Supplementary Information

Superconductivity in Ti₄O_z and γ ^{-Ti₅O_s films}

K. Yoshimatsu¹, O. Sakata²³, and A. Ohtomo^{1,3,*}

1 Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan 2 Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), Sayo, Hyogo 679-5148, Japan 3 Materials Research Centre for Element Strategy (MCES), Tokyo Institute of Technology, Yokohama 226-8503, Japan

PACS: 74.78.-w, 73.50.-h, 61.05.cp, 71.38.Mx

*Author to whom correspondence should be addressed; Electronic mail: k-yoshi@apc.titech.ac.jp

Growth of TiO and Ti_.O₃ films using pulsed laser deposition under Ar **atmosphere.**

In order to demonstrate the reductive effects of Ar gas, we have grown TiO and Ti₂O₃ films by using pulsed laser deposition under Ar atmosphere. Here, these films were grown at 1000°C and under Ar: 1×10^{-2} Torr and 1×10^{-3} Torr, respectively. Figure S1 shows out-of-plane XRD patterns for TiO and Ti₂O₃ films on α -Al₂O₃ (0001) substrates. The single peak was observed at $2\theta \approx 37.6^{\circ}$ and 39.2°, corresponding to $d = 2.396$ Å and 2.296 Å, respectively, except for α -Al₂O₃ 0006 reflections observed at $2\theta = 41.67^{\circ}$. The former peak was identified as TiO 111 reflection $[51]$ and the latter one was identified to TiO_s 0006 reflection $[52]$. The XRD patterns suggest that the single-phase TiO and Ti₂O₃ films are successfully grown under Ar atmosphere by laser ablation of the target with the identical TiO_x ceramic target.

Surface morphology strongly supports the formation of TiO and Ti $_{2}$ O₃ films. The insets of Fig. S1 show AFM images of the TiO and Ti $_2$ O₃ films. As for the TiO film, the triangular facets were clearly observed, reflecting fully epitaxial growth on the hexagonal substrate as well as a rock-salt type structure exposing more stable (100) facets. The Ti₂O₃ film exhibited a trace of the spiral growth: islands surrounded by multilevel terraces originating from screw or half-loop dislocations [S3].

Figure S1. Out-of-plane XRD patterns for TiO and Ti₂O₃ films. The insets show atomic force microscopic images of the films.

X-ray diffraction (XRD) measurements for the Ti_iO₂ films

Figure S2 shows contour map of film- and substrate-reflections intensity, plotted against scattering angle 2θ and tilt angle χ , for the Ti₄O₇ films grown under $P_{\text{A}r} = 1 \times 10^3$ Torr (superconducting Ti₄O₇). The peak locations corresponding to the film and substrate reflections were verified. Based on this survey, we have performed synchrotron radiation XRD at BL15XU in SPring-8 for both the insulating and superconducting TiO_z films. The measured reflection profiles were shown in Figs. S3 (a–h) (insulating $Ti.O$, film) and Figs. S4 (a–h) (superconducting TiO_z film). Signal to noise ratio was significantly improved using high-flux synchrotron radiation. From the *d* values of interplanar spacing distances and γ angles, the Miller indices were assigned as listed in Tables S1. For the Ti₄O₇ 134 reflection, the XRD azimuth ϕ -scans around the film normal were also performed to reveal the rotational domains of the films (Figs. S5). The peaks appeared every 90°, indicating four-fold rotational domains in the films. From these XRD analyses, the in-plane (out-of-plane) epitaxial relationships between the films and substrate were determined to be $Ti.O.$ [010] // (LaAlO₃)₀₃– $(SrA1_{0.5}Ta_{0.5}O_3)_{0.7}$ (LSAT) [010], [001] and Ti_tO₇ [0–10] // LSAT [010], [001] (Ti_tO₇ [101] // LSAT [100]). Using the *d* values and Miller indices, we evaluated the lattice parameters of the TiO_z films in Table S2.

Figure S2. Contour map of film- and substrate-reflections intensity, constructed from $2\theta \theta$ profiles measured by stepwisely varying tilt angle χ , for the superconducting Ti_,O₂ film grown on the LSAT (100) substrate.

Figure S3. Some of the film-reflection profiles measured for the insulating Ti_,O₇ film. (a) 202, (b) 404, (c) 314, (d) 112, (e) 1–10, (f) 2–20, (g) 3–30, and (h) 134 reflections.

Figure S4. Some of the film-reflection profiles measured for the superconducting Ti_,O₂ film. (a) 202, (b) 404, (c) 314, (d) 112, (e) 1–10, (f) 2–20, (g) 3–30, and (h) 134 reflections.

Table S1. List of Miller indices, *d* values of interplanar spacing distances, and tilt angle χ for the insulating (left) and superconducting (light) Ti₄O₇ films.

No	hkl	$d_{\textrm{\tiny{hkl}}}(\text{\AA})$	χ (\circ)	N _o	hkl	$d_{\textrm{\tiny{hkl}}}(\text{\AA})$	χ (\degree)
1	202	2.133	$\overline{0}$	1	202	2.131	θ
$\overline{2}$	404	1.068	θ	$\overline{2}$	404	1.067	$\overline{0}$
3	314	1.252	11.97	3	314	1.251	12.10
4	112	2.837	27.02	$\overline{\mathbf{4}}$	112	2.837	27.02
5	$1 - 10$	4.544	44.73	5	$1 - 10$	4.531	44.92
6	$2 - 20$	2.272	44.73	6	$2 - 20$	2.274	44.92
7	$3 - 30$	1.494	44.73	7	$3 - 30$	1.457	44.92
8	134	1.522	44.77	8	134	1.518	44.95

	Insulating	Superconducting	Bulk
	Ti,O, film	Ti,O, film	Ti_4O_7
$a(\AA)$	5.52	5.52	5.597
b(A)	7.12	7.11	7.125
$c(\AA)$	20.43	20.46	20.429
α (°)	67.5	67.5	67.7
β ^(°)	57.3	57.2	57.16
$\gamma(0)$	108.8	108.8	108.76

Table S2. List of lattice parameters of insulating and superconducting Ti_{,Oz} films. The lattice parameters of bulk Ti₄O₇ are also listed for comparison [1,2].

Figure S5. XRD azimuth ϕ -scans of the Ti₄O₇ 134 reflections for the (a) insulating and (b) superconducting $Ti.O$, films.

XRD measurements for the γ -Ti₃O₅ film

Figure S6 shows contour map of film- and substrate-reflections profiles intensity, plotted against scattering angle 2θ and tilt angle χ , for the γ -Ti₃O₅ film grown on α -Al₂O₃ (0001) substrates. The *d* values of interplanar spacing distances, γ angles obtained by synchrotron radiation XRD measurements (Figs. S7), and corresponding the Miller indices are listed in Table S3. For the γ -Ti₃O₅ 143 reflection, the XRD azimuth ϕ -scan around the film normal was also carried out (Fig. S8). The reflections appeared every 60°, indicating the six-fold rotational domains in the film. The in-plane (out-of-plane) orientation relationships were determined to be γ -Ti₃O₅ [100] // α -Al₂O₃ [10–10], [01–10], [-1100] and γ -Ti₃O₅ [-100] // α -Al₂O₃ [10-10], [01-10], [-1100] (γ -Ti₃O₅ [011] // α -Al₂O₃ [0001]). Using the *d* values and Miller indices, we evaluated the lattice parameters of the γ -Ti₃O₅ film in Table S4.

Figure S6. Contour map of film- and substrate-reflections intensity, constructed from $2\theta-\theta$ XRD measured by stepwisely varying tilt angle χ while fixing azimuth angle (a) $\phi = 0^\circ$ and (b) $\phi = 60^\circ$ for the γ -Ti₃O₅ film grown on α -Al₂O₅ (0001) substrates.

Figure S7. Some of the film-reflection profiles measured for the γ -Ti₃O₅ film. (a) 022, (b) 044, (c) 143, (d) 132, (e) 121, (f) 231, (g) 110, and (h) 220 reflections.

Table S3. List of Miller indices, *d* values of interplanar spacing distances, and tilt angle χ for the γ -Ti₃O₅ film.

No	hkl	$d_{\textrm{\tiny{hkl}}}(\text{\AA})$	χ (\degree)
1	022	2.375	Ω
$\overline{2}$	044	1.188	0
3	143	1.377	18.14
4	132	1.613	22.09
5	121	2.839	40.23
6	231	1.652	46.07
7	110	3.620	56.54
8	220	1.812	56.54

	γ -Ti ₃ O _s film	Bulk γ -Ti,O,
a(A)	4.99	5.0747
b(A)	9.80	9.9701
c(A)	7.06	7.1810
α (°)	110.3	109.865

Table S4. List of lattice parameters of the γ -Ti₃O₅ film. The cell parameters of bulk γ -Ti₃O₅ are also listed for comparison [4].

Figure S8. XRD azimuth ϕ -scans of the γ -Ti₃O₅ 143 reflections.

Growth of γ -Ti₃O₅ and insulating Ti₃O₅ films in the same run

When both of α -Al₂O₃ (0001) and LSAT (100) substrates were loaded in the PLD chamber, titanate films with different structures were obtained under the condition where insulating $Ti_{1}O_{7}$ films were obtained on the LSAT (100) (substrate temperature of 900 $^{\circ}$ C and oxygen partial pressure of 1 × 10⁻⁷ Torr). Figure S9(a) shows out-of-plane XRD patterns of the titanate films grown on α -Al₂O₃ (0001) and LSAT (100) substrates. The reflections coming from the titanate films were found at $2\theta = 37.83$ and 42.38°. The former and latter were identical to the detection angles of γ -Ti₃O₅ 022 and T_i₄O₇ 202 reflections, respectively. Moreover, from the temperature dependence of resistivity [Fig. S9(b)], superconductivity (metal-insulator transition) was observed for the γ -Ti₃O₅ (Ti₄O₇) films.

Figure S9. (a) Out-of-plane XRD patterns and (b) temperature dependence of resistivity for Ti_1O_7 and γTi_3O_5 films grown in the same run.

Superconductivity in Ti₄O₂ films grown under $P_{\lambda} = 1 \times 10^4$ **Torr**

Figure S10 shows temperature dependence of resistivity for the $Ti.O₇$ film grown under $P_{\alpha} = 1 \times 10^6$ Torr. The P_{α} (residual oxygen gases) in the chamber is expected to be in an intermediate range between those for the growth of insulating ($P_{\alpha} = 1 \times 10^{-7}$ Torr) and superconducting ($P_{\alpha} = 1 \times 10^{-3}$ Torr) films. Clear hysteresis was found at around 150 K [Fig. S10(a)], corresponding to the metal–insulator transition (MIT) in the normal state. In addition, the superconducting state was also found at low temperatures [Fig. S10(b)]. T_{const} of 2.9 K was slightly lower than that described in the main text. The emergence of the MIT and superconductivity in a sample supports bipolaronic mechanism in the $Ti₄O₇ film.$

Figure S10. Temperature dependence of resistivity for the Ti_{,O_z film grown} under $P_{\alpha} = 1 \times 10^3$ Torr (a) in the whole and (b) a low-temperatures range.

<u>Superconductivity in Ti_aO₂ films grown on MgAl₂O₄ (100) substrates</u>

Crystal structure of the Ti₄O₂ film grown on MgAl₂O₄ (100) substrate was investigated by XRD with Cu K α_1 radiation. Figure S11(a) shows $2\theta \cdot \theta$ XRD patterns of the film with various tilt angle χ . For comparison, $2\theta \theta$ XRD patterns of the Ti₄O₇ film grown on LSAT (100) substrate were shown in Fig. S11(b). The film reflections were found at the similar angles, indicating that the film on $MgAl_2O_4(100)$ substrate was out-of-plane (101)-oriented Ti₄O₇.

Figure S12 shows temperature dependence of resistivity for the film. The resistivity curve was in good agreement with that grown under $P_{\Lambda r} = 1 \times 10^{3}$ Torr on LSAT (100) substrate. Superconductivity was clearly observed at low temperatures. Emergence of superconductivity of TiO_z films on the different substrates confirms that superconducting phase at low temperatures is intrinsic to the Ti₄O_z films themselves. Furthermore, superconductors composed of Mg, Al, Ti, and O with T_c of more than 3 K are not yet known.

Figure S11. 2θ - ω XRD patterns of Ti_.O₂ films grown on (a) MgAl₂O₄ (100) and (b) LSAT (100) substrates with various tilt angle χ . The asterisks and triangles indicate the substrates and films reflections, respectively.

Figure S12. Temperature dependence of resistivity for Ti₄O₂ film grown on MgAl₂O₄ (100) substrate.

References

[S1] M. A. Afifi *et al.,* "Transport properties of polycrystalline TiO₂ and Ti₂O₃ as semiconducting oxides" J. Alloys Compd. **455**, 92 (2008).

[S2] I. Sunagawa *et al*., "Observation and interpretation of eccentric growth spirals" J. Cryst. Growth **42**, 121 (1977).

[S3] C. Schlenker *et al*., "Metal-insulator transitions and phase diagram of (Ti_{1x}V_x)₄O₇: electrical, calorimetric, magnetic and EPR studies" J. Phys. C: Solid State Phys. **12**, 3503 (1979).