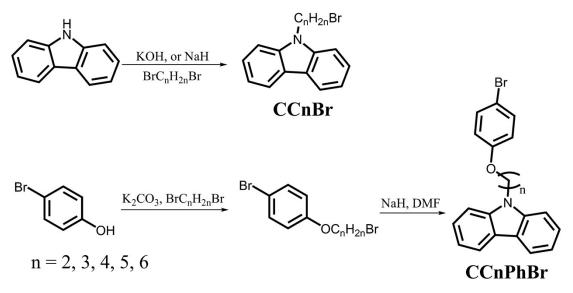
Bright persistent luminescence from pure organic molecules through moderate

intermolecular heavy atom effect

Pengchong Xue,^{1*} Panpan Wang,¹ Peng Chen,² Peng Gong,¹ Zhenqi Zhang,¹ Jiabao Sun,¹ Ran Lu^{1*}

¹ State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun, P. R. China. Email: xuepengchong@jlu.edu.cn; luran@jlu.edu.cn

² Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin, P. R. China


Experimental section	3
Fig. S1	6
Table S1.	
Fig. S2	
Fig. S3	9
Fig. S4	
Fig. S5	11
Fig. S6	
Table S2.	
Fig. S7	14
Table S3.	
Fig. S8	
Fig. S9	
0	

Experimental section

All reagents were used as purchased without additional purifications. Detail synthesis description sees the Supplementary Information. The UV-vis spectra were determined on a Mapada UV-1800pc spectrophotometer. C, H, and N elemental analyses were performed on a Perkin-Elmer 240C elemental analyzer. Fluorescence measurements were taken on a Shimadzu RF-5301 Luminescence Spectrometer. The fluorescence quantum yields of **CCnBr** and **CCnPhBr** in different solvents were measured by comparing to standards (anthracene in ethanol, $\Phi_F = 0.27$, $\lambda_{ex} = 323$ nm). Photoluminescence spectra and the absolute photoluminescence quantum yields were measured on an Edinburgh FLS920 steady state spectrometer using an integrating sphere. Luminescent decay experiments were measured on an Edinburgh FLS920 spectrometer. EPLED-360 picosecond flash lamp with 898 ps pulse duration and μ F920 microsecond flash lamp (pulse width < 2 μ s) were used to measure time-resolved fluorescent and phosphorescent spectra, respectively. ¹H NMR spectra were recorded on Mercury plus 400 MHz.

Single crystals of **CCnBr** and **CCnPhBr** were obtained by slowing solvent evaporation and selected for X-ray diffraction analysis on in a Rigaku RAXIS-RAPID diffractometer using graphite-monochromated Mo-K_{α} radiation ($\lambda = 0.71073$ Å). The crystals were kept at room temperature during data collection. The structures were solved by the direct methods and refined on F2 by full-matrix least-square using the SHELXTL-97 program. The C, N, O and H atoms were easily placed from the subsequent Fourier-difference maps and refined anisotropically. CCDC 1421286, 1421288, 1421290, 1421285, 1421287, 1421289, and 1421291 contains the supplementary crystallographic data for CC4Br, CC2Br, CC5Br, CC6Br, CC2PhBr, CC4PhBr, CC5PhBr, and CC6PhBr, respectively. The single-crystal structure of CC2Br has been reported.¹

Synthesis of compounds

Scheme S1. Synthesis route of CCnBr and CCnPhBr.

⁹⁻⁽²⁻bromoethyl)-9H-carbazole (CC2Br)

Carbazole (1.0 g, 6.0 mmol) and 1,2-dibromoethane (10 mL) were dissolved in acetone, and then K₂CO₃ (1.8 g, 13 mmol), KOH (2.2 g, 40 mmol) and Bu₄NBr (40 mg, 0.12 mmol) were added. The mixture was refluxed for 6h, and cooled to room temperature. CH₂CH₂ was added and organic phase was washed by water for three times. Organic layer was dried over anhydrous Na₂SO₄ and removed. Residue was purified by column chromatography (petroleum ether/CH₂Cl₂ = 2/1). White solid as product was obtained in a yield of 23%. mp = 147-148 °C. Elemental analysis: C, 61.33; H, 4.41; N, 5.11; found: C, 61.31; H, 4.45; N, 5.14. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.8 Hz, 2H), 7.51 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.29 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 4.74 (t, J = 7.6 Hz, 2H), 3.75 – 3.65 (t, J = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.07, 126.09, 123.28, 120.68, 119.72, 108.56, 44.80, 28.22. HRMS (m/z): [M+H]⁺ calcd. for C₁₄H₁₃BrN, 274.0226; found, 274.0226.

9-(3-bromopropyl)-9H-carbazole (CC3Br)

Carbazole (1.0 g, 6.0 mmol) and 1,3-dibromopropane (6.0 g, 30 mmol) were dissolved in DMF, and then KOH (1.6 g, 28.5 mmol) was added. The mixture was stirred for 24 h at room temperature, and poured into water. The mixture was extracted with CH₂Cl₂ and the organic layer was washed by water and dried over Na₂SO₄. Colorless oil was obtained from column chromatography (petroleum ether/CH₂Cl₂ = 2/1) after evaporating solvent (38% in yield). Elemental analysis: C, 62.52; H, 4.90; N, 4.86; found: C, 62.55; H, 4.88; N, 4.83. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.8 Hz, 2H), 7.55 – 7.47 (m, 4H), 7.31 – 7.24 (m, 2H), 4.54 (t, *J* = 6.5 Hz, 2H), 3.42 (t, *J* = 6.2 Hz, 2H), 2.48 (p, *J* = 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.49, 125.97, 123.12, 120.57, 119.28, 108.74, 41.06, 32.11, 30.99. HRMS (m/z): [M+H]⁺ calcd. for C₁₅H₁₅BrN, 288.0382; found, 288.0375.

9-(4-bromobutyl)-9H-carbazole (CC4Br)

CC4Br was synthesized by the procedure similar to **CC3Br**. mp = 110-111 °C. Elemental Analysis: C, 63.59; H, 5.34; N, 4.63; found: C, 63.62; H, 5.35; N, 4.61. ¹H

NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.8 Hz, 2H), 7.51 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.29 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 4.39 (t, J = 6.9 Hz, 2H), 3.41 (t, J = 6.5 Hz, 2H), 2.15 – 2.04 (m, 2H), 2.00 – 1.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.43, 125.86, 123.05, 120.57, 119.10, 108.67, 42.30, 33.27, 30.38, 27.80. HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₇BrN, 302.0539; found, 302.0528.

9-(5-bromopentyl)-9H-carbazole (CC5Br)

CC5Br was synthesized by the procedure similar to **CC3Br**. The crude product was purified by column chromatography (petroleum ether/CH₂Cl₂ = 6/1). mp = 61-62 °C. Elemental Analysis: C, 64.57; H, 5.74; N, 4.43; found: C, 64.52; H, 5.75; N, 4.44. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.8 Hz, 2H), 7.47 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.23 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 4.33 (t, *J* = 7.2 Hz, 2H), 3.35 (t, *J* = 6.7 Hz, 2H), 1.97 – 1.82 (m, 4H), 1.59 – 1.46 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.47, 125.79, 123.00, 120.53, 118.98, 108.69, 42.94, 33.45, 32.60, 28.32, 26.04. HRMS (m/z): [M+H]⁺ calcd. for C₁₇H₁₉BrN, 316.0695; found, 316.0693.

9-(6-bromohexyl)-9H-carbazole (CC6Br)

CC6Br was synthesized by the procedure similar to **CC3Br**. The crude product was purified by column chromatography (petroleum ether/CH₂Cl₂ = 5/1). mp = 62-63 °C. Elemental Analysis: C, 65.46; H, 6.10; N, 4.24; found: C, 65.42; H, 6.08; N, 4.27. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.8 Hz, 2H), 7.49 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.26 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 4.35 (t, *J* = 7.1 Hz, 2H), 3.39 (t, *J* = 6.7 Hz, 2H), 1.93 (dt, *J* = 14.6, 7.2 Hz, 2H), 1.84 (dt, *J* = 14.6, 7.2 Hz, 2H), 1.54 – 1.37 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 140.53, 125.76, 122.98, 120.52, 118.92, 108.73, 43.00, 33.86, 32.71, 28.97, 28.07, 26.62. HRMS (m/z): [M+H]⁺ calcd. for C₁₈H₂₁BrN, 330.0852; found, 330.0852.

9-(2-(4-bromophenoxy)ethyl)-9H-carbazole (CC2PhBr)

4-bromophenol (1.0 g, 5.8 mmol), 1,2-dibromoethane (3.3 g, 16.8 mmol), K₂CO₃ (1.6

g, 11.6 mmol) and KI (10 mg) was dispersed in acetone and the mixture was refluxed for 24 h. Solid was removed by filtration. The intermediate as colorless oil was obtained by column chromatography (petroleum ether/CH₂Cl₂ = 1/1). Carbazole (1.0 g, 6.0 mmol) was dissolved in DMF, and NaH (0.72 g, 60%) was added slowly. The intermediate (1.5 g in 5 mL DMF) was added dropwise into the above mixture. The mixture was stirred for 5 h at room temperature and poured into water. The mixture was extracted by CH₂Cl₂ and the organic layer was washed by water for three times and dried over anhydrous Na₂SO₄. White solid was obtained by column chromatography (petroleum ether/CH₂Cl₂ = 5/1) in a yield of 19%. mp = 145-147 °C. Elemental Analysis: C, 65.59; H, 4.40; N, 3.82; found: C, 65.64; H, 4.37; N, 3.80. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.8 Hz, 2H), 7.54 – 7.47 (m, 4H), 7.33 (d, *J* = 9.0 Hz, 2H), 7.3 – 7.25 (m, 2H), 6.70 (d, *J* = 9.0 Hz, 2H), 4.74 (t, *J* = 5.9 Hz, 2H), 4.34 (t, *J* = 5.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.54, 140.64, 132.40, 125.93, 123.20, 120.56, 119.42, 116.35, 113.44, 108.82, 66.32, 42.56. HRMS (m/z): [M+H]⁺ calcd. for C₂₀H₁₇BrNO, 366.0488; found, 366.0475.

9-(3-(4-bromophenoxy)propyl)-9H-carbazole (CC3PhBr)

By following the synthetic procedure for **CC2PhBr**, **CC3PhBr** as colorless oil was synthesized. Yield: 32%. Elemental Analysis: C, 66.33; H, 4.77; N, 3.68; found: C, 66.31; H, 4.78; N, 3.65. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.26 (m, 4H), 6.77 (d, *J* = 8.1 Hz, 2H), 4.58 (d, *J* = 12.3 Hz, 2H), 3.88 (s, 2H), 2.37 (d, *J* = 11.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.85, 140.55, 132.43, 125.90, 123.03, 120.50, 119.14, 116.45, 113.20, 108.66, 64.86, 39.41, 28.83. HRMS (m/z): [M+H]⁺ calcd. for C₂₁H₁₉BrNO, 380.0645; found, 380.0635.

9-(4-(4-bromophenoxy)butyl)-9H-carbazole (CC4PhBr)

By following the synthetic procedure for **CC2PhBr**, **CC4PhBr** as colorless oil was synthesized. Yield: 19%. mp = 97-99 °C. Elemental Analysis: C, 67.01; H, 5.11; N, 3.55; found: C, 67.04; H, 5.06; N, 3.58. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.8 Hz, 2H), 7.49 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.37 (d, *J* = 9.0 Hz, 2H), 7.26 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 6.75 (d, *J* = 9.0 Hz, 2H), 4.43 (t, *J* = 7.0 Hz, 2H), 3.93 (t, *J* = 6.1 Hz, 2H), 2.18 – 2.05 (m, 2H), 1.87 (m, 2H). ¹³C NMR (101

MHz, CDCl₃) δ 157.98, 140.38, 132.28, 125.70, 122.92, 120.45, 118.91, 116.27, 112.88, 108.63, 67.73, 42.71, 26.96, 25.84. HRMS (m/z): [M+H]⁺ calcd. for C₂₂H₂₁BrNO, 394.0801; found, 394.0807.

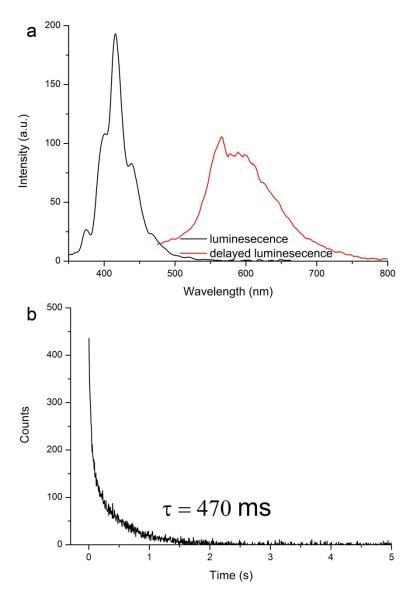
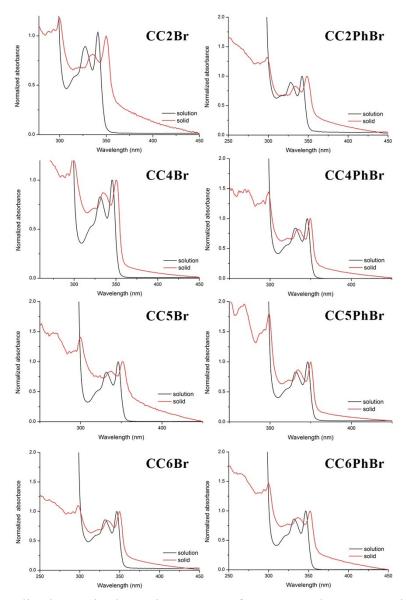
9-(5-(4-bromophenoxy)pentyl)-9H-carbazole (CC5PhBr)

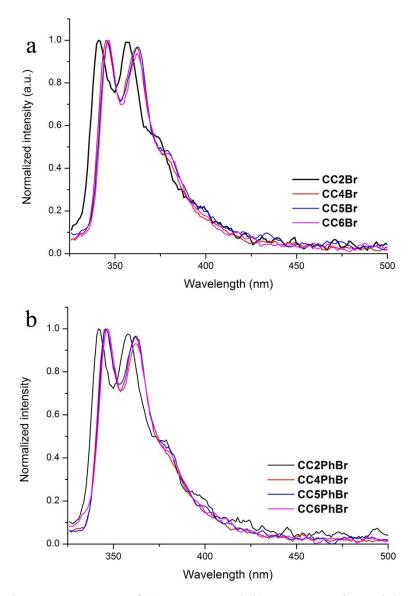
By following the synthetic procedure for **CC2PhBr**, **CC5PhBr** as colorless oil was synthesized. Yield: 26%. mp = 92-94 °C. Elemental Analysis: C, 67.65; H, 5.43; N, 3.43; found: C, 67.68; H, 5.41; N, 3.45. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.7 Hz, 2H), 7.46 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 9.0 Hz, 2H), 7.23(ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 6.71 (d, *J* = 9.0 Hz, 2H), 4.34 (t, *J* = 7.1 Hz, 2H), 3.86 (t, *J* = 6.4 Hz, 2H), 2.03 – 1.89 (m, 2H), 1.84 – 1.74 (m, 2H), 1.59 – 1.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.09, 140.41, 132.23, 125.66, 122.87, 120.41, 118.83, 116.30, 112.74, 108.61, 67.85, 42.92, 29.01, 28.79, 23.87. HRMS (m/z): [M+H]⁺ calcd. for C₂₃H₂₃BrNO, 408.0958; found, 408.0940.

9-(6-(4-bromophenoxy)hexyl)-9H-carbazole (CC6PhBr)

By following the synthetic procedure for **CC2PhBr**, **CC6PhBr** as colorless oil was synthesized. Yield: 25%. mp = 96-97 °C. Elemental Analysis: C, 68.25; H, 5.73; N, 3.32; found: C, 68.28; H, 5.70; N, 3.34. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.7 Hz, 2H), 7.49 (ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.37 (d, *J* = 9.0 Hz, 2H), 7.26(ddd, J = 8.1, 7.0, 1.1 Hz, 2H), 6.74 (d, *J* = 9.0 Hz, 2H), 4.35 (t, *J* = 7.1 Hz, 2H), 3.89 (t, *J* = 6.4 Hz, 2H), 1.99 – 1.91 (m, 2H), 1.79 – 1.69 (m, 2H), 1.49 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 158.14, 140.44, 132.22, 125.63, 122.86, 120.40, 118.79, 116.29, 112.66, 108.64, 67.97, 42.94, 29.02, 28.95, 27.06, 25.92. HRMS (m/z): [M+H]⁺ calcd. for C₂₄H₂₅BrNO, 422.1114; found, 422.1110. Reference:

1. B. Zhao, X. Zhu, S. Guan, D. Li, *Acta Crystallogr. Sect. E Struct. Rep. Online* **2012**, 68 02026.


Fig. S1 a) Fluorescence and phosphorescence spectra of carbazole crystal and b) timeresolved emission spectrum at 550 nm. $\lambda_{ex} = 320$ nm.

	λ_{abs}	λ_{abs}	λ_{em}	Φ	λ_{em}	Φ(%)	τ
	(solution, nm)	(solid, nm)	(solution, nm)	(solution)	(solid, nm)	(solid)	(solid, lifetime)
CC2Br	327; 341	335; 350	341; 357	0.18	370; 384	1.1	0.96 ns;
							(370 nm)
					407; 430; 455		3.4 ns;
							(407 nm)
					544; 591; 644	1.6	160 ms
CC4Br	331; 345.5	335; 350	345; 362	0.45	374.5; 388	- 14.3	2.26ns;
							(374 nm)
					414; 437; 468		2.78 ns;
							(414 nm)
					555.5; 604.5; 661	11.1	85ms
	332; 346				360-382-	38.4	6.39 ns
CC5Br		337; 351	346; 362	0.57	369; 382;		(370 nm)
					544; 585; 635	2.1	20ms
CC6Br	332; 346.5	335; 350	346; 362	0.47	375; 388; 413	46.5	7.08ns
	552, 540.5	555, 550 540, 502 0.47 575, 588, 41	575, 566, 415	40.5	(375 nm)		
	328; 342	334; 348	342; 358	0.43	371; 383; 390 410; 436; 462	- 25.2	1.58 ns
CC2PhBr							(370 nm)
							4.42ns
							(410 nm)
					554; 602; 660	8.9	64ms
CC4PhBr	331; 345.5	334; 349.5	346; 364	0.37	373; 388; 415; 438; 467	- 26.1	4.79ns
							(373 nm)
							9.68 ns
							(415 nm)
					555; 605; 660	9.5	340 ms
	331.5; 346	334; 350	346; 362	0.40	373; 359	8.38	1.6 ns
CC5PhBr							(373 nm)
					414; 440;		4.02
							(414 nm)
					555; 604;	2.75	197 ms
CC6PhBr	332; 346.5	336.5; 352	347; 362	0.45	376; 394;	- 33.1	3.90 ns;
							(370 nm)
					420; 440; 470		11.78 ns
							(415 nm)
					554; 602; 659	39.47	200 ms

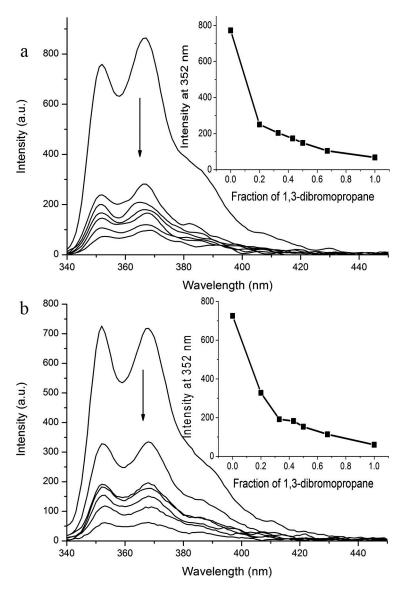

 Table S1. Photophysical data of CCnBr and CCnPhBr in solution and crystal.

Fig. S2 Normalized UV-vis absorption spectra of **CCnBr** and **CCnPhBr** in toluene solutions $(1.0 \times 10^{-5} \text{ M})$ and in crystal state.

Fig. S3 Luminescence spectra of (a) **CCnBr** and (b) **CCnPhBr** in cyclohexane (10⁻⁵M). $\lambda_{ex} = 280$ nm.

Fig. S4 Fluorescence spectra of (a) **CC4Br** and (b) **CC4PhBr** in the mixtures of CH₂Cl₂ and 1,3-dibromopropane with different volume ratios. $\lambda_{ex} = 280$ nm.

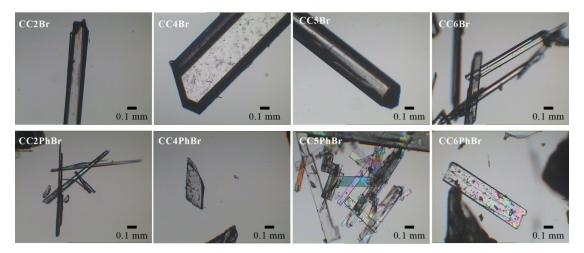


Fig. S5 Optical microscopy images of crystals.

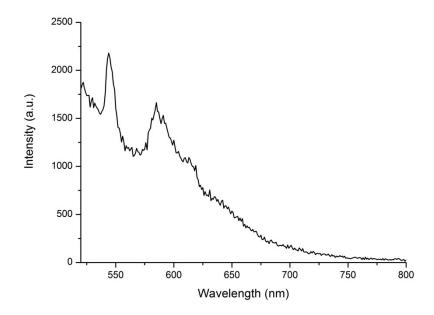


Fig. S6 PL spectrum of CC5Br crystal with a larger slit. $\lambda_{ex} = 280$ nm.

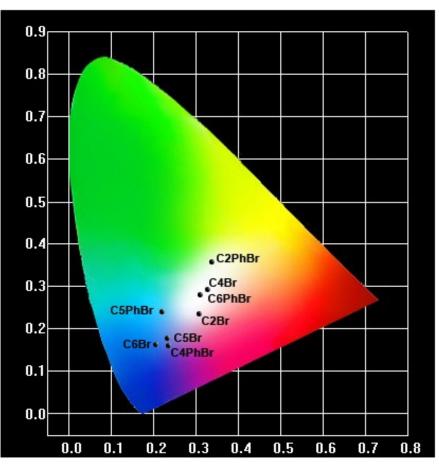


Fig. S7 CIE chromaticity coordinates of eight compounds.

Compounds	CIE	Compounds	CIE		
CC2Br	0.31, 0.24	CC2PhBr	0.30, 0.27		
CC4Br	0.33, 0.30	CC4PhBr	0.24, 0.16		
CC5Br	0.24, 0.18	CC5PhBr	0.23, 0.24		
CC6Br	0.21, 0.16	CC6PhBr	0.31, 0.28		

 Table S2. CIE coordinates of eight compounds.

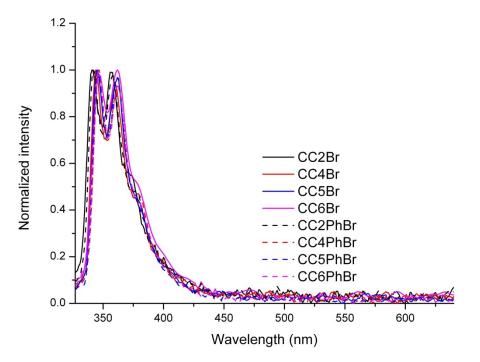


Fig. S8 Photoluminescence spectra of PMMA film doped with CCnBr and CCnPhBr (5.0% in weight). $\lambda_{ex} = 280$ nm.

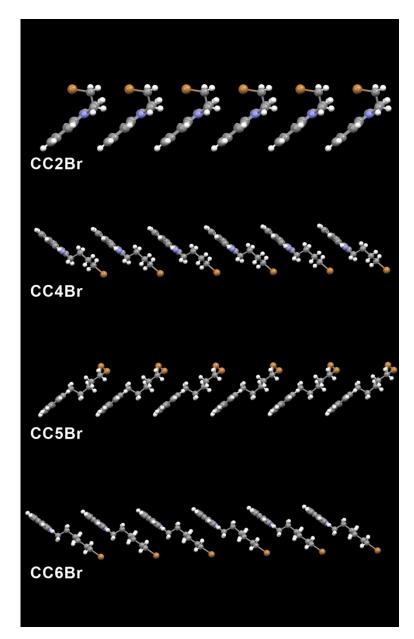
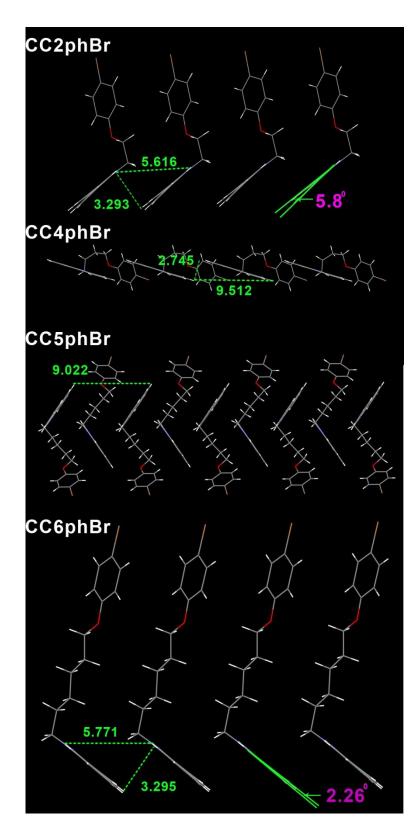



Fig. S9 1D aggregates of CCnBr in crystals.

Compounds	Short interactions	Distance (Å)
CC2Br	2,	2.832
CC4Br	2,	2.820
	2, =C-H·····C=	2.854
CC5Br	2, =C-H·····C=	2.840
	2,	2.805
	2, C-H···Br	2.995
	Br···Br	3.693
CC6Br	2, ->c-+····c=	2.883
	2,	2.854

 Table S3. Short interactions in CCnBr crystals.

Fig. S10 1D aggregates with the distance and interplanar spacing between adjacent carbazoles in **CCnPhB**r crystals.

Compounds	Short interactions	Distance (Å)
CC2PhBr	2, =C-H·····C=	2.756
	2, =C-H·····C=	2.828
	2, ->c-+····c=	2.720
	2, ->c==	3.332
	2, =C-H·····C=	2.809
	2,	2.895
CC4PhBr	2, =C-H·····C=	2.842
	2, =C-H…Br	3.028
	2,	2.884
CC5PhBr	2, ->c-+····c=	2.813
	2,	2.829
	2, =C-H·····C=	2.893
	2,	2.844
	2, =C-H·····C=	2.867
CC6PhBr	2,c=	3.389
	2, -/c-H····c=	2.797
	2, ->c-+····c=	2.826
	2, =C-H·····C=	2.773
	2,	2.373
	2,	2.310
	2, ->cc=	2.892

 Table S4. Short interactions in CCnPhBr crystals.

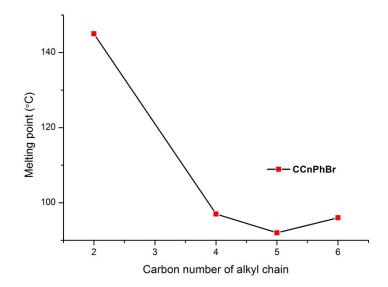


Fig. S11 Melting points of CCnPhBr.