1 Supplementary materials

3	Accurate detection of methicillin-resistant Staphylococcus aureus in mixtures
4	utilizing single bacterial duplex droplet digital PCR
5	Jun Luo ^{1,2} , Junhua Li ¹ , Hang Yang ¹ , Junping Yu ¹ , Hongping Wei ^{1#}
6	1.Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology,
7	Chinese Academy of Sciences, Wuhan 430071, China
8	2. University of Chinese Academy of Sciences, Beijing 100039, China
9	#To whom correspondence should be addressed.
10	Email: hpwei@wh.iov.cn; Tel/Fax: +86 27 51861076
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

Organism group	Strain	SCCmec type
MSSA	91118	_
MRSA	N315	Π
	ZX3	П
	ZX108	Ι
	FY16	III
	WH70	V
	YN22	IV
	KQ6	V
	FY17	III
	ZX54	IV
MR-CoNS (S. haemolyticus)	WH01	
Control bacteria	E. coil	_

23 Table S1 Bacteria strains used in this study.

- 24 —: not applicable (no *mecA* gene)

32 Table S2 The MRSA Index Ratio (MIR) of MRSA N315 under different concentrations.

	Sample N315	AveragemecA-positive droplets No	Average <i>Nuc</i> -positive droplets No	Average duplex positive droplets No	MRSA Index Ratio
	1x10 ⁶ CFU/mL	7988	7562	6806	90±1.175
	1x10 ⁵ CFU/mL	629	607	548	90.26±0.13
	1x10 ⁴ CFU/mL	93	84	77	91.67±0.705
	1x10 ³ CFU/mL	4	4	4	100
34 35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					

49 Table S3 The MRSA Index Ratio (MIR) of mixtures of MSSA and MR-CoNS under different

50 concentrations.

-	1
<u>ح</u>	
-	-

Mixture No	AveragemecA-positive droplets No	Average <i>Nuc</i> - positive droplets No	Average duplex positive droplets	MRSA Index Ratio
1	1 x 10 ⁶ CFU/mL WH01 +	- 1 x 10 ⁶ CFU/mL 91118	NO	
1		7141	0.50	20.40.407
2	2919 :	5141 1 105 CELU-1 01110	952	29.48±4.07
2	1 X 10° CFU/mL WH01+	(70)	16	6 75 10 05
2	240 1 x 10 ⁴ CEU/mL WU01	0/9	10	0.75±0.95
3	1 X 10 CFU/IIIL WH01+	77	0	0
4	$1 \times 10^3 \text{ CEU/mI WH}01 \pm$	$1 \times 10^3 \text{ CEU/mI} 01118$	0	0
4	1 x 10 CF0/IIILW101+	1 x 10 CF0/IIIL 91118	0	0
5	$1 \times 10^{6} \text{ CFU/mJ WH01+}$	² 1 x 10 ⁵ CEU/mI 91118	0	0
5	1696	253	52	20 74+1 56
6	$1 \times 10^{6} \text{ CFU/mL WH01+}$	-1 x 10 ⁴ CFU/mL 91118	52	20.7 121.50
0	2575	76	14	18.24+1.24
7	1 x 10 ⁶ CFU/mL WH01+	1 x 10 ³ CFU/mL91118		
	2511	6	0	0
8	1 x 10 ⁵ CFU/mL WH01+	1 x 10 ⁴ CFU/mL 91118		
	322	144	3	2.1±0.45
9	1 x 10 ⁵ CFU/mL WH01+	1 x 10 ³ CFU/mL 91118		
	349	7	0	0
10	1 x 10 ⁴ CFU/mL WH01+	1 x 10 ³ CFU/mL91118		
	56	2	0	0
11	1 x 10 ⁵ CFU/mL WH01+	1 x 10 ⁶ CFU/mL 91118		
	661	4140	142	21.48±1.24
12	1 x 10 ⁴ CFU/mL WH01+	1 x 10 ⁶ CFU/mL 91118		
	85	4160	19	22.29±1.13
13	1 x 10 ³ CFU/mL WH01+	1 x 10 ⁶ CFU/mL 91118		
	3	1920	0	0
14	1 x 10 ⁴ CFU/mL WH01+	1 x 10 ⁵ CFU/mL 91118		
	68	557	2	2.9±0.6
15	1 x 10 ³ CFU/mL WH01+	1 x 10°CFU/mL 91118	_	_
	8	1426	0	0
16	1 x 10 ³ CFU/mL WH01+	1 x 10 ⁴ CFU/mL 91118	_	_
	4	20	0	0

	qPCR ((Ct)		ddPCR	(droplet))			Cultur
Sample	mecA	пис	Result	mecA	пис	Dual positive	MRSA ratio	Result	result
1	-	-	-	9	0	0	0	-	-
2	36.71	-	-	34	1	0	0	-	-
3	32.91	-	-	1410	8	6	75	+	+
4	34.02	-	-	30	4	0	0	-	-
5	31.21	-	-	209	2	0	0	-	-
6	31.29	-	-	127	2	0	0	-	-
7	33.41	33.59	+	160	84	82	97.6	+	+
8	37.16	-	-	14	2	0	0	-	-
9	-	-	-	3	2	0	0	-	-
10	-	-	-	6	4	0	0	-	-
11	-	_	-	2	2	2	100	+	+
12	_	_	_	0	0	0	0	_	-
13	34.72	35.91	+	13	5	0	0	-	-
14	29.98	32.37	+	3052	1542	1483	96.2	+	+
15	32.01	32.51	+	463	450	379	84.22	+	+
16	37.39	-	-	0	0	0	0	-	-
17	-	_	_	2	0	0	0	-	-
18	_	-	-	3	3	0	0	-	-
19	-	-	2	1	1	1	100	+	+
20	37.67	-	-	0	0	0	0	-	-
21	-	-	-	0	0	0	0	-	-
22	-	-	-	1	0	0	0	-	-
23	-	-	-	1	0	0	0	-	-
24	35.17	-	-	195	1	1	100	+	+
25	35.6	37.83	+	10	8	0	0	-	-
26	-	-	-	0	3	0	0	-	-
27	33.77	-	-	87	0	0	-	-	-
28	-	-	-	1	1	0	-	-	-
29	34.13	-	-	69	1	0	-	-	-
30	36.01	-	-	9	0	0	-	-	-
31	-	-	-	0	2	0	-	-	-
32	37.12	-	-	7	3	0	-	-	-
33	34.35	-	-	117	3	2	66.67	+	+
34	-	-	-	21	1	0	-	-	-
35	-	-	-	0	0	0	-	-	-
36	35.74	-	-	14	5	0	-	-	-
37	30.32	-	-	292	1	0	-	-	-

54	Table S4 The detection results	s of the dulpex	ddPCR and the du	plex qPCR for	104 nasal specimens.
----	--------------------------------	-----------------	------------------	---------------	----------------------

39	-	-	-	3	0	0	-	-	-
40	34.01	-	-	15	0	0	-	-	-
41	30.95	37.74	+	51	9	8	88.89	+	+
42	33.94	-	-	21	3	0	-	-	-
43	32.18	-	-	33	0	0	-	-	-
44	-	-	-	3	0	0	-	-	-
45	31.14	-	-	55	2	2	100	+	+
46	-	-	-	0	0	0	-	-	-
47	-	-	-	0	0	0	-	-	-
48	31.62	-	-	26	1	0	-	-	-
49	30.38	-	-	107	3	3	100	+	+
50	36.89	-	-	4	0	0	-	-	-
51	35.14	-	-	8	2	0	-	-	-
52	33.21	-	-	7	0	0	-	-	-
53	-	-	-	2	1	0	-	-	-
54	36.56	-	-	6	2	0	-	-	-
55	-	-	-	3	0	0	-	-	-
56	-	-	-	0	0	0	-	-	-
57	-	-	-	1	0	0	-	-	-
58	-	-	-	4	3	0	-	-	-
59	-	-	-	1	3	0	-	-	-
60	-	-	-	0	0	0	-	-	-
61	-	-	-	10	0	0	-	-	-
62	-	-	-	4	0	0	-	-	-
63	32.96	-	-	33	1	0	-	-	-
64	-	-	-	1	1	0	-	-	-
65	-	-	-	0	1	0	-	-	-
66	31.71	-	-	238	1	0	-	-	-
67	-	_	-	1	1	0	-	-	-
68*	24.6	-	-	10374	10	10	_*	-	-
69	37.95	-	-	3	0	0	-	-	-
70	32.12	-	-	143	0	0	-	-	-
71	-	-	-	8	0	0	-	-	-
72	36.14	-	-	18	4	1	25	+	+
73	-	-	-	0	4	0	-	-	-
74	31.48	35.41	+	231	60	17	28.33	+	+
75	-	-	-	1	4	0	-	-	-
76	34.03	37.99	+	31	7	1	14.28	+	+
77	-	-	-	1	2	0	-	-	-
78	29.56	-	-	158	2	0	-	-	-
79	31.12	-	-	59	0	0	-	-	-
80	-	-	-	0	0	0	-	-	-
81	-	-	-	0	0	0	-	-	-
82	-	-	-	4	3	3	100	+	+

83	36.21	36.65	+	11	10	7	70	+	+	
84	-	-	-	2	1	0	-	-	-	
85	35.1	-	-	29	0	0	-	-	-	
86	-	-	-	6	0	0	-	-	-	
87	35.62	-	-	11	0	0	-	-	-	
88	-	-	-	3	0	0	-	-	-	
89	-	-	-	1	4	0	-	-	-	
90	37.19	-	-	8	0	0	-	-	-	
91	31.91	-	-	157	0	0	-	-	-	
92	-	-	-	5	0	0	-	-	-	
93	-	-	-	5	7	3	60	+	+	
94	31.56	-	-	230	0	0	-	-	-	
95	32.79	-	-	151	0	0	-	-	-	
96	32.61	-	-	145	1	1	100	+	+	
97	-	-	-	1	1	0	-	-	-	
98	-	-	-	1	0	0	-	-	-	
99	-	-	-	1	1	0	-	-	-	
100	37.23	-	-	11	1	0	-	-	-	
101	-	-	-	1	1	0	-	-	-	
102	31.98	-	-	125	5	0	-	-	-	
103	-	-	-	2	0	0	-	-	-	
104	33.1	-	-	101	1	0	-	-	-	

55 Note: "-" means no signal (for qPCR) or MRSA negative result. "+" means MRSA positive result.

56 *: Specimen 68 was diluted 10 times for determining the MIR in the ddPCR assay.

74 Fig.S1

Fig.S1 One-dimensional (1D) plots of the duplex ddPCR assay under different annealing temperatures (54–60°C). MRSA strain N315 (1 *10⁷ CFU/mL) is used as the template (A. *mecA* gene and B. *nuc* gene). Each point represents a droplet with a given fluorescence level and the droplet colors indicate which target was amplified. The x-axis shows various temperature, and the y-axis represents the fluorescence amplitude.

Fig. S2 The activity changes of ClyH after cooling on ice. The concentration of ClyH:

98 10 μg/mL.

phore

139	(nuc), and the y-axis represents the fluorescence amplitude corresponding to the FAM fluoro
140	(mecA). Each point represents a droplet with a given fluorescence level and the droplet colors
141	indicate which target was amplified (blue: mecA positive; green: nuc positive; black: negative
142	Orange: both <i>nuc</i> and <i>mecA</i> positive).
143	
144	
145	
146	
147	
148	
149	

Fig. S5 Two-dimensional (2D) plots of the duplex ddPCR for detection of the mixture of MSSA(91118) and MR-CoNS under different concentrations (Sample No 13 - No 16 are as shown in Table S3). The x-axis shows the fluorescence amplitude corresponding to the HEX fluorophore (*nuc*), and the y-axis represents the fluorescence amplitude corresponding to the FAM fluorophore (*mecA*). Each point represents a droplet with a given fluorescence level and the droplet colors indicate which target was amplified (blue: *mecA* positive; green: *nuc* positive; black: negative, Orange: both *nuc* and *mecA* positive).