Ar atmosphere by laser ablation of the target with the identical TiO, ceramic target.

Surface morphology strongly supports the formation of TiO and Ti₂O₃ films. The insets of Fig. S1 show AFM images of the TiO and Ti₂O₃ films. As for the TiO film, the triangular facets were clearly observed, reflecting fully epitaxial growth on the hexagonal substrate as well as a rock-salt type structure exposing more stable (100) facets. The Ti₂O₃ film exhibited a trace of the spiral growth: islands surrounded by multilevel terraces originating from screw or half-loop dislocations [S3].

Figure S1. Out-of-plane XRD patterns for TiO and Ti₂O₃ films. The insets show atomic force microscopic images of the films.

X-ray diffraction (XRD) measurements for the Ti₄O₇ films

Figure S2 shows contour map of film- and substrate-reflections intensity, plotted against scattering angle 2θ and tilt angle χ , for the Ti₄O₇ films grown under $P_{Ar} = 1 \times 10^{-3}$ Torr (superconducting Ti₄O₇). The peak locations corresponding to the film and substrate reflections were verified. Based on this survey, we have performed synchrotron radiation XRD at BL15XU in SPring-8 for both the insulating and superconducting Ti₄O₂ films. The measured reflection profiles were shown in Figs. S3 (a–h) (insulating Ti₄O₇ film) and Figs. S4 (a–h) (superconducting Ti₄O₇ film). Signal to noise ratio was significantly improved using high-flux synchrotron radiation. From the *d* values of interplanar spacing distances and χ angles, the Miller indices were assigned as listed in Tables S1. For the Ti₄O₇ 134 reflection, the XRD azimuth ϕ -scans around the film normal were also performed to reveal the rotational domains of the films (Figs. S5). The peaks appeared every 90°, indicating four-fold rotational domains in the films. From these XRD analyses, the in-plane (out-of-plane) epitaxial relationships between the films and substrate were determined to be Ti_4O_7 [010] // (LaAlO₃)₀₃- $(SrAl_{0.5}Ta_{0.5}O_3)_{0.7}$ (LSAT) [010], [001] and Ti_4O_7 [0–10] // LSAT [010], [001] (Ti_4O_7 [101] // LSAT [100]). Using the d values and Miller indices, we evaluated the lattice parameters of the Ti₄O₇ films in Table S2.

Figure S2. Contour map of film- and substrate-reflections intensity, constructed from 2θ - θ profiles measured by stepwisely varying tilt angle χ , for the superconducting Ti₄O₂ film grown on the LSAT (100) substrate.

Figure S3. Some of the film-reflection profiles measured for the insulating Ti_4O_7 film. (a) 202, (b) 404, (c) 314, (d) 112, (e) 1–10, (f) 2–20, (g) 3–30, and (h) 134 reflections.

Figure S4. Some of the film-reflection profiles measured for the superconducting Ti₄O₂ film. (a) 202, (b) 404, (c) 314, (d) 112, (e) 1–10, (f) 2–20, (g) 3–30, and (h) 134 reflections.

Table S1. List of Miller indices, *d* values of interplanar spacing distances, and tilt angle χ for the insulating (left) and superconducting (light) Ti₄O₂ films.

No	hkl	<i>d</i> _{hkl} (Å)	χ(°)	No	hkl	<i>d</i> _{hkl} (Å)	χ(°)
1	202	2.133	0	1	202	2.131	0
2	404	1.068	0	2	404	1.067	0
3	314	1.252	11.97	3	314	1.251	12.10
4	112	2.837	27.02	4	112	2.837	27.02
5	1–10	4.544	44.73	5	1-10	4.531	44.92
6	2–20	2.272	44.73	6	2–20	2.274	44.92
7	3–30	1.494	44.73	7	3–30	1.457	44.92
8	134	1.522	44.77	8	134	1.518	44.95

	Insulating	Superconducting	Bulk
	Ti ₄ O ₇ film	Ti ₄ O ₇ film	Ti ₄ O ₇
a (Å)	5.52	5.52	5.597
b (Å)	7.12	7.11	7.125
с (Å)	20.43	20.46	20.429
α(°)	67.5	67.5	67.7
β(°)	57.3	57.2	57.16
γ(°)	108.8	108.8	108.76

Table S2. List of lattice parameters of insulating and superconducting Ti₄O₇ films. The lattice parameters of bulk Ti₄O₇ are also listed for comparison [1,2].

Figure S5. XRD azimuth ϕ -scans of the Ti₄O₇ 134 reflections for the (a) insulating and (b) superconducting Ti₄O₇ films.

XRD measurements for the *γ*-Ti₃O₅ film

Figure S6 shows contour map of film- and substrate-reflections profiles intensity, plotted against scattering angle 2θ and tilt angle χ , for the γ -Ti_iO_i film grown on α -Al_iO_i (0001) substrates. The *d* values of interplanar spacing distances, χ angles obtained by synchrotron radiation XRD measurements (Figs. S7), and corresponding the Miller indices are listed in Table S3. For the γ -Ti_iO_i 143 reflection, the XRD azimuth ϕ -scan around the film normal was also carried out (Fig. S8). The reflections appeared every 60°, indicating the six-fold rotational domains in the film. The in-plane (out-of-plane) orientation relationships were determined to be γ -Ti_iO_i [100] // α -Al_iO_i [10–10], [01–10], [– 1100] and γ -Ti_iO_i [–100] // α -Al_iO_i [10–10], [01–10], [01–10], [– 1100] Using the *d* values and Miller indices, we evaluated the lattice parameters of the γ -Ti_iO, film in Table S4.

Figure S6. Contour map of film- and substrate-reflections intensity, constructed from 2θ - θ XRD measured by stepwisely varying tilt angle χ while fixing azimuth angle (a) $\phi = 0^{\circ}$ and (b) $\phi = 60^{\circ}$ for the γ -Ti₃O₅ film grown on α -Al₂O₅ (0001) substrates.

Figure S7. Some of the film-reflection profiles measured for the γ -Ti₃O₅ film. (a) 022, (b) 044, (c) 143, (d) 132, (e) 121, (f) 231, (g) 110, and (h) 220 reflections.

Table S3. List of Miller indices, *d* values of interplanar spacing distances, and tilt angle χ for the γ -Ti₃O₃ film.

No	hkl	<i>d</i> _{hkl} (Å)	χ(°)
1	022	2.375	0
2	044	1.188	0
3	143	1.377	18.14
4	132	1.613	22.09
5	121	2.839	40.23
6	231	1.652	46.07
7	110	3.620	56.54
8	220	1.812	56.54

	γ-Ti ₃ O ₅ film	Bulk <i>γ</i> -Ti ₃ O ₅
a (Å)	4.99	5.0747
b (Å)	9.80	9.9701
с (Å)	7.06	7.1810
α(°)	110.3	109.865

Table S4. List of lattice parameters of the γ -Ti₃O₅ film. The cell parameters of bulk γ -Ti₃O₅ are also listed for comparison [4].

Figure S8. XRD azimuth ϕ -scans of the γ -Ti₃O₅ 143 reflections.

Growth of *γ*-Ti₃O₃ and insulating Ti₄O₇ films in the same run

When both of α -Al₂O₅ (0001) and LSAT (100) substrates were loaded in the PLD chamber, titanate films with different structures were obtained under the condition where insulating Ti₂O₅ films were obtained on the LSAT (100) (substrate temperature of 900°C and oxygen partial pressure of 1 × 10⁻⁷. Torr). Figure S9(a) shows out-of-plane XRD patterns of the titanate films grown on α -Al₂O₅ (0001) and LSAT (100) substrates. The reflections coming from the titanate films were found at 2 θ = 37.83 and 42.38°. The former and latter were identical to the detection angles of γ -Ti₂O₅ 022 and Ti₂O₇ 202 reflections, respectively. Moreover, from the temperature dependence of resistivity [Fig. S9(b)], superconductivity (metal-insulator transition) was observed for the γ -Ti₂O₅ (Ti₂O₇) films.

Figure S9. (a) Out-of-plane XRD patterns and (b) temperature dependence of resistivity for Ti₄O₇ and γ -Ti₄O₅ films grown in the same run.

<u>Superconductivity in Ti₄O₇ films grown under $P_{At} = 1 \times 10^{-6}$ Torr</u>

Figure S10 shows temperature dependence of resistivity for the Ti₄O₇ film grown under $P_{xx} = 1 \times 10^{4}$ Torr. The P_{cx} (residual oxygen gases) in the chamber is expected to be in an intermediate range between those for the growth of insulating ($P_{cx} = 1 \times 10^{4}$ Torr) and superconducting ($P_{xx} = 1 \times 10^{4}$ Torr) films. Clear hysteresis was found at around 150 K [Fig. S10(a)], corresponding to the metal–insulator transition (MIT) in the normal state. In addition, the superconducting state was also found at low temperatures [Fig. S10(b)]. $T_{c.onst}$ of 2.9 K was slightly lower than that described in the main text. The emergence of the MIT and superconductivity in a sample supports bipolaronic mechanism in the Ti₄O₇ film.

Figure S10. Temperature dependence of resistivity for the Ti₄O₇ film grown under $P_{Ar} = 1 \times 10^{-6}$ Torr (a) in the whole and (b) a low-temperatures range.

Superconductivity in Ti₄O₂ films grown on MgAl₂O₄ (100) substrates

Crystal structure of the Ti₄O₇ film grown on MgAl₂O₄ (100) substrate was investigated by XRD with Cu K α_1 radiation. Figure S11(a) shows 2 θ - θ XRD patterns of the film with various tilt angle χ . For comparison, 2 θ - θ XRD patterns of the Ti₄O₇ film grown on LSAT (100) substrate were shown in Fig. S11(b). The film reflections were found at the similar angles, indicating that the film on MgAl₂O₄ (100) substrate was out-of-plane (101)-oriented Ti₄O₇.

Figure S12 shows temperature dependence of resistivity for the film. The resistivity curve was in good agreement with that grown under $P_{Ar} = 1 \times 10^{-3}$ Torr on LSAT (100) substrate. Superconductivity was clearly observed at low temperatures. Emergence of superconductivity of Ti₄O₇ films on the different substrates confirms that superconducting phase at low temperatures is intrinsic to the Ti₄O₇ films themselves. Furthermore, superconductors composed of Mg, Al, Ti, and O with T_c of more than 3 K are not yet known.

Figure S11. 2θ - ω XRD patterns of Ti₄O₇ films grown on (a) MgAl₂O₄ (100) and (b) LSAT (100) substrates with various tilt angle χ . The asterisks and triangles indicate the substrates and films reflections, respectively.

Figure S12. Temperature dependence of resistivity for Ti₄O₇ film grown on MgAl₂O₄ (100) substrate.

References

[S1] M. A. Afifi *et al.*, "Transport properties of polycrystalline TiO₂ and Ti₂O₃ as semiconducting oxides" J. Alloys Compd. **455**, 92 (2008).

[S2] I. Sunagawa *et al.,* "Observation and interpretation of eccentric growth spirals" J. Cryst. Growth **42**, 121 (1977).

[S3] C. Schlenker *et al.*, "Metal-insulator transitions and phase diagram of $(Ti_{14}V_{4})_{4}O_{7}$: electrical, calorimetric, magnetic and EPR studies" J. Phys. C: Solid State Phys. **12**, 3503 (1979).